
International Journal of Control and Automation 

Vol.9, No.1 (2016), pp.209-220  

http://dx.doi.org/10.14257/ijca.2016.9.1.19 

 

 

ISSN: 2005-4297 IJCA  

Copyright ⓒ 2016 SERSC 

A Hierarchical Resampling Algorithm with Adaptive Interval for 

Particle Filter 
 

 

Xiaohui-Zeng
1,2

, Yibing-Shi
2 
and Yi-Lian

3
 

1
School of Communication Engineering, Chengdu University of Information and 

Technology, Chengdu, China 
2
School of Automation Engineering, UESTC, Chengdu, China 

3
Motorola (China) Solutions, Chengdu, China 

huizi003@126.com 

Abstract 

In this article, we present an improved resampling algorithm for particle filtering, 

which is based on partial resampling and residual resampling. This algorithm provides 

an approach to selectively carry out hierarchical resampling operations on three sets of 

particles divided by large, medium and small weights, and especially to do skip 

resampling for partial small particles with an adaptive interval M. Simulation results 

verify that the proposed algorithm could reduce the depletion problem, maintain a good 

diversity of particles and improve the accuracy of PF performance. 

 

Keywords: particle filtering, hierarchical weights, partial resampling, skip resampling, 

adaptive interval 

 

1. Introduction 

Particle filters (PF) have been applied with great success to solve state estimation 

problems and prediction problems in dynamic systems since the 1990s. Compared 

with traditional filtering ways such as Kalman filtering and extended Kalman 

filtering, particle filtering shows its superior performance in complex environments 

with noises. In the past decades, extensive research and work has been done on 

particle filtering, including improving the performance and overcoming the 

computational burden [1]. 

In fact, the particle filter is a sequential Monte Carlo method based on particles of 

various probability densities, which are represented by corresponding weights. Thus 

continuous distributions are approximated by discrete random measures, which are 

samples of the unknown states and space, and then they are computed by recursive 

use of the importance sampling principle. As a result of the sequential importance 

sampling (SIS) method and the particles are predicted according to the state 

equation during the prediction step of Bayes filtering. Throughout this process, the 

particles in a swarm are adapted to an evolving target distribution with their weights 

calculated by using the likelihood of new observation combined with the former 

weights. Sometimes, in order to avoid the degeneracy of particle into a unique 

particle of high weight, a resampling step becomes a very necessary addition to 

dismiss the particle samples with lower weights and produce multiple copies of 

those good samples to help generating better future samples in the SIS setting [2, 3]. 

However this resampling also causes the known problem of sample impoverishment, 

which could lead to non-robust estimation in the particle filter. Usually there are 

three ways to mitigate sample impoverishment. The first one is to add state noise 

covariance or sample noise [3], with roughening strategies used to rejuvenate the 

diversity of particles proposed by Gordon. The second one is to construct an 
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advanced kernel, via a MCMC step [4], or the regularized kernel [5]. The third one 

is to use certain new hybrid methods or intelligent choices to deal with sample 

impoverishment. Various artificial intelligent techniques such as particle swarm 

optimization, genetic algorithm, or ant colony optimization techniques form a 

coherent perspective to optimize the distribution of particles. Sophisticated 

techniques that help generate better resamples in the PF[6-9]have been developed to 

improve the sample diversity and the filtering performance, while maintaining 

computational efficiency. 

In this paper, we focus our attention on improving the performance of PF while 

using adaptive resampling schemes on the particle sets, and especially how to 

efficiently make use of particles with small weights. Also we provide an adaptive 

interval M during the algorithm called “the skip resampling step”, in order to 

balance the need for diversity with the need for computational efficiency. 

This paper is organized as follows. In section 2 we recall the particle filter principles 

including resampling process. We begin section 3 with a presentation of resampling 

algorithm development and several resampling methods for particle filtering. Then a new 

and improved partial resampling algorithm together with its definitions is proposed here. 

Section 4 is devoted to simulation experiments of two models. Carrying on with 

implementation of MPF algorithm, the validity and performance of the PF is confirmed. 

Finally conclusions are presented in sections 5. 

 

2. Fundamentals of Particle Filtering 

Generally, the framework of Bayesian tracking consists of estimating the dynamic 

state of objects in a nonlinear stochastic system based on a set of noisy 

observations. The time-varying object state is denoted by the state vector xt, and the 

observation by the vector yt, where t indicates discrete time. Based on hidden 

Markov models (HMM’s), we suppose that the transition equation describes the 

prior distribution of a hidden Markov process  Ntx
t

, , and the observation equation 

describes the likelihood of the observations  Nty
t

, . So the state transition model 

and observation model are written in the following form respectively: 

 
ttt

uxfx ,
1

                      (1) 

 
ttt

vxgy ,                        (2) 

Where  f  and  g  are known functions, while ut and vt are random noise vectors 

of given distributions. Within a Bayesian framework, the posterior distribution of xt-

1 can be denoted as  
11  tt

yxp , the predictive distribution for xt is 

   
11111

)(
 

ttttttt
dxyxpxxfyxp         (3) 

Also, if we have an observation yt, the new posterior distribution at time t 

becomes 

     
111

)(



tttttttt

yxpxxfxygyxp          (4) 

Since it is generally impossible to sample from the state posterior  
tt

yxp , an 

importance sampling is implemented under the recursive Bayesian framework; it is 

designated as the Sequential Importance Sampling (SIS), which is the basis of PF.  

Suppose    xxp   is a probability density but difficult to draw samples. Using 

importance sampling, we can easily generate the new states xt from an importance 

density  
t

q  by  
1

~
tttt

xxqx which depends on particles at time t-1 and observed 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

Copyright ⓒ 2016 SERSC  211 

data yt. Also the posterior density can be approximated from the weighted 

particles  
N

i

i

t

i

t
x

1
,


 as follows: 

   i

ttx

N

i

i

ttt
xxyxp  

1

                                                (5) 

Where 1
1




N

i

i

t and 
 

 
t

ti

t
xq

x
  is the normalized weight of the ith particle.  

Also the density can be expressed by 

   
 

 
1

1

11

)(







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tttt

tttt
yyp

xxfxyg
yxpyxp   (6) 

By denoting importance function    
ttt

yxpx  , the important weight is given by 

 
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


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Put (7) into (5), we can obtain an approximation to the true posterior 

density  
tt

yxp . However, after a few iterations in the particle propagation process, 

the variance of the importance weights can only increase (stochastically)  over time, 

the weights will concentrate on a few particles only and most particles will have 

negligible weight close to zero. Then the particles xt-1 should be resampled 

according to their weights wt-1 before making a draw for the new state  
1

~
ttt

xxfx  . 

This phenomenon, called sample degeneracy, is also one of the inherent faults of 

SIS suffers from.  

Therefore the basic idea of resampling methods is to eliminate degeneracy 

trajectories, a suitable criterion of degeneracy of the algorithm is the effective 

sample size eff
N  introduced by Liu in [11]. It is important to obtain a criterion 

based on which one would know when to perform a resampling step accordingly. 

Since eff
N  cannot be calculated directly, an estimate eff

N̂  of eff
N  is given by 

 





N

i

i

t

eff
N

1

2

1
ˆ

                                        (8) 

eff
N̂  is the so-called Effective Sample Size (ESS), and the lower eff

N̂  will cause 

higher degeneracy. Once eff
N̂  drops below a given threshold

th
N̂ , it means that there 

is a need to operate resampling. 

We can obtain the general implementation of the sequential importance sampling 

and resampling (SISR) algorithm explained in Fig.1. 
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Figure 1. A Diagram of General SISR Algorithm 

In the particle filter implementation process, resampling is the last but the most critical 

operation. Because of the iterating process, a small number of particles dominating the 

remaining weights might lead to poor approximations for the posterior density and to 

inferior estimates; only a good resampling method can alleviate the weight degeneracy 

problem and improve the accuracy of particle filtering. 

 

3. Resampling Scheme and the Improved Algorithms 
 

3.1. Resampling Schemes 

It is well known that some of the classic resampling schemes [13] include 

systematic resampling (SR, Carpenter etal.1999, Kitagawa 1996) and residual 

resampling (RR, Higuchi 1997, Liu and Chen 1998), as well as multinomial 

resampling (MR, Doucet 1998, Pitt and Shephard 1999). Traditional methods may 

suffer from information loss, due to random number comparison with particles when 

they equally reset all the weights [14]. On this basis, researchers have worked in the 

field of resamplings, and a variety of methods have been proposed in the literatures. 

For example, Bolic introduced new resampling algorithms called partial resampling 

in examples of [15, 16], which are based on deterministic sampling in residual 

resampling and partial rejection control proposed by Liu in [11, 12]. Also Chen 

presented a research about a weight-optimal combination particle filter algorithm 

[17] in 2009, and Yu proposed a new partial stratified resampling in [18], and some 

diversity measures for resampling algorithm of PF in [19]. From 2012 to the present, 

some other advanced resampling strategies have been proposed to modify the only-

weight-based resampling. By means of roughening or jittering in [11, 20] to combat 

the weakness of the particle filter, some ideas are investigated in [21-24] to fight the 

degeneracy and impoverishment problem of PF. 

In the resampling algorithm, each resampled particle is thought equally valid in 

representing the posterior density associated with the state of the target, thus the 

procee of implementing particles propagation is very important and it is presented in 

the following diagram. 
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Figure 2. Steps in the Particles Propagation Process 

In the following section, we propose an improved partial resampling scheme to 

deal with particles with different weights by replicating them with a different 

strategy, which considers the spatial distribution information (e.g., position), and 

overcomes the side effect of the resampling method at the same time. The 

definitions proposed are given as follows. 

 

3.2. Three Definitions for the Improved Partial Resampling Scheme 

 Definition 1: A Threshold for Resampling 

In order to alleviate the computational load, resampling should be carried out 

only sometimes when a criterion is met, rather than after every iteration. Thus we 

use (8) to help decide whether to do resampling or not. Once eff
N̂ drops below a 

given threshold
th

N̂ , resampling steps are necessary to be performed. Since the ESS 

criterion takes values between 1 and N (N is the total number of particles), 
2

ˆ
th

N
N   

is chosen as in conventional literatures. 

 Definition 2: Hierarchical Organization for Particle Weights 

In this section, we compare the weights of particles by using a hierarchical 

organization. First, we also define two thresholds 
l

T  and
h

T , where 0
lh

TT . Then 

we group the particles into three sets according to their weights: the number of 

particles with weights greater than 
h

T  and less than 
l

T  can be denoted by 
h

N  and 

l
N respectively, while the number of particles with weights between 

l
T  and 

h
T  is 

denoted as
m

N . From the theoretical point of view on partial resampling (PR) 

[16][25], the particles with dominant weights and moderate weights are calculated 

by function and replicated many times. However, the small particles with weight 

less than 
l

T  are discarded. An illustration of PDR is given in Fig.3, where there are 

12 particles in total in the resampling process. 

1) Particle generation ( i = 1, 2, 3…N ) 
 Generation of  N random numbers : 

N

1

0
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  
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Figure 3. Diagram of a Partial Resampling Process 

It can be seen in the above that through the hierarchical organization of particle 

weights, the red ones with large weights are replicated respectively {2, 3, 2, 2} 

times, while yellow ones with medium weights are all replicated once. It is worth 

noting that the five green particles in Fig.3 are thought to be negligible and 

discarded. However, in fact particles with small weights may represent the posterior 

density associated with spatial distribution information and should not be abandoned 

all. Thus we propose the method in this work which is a modification of PR 

algorithm. It is to deal with samples in three sets, with a more efficient use of data 

below the N/2 threshold, thus avoiding the sample impoverishment of particles and 

improving the approximation of the posterior density estimates. We define the copy 

times of particles as r , the number of offspring of particles. The hierarchical steps 

of the algorithm are given as follows: 

1) Step one: for particles of
h

i
T , replicate them a )1,max(


















i

times after 

normalization, which is denoted by
h

r  .  Also there is

N

N

i

i







1

. 

2) Step two: for particles of
l

i
T , the skip resampling scheme is adopted in 

definition 3. The corresponding number of replications is denoted by
l

r . 

3) Step three: for particles of
l

i

h
TT  , we don’t change their weights, then 

the corresponding number of replications is denoted by 
m

r . 

4) Step four: perform residual-systematic resampling(RSR)  resampling as in 

[16]. Since RSR allows for only one iteration loop and processing time that is 

independent of the distribution of the weights at the input. And the RSR is 

performed on all particles, weights of that have to be normalized before they 

are processed by the RSR method. 

Of course the numbers of particles always satisfy: lmhhml
rrrNNNN  .  

In the paper [16], three sets of threshold values have been used, i.e. 
 NNNT

h
10,5,2  and  NNNT

l
101,51,21  respectively. After we evaluated 

these resampling algorithms in experiments, finally Th=2/N and Tl=1/2N is chosen 

as a best set scheme due to the minimum RMSE compared with others in 

simulations. 

 Definition 3: Skip Resampling for Partial Particles 
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In this section we will explain how to perform skip resampling in  step two. 

Especially for particles with small weights, we will replicate some of  them with 

spacing interval M ( 1M ) from the set of l
N particles, so M can be defined 

adaptively by following two methods. 

1) In the first method, spacing interval M is given by, 

h

l

rNN

N
M




m

                                                              (9) 

After sorting the particles with low weights in the set of l
N , the algorithm will 

also perform a skip resampling with the interval M for particles in the set. If M>1, 

of course MNr
Ll

 ; if 1>M>0 or M<0, we will not copy particles with low weights 

and resize hm
rNr  at the same time to guarantee mhhml

rrNNNN  .This 

method is proposed as MPR5. 

2) In the second method, a variable M  is used instead of a fixed value M , 

which is always updated by half, 

l
rnM ...2,1,

2

1
-1

n











                                                     (10) 

After sorting the particles with low weights in l
N , the algorithm will also perform 

a skip resampling with variable M   for 
l

r  times to particles in the set. However the 

replicated particles will gradually approach to particles with higher weight in the set 

by interval of variable M  . This process is similarly to a binary search algorithm in 

the set of l
N . If 0

hhl
rNN , we will copy particles for 

l
r times by hhll

rNNr   

; if 0
hhl

rNN , we will not copy particles with low weights and 

resize hm
rNr  . This method is proposed as MPR6. 

Through the two improved partial resampling algorithms, the relative size of all the 

weights will not be changed and the diversity of particles can be maintained because we 

will replicate dominating particles, moderate particles and even some particles that have 

small weights. In this way it can avoid the problem of sample impoverishment in PF 

without increasing much computational load. 

 

4. Simulation and Results 

In the following two systems, both known in the literature are used to compare several 

existing resampling algorithms with the proposed algorithm, in order to verify the 

performance of the MPR algorithm. Since the main purpose of the MPR algorithm is to 

optimize PR algorithms while increasing the quality of the estimates of the particle filter, 

especially on smaller weighted particles. This is desirable in PC simulations and some 

DSP applications. 

 System A (Univariate non-stationary growth model) 

k

k

kk

k
nk

x

xx
x 






2.1cos8

1

25

2 21                              (11) 

k

k

k

x
y 

20

2

                                                            (12) 

Where  5,0~
0

Nx ,  10,0~ Nn
k  and  1,0~ Nv

k  are independent Gaussian noise 

sequences. Since particle filters are stochastic in each simulation, the quality 
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indicator average root-mean-square error (RMSE) of  xE  is used as a performance 

indicator. 

We do MC simulation for 200 times with different numbers of particles changing 

from 100,500,800 to 1000. The proposed resampling algorithms are compared with 

other resampling algorithms. The simulation results of average RMSE are shown in 

Figure 4. 

 

 

Figure 4. Average RMSE of 8 Resampling Algorithms 

It is very clear in the figure that our MPR5 and MPR6 have better performance 

than than some classic resampling algorithms but also the modified resampling 

algorithm in [16], no matter N=100 or N=1000. The average executing time of five 

PR algorithms are listed as follows. 

Table 1. The Running Time Comparisons of Algorithms 

PARTICLE 

NUMBER 

RESAMPLING 

ALGORITHMS 

RUNNING 

TIME(ms) 

PARTICLE 

NUMBER 

RESAMPLING 

ALGORITHMS 

RUNNING 

TIME(ms) 

100 NONE 0.0941 1000 NONE 0.5492 

100 MR 
0.1074 

1000 MR 0.6273 

100 SR 
0.1044 

1000 SR 0.6088 

100 RR 
0.1072 

1000 RR 0.6078 

100 PR1 
0.1593 

1000 PR1 1.0693 

100 PR2 
0.1598 

1000 PR2 1.0684 

100 PR3 
0.1551 

1000 PR3 1.0498 

100 MPR5 
0.1590 

1000 MPR5 1.0665 

100 MPR6 0.1616 1000 MPR6 1.0677 

From the table 1 above, we can see that with N increasing, the performance of PF will 

be improved and the RMSE reduced, meanwhile it also brings more computational load 

However no matter N=100 or N=1000. The efficiencies of MPR5 and MPR6 are better 

than those of PR1 and PR2. Though running time of MPR algorithms are somewhat 

longer than PR3, MR, SR and RR, the increased computational costs is often acceptable 

which due to the algorithm design of inserting skip resampling in some steps. 

 System B (Bearings-only tracking model) 

kkk
XX 

1                                       (13) 
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 
kkkk

XYZ  arctan                                (14) 

In this section we use a two-dimensional scenario with an unknown and time-varying 

number of targets, where  
T

kkkkk
yyxxX   is the target state vector at time k . 

Also  01.0,0~ Nv
k , and k

  is the vector of independent zero-mean Gaussian white noise 

with  
kk

QN ,0~ . The covariance matrix is set as  
11

, QQdiagQ
k
  and 
















23

34

2

1

2

23

TT

TT
qQ . The sampling period T=1 and 1.0

2
q . In the simulation below, the 

Monte Carlo simulation is performed 100 times. For comparison, the standard SIS with 

MR, SR, RR and Stratified resampling for particle filter is also presented. Each 

resampling algorithm has been run with different numbers of particles N = 100 and 

N=1000. Only the results for N=100 is given in Fig.5. 
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Figure 5. Position and Velocity RMSE Of X, Y 

Fig.5 shows average RMSE of the estimated positions and velocities of X, Y. It can be 

observed that our modified PR algorithm performs more accurately than both the 

traditional MR, SR, RR and Stratified resampling algorithms in literature. Then average 

executing time of 9 resampling algorithms are listed as follows. 

Table 2. The Running Time Comparisons of 9 Algorithms 

PARTICLE 

NUMBER 

PR  

ALGORITHMS 

RUNNING 

TIME(ms) 

PARTICLE 

NUMBER 

PR  

ALGORITHMS 

RUNNING 

TIME(ms) 

100 MR 0.133 1000 MR 7.117 

100 Stratified R 0.112 1000 Stratified R 0.275 

100 SR 0.098 1000 SR 0.227 

100 RR 0.097 1000 RR 1.748 

100 PR1 0.74 1000 PR1 4.321 

100 PR2 0.743 1000 PR2 4.327 

100 PR3 0.693 1000 PR3 4.236 

100 MPR5 0.775 1000 MPR5 4.697 

100 MPR6 0.785 1000 MPR6 4.987 
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The results in Table 2 are the average running time of 9 resampling algorithms, the 

running time will increase along with particle numbers growing but it’s not obvious. The 

proposed resampling algorithm MPR5 and MPR6 both include a classification in three 

groups and computation of skip resampling, so they run slower than others. It is clear 

that on average, resampling in MPR algorithms would be performed much faster 

because the particles with moderate weights are not resampled. The worst case occurs 

when all the negligible particles must be resampled, and time complexity is O(N), which 

is an acceptable computation load with the similar good performance as MR algorithm. 

So in general MPR5 and MPR6 perform averagely better in PR algorithms. 

 

5. Conclusions 

As we mentioned in the above, good resampling consists of selecting new particle 

positions and weights, so that the resampled particle system becomes as good an 

approximation to  
N

i

i

t

i

t
x

1
,


  as possible. 

In this paper, by analyzing the deficiencies existing in PF, we found that when the 

starting number of particles is small, particle depletion and sample impoverishment 

may appear easily. In order to resolve them, we propose two variants of new partial 

resampling algorithms with adaptive interval M and three definitions to improve 

estimate quality of PF and efficiency of algorithm by weight classification and 

particle hierarchical organization. Compared with several resampling algorithms 

including systematic resampling, multinomial resampling, residual resampling, and 

some other partial resampling schemes, our method not only combine the merits of 

both systematic and residual resampling, also improve the performance of the 

original PR through simulations on univariate non-stationary growth model and 

bearings-only tracking model. Although the proposed new algorithm are not 

guaranteed as the theoretically favorable resampling algorithm, simulations 

followed by performance analysis of PFs show that our proposed algorithms can 

provide on average better estimates with a good-enough computational efficiency. 
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