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Abstract 

We consider a local stabilization problem of an uncertain equilibrium point existed in 

a nonlinear continuous-time system by a state-derivative feedback controller. In previous 

researches, it is investigated that the uncertainty of the equilibrium point results in 

nonzero steady-state control input so that a different equilibrium point is stabilized. Then, 

a feedback controllers with steady-state blocking zeros eliminate the dependence on the 

steady-state. In this paper, we focus on the class of state-derivative feedback control, and 

develop a design method for a dynamic state-derivative feedback controller with steady-

state blocking zeros. The proposed controller can reject the dependence on the 

uncertainty of equilibrium points. Moreover, we illustrate the effectiveness of the 

proposed control method by the numerical example which is the stabilization problem of 

the uncertain equilibrium point. In addition, we show that the poles of the closed-loop 

system with the proposed dynamic controller can be assigned at the desired locations. 
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1. Introduction 

This paper presents a dynamic state-derivative feedback controller locally stabilizing 

an uncertain equilibrium point of nonlinear dynamical systems. In a design of feedback 

controllers stabilizing an equilibrium point, it is generally assumed that its equilibrium 

point is accurately known. However, this assumption is undesirable in a real system, 

because it is difficult to get exact information of equilibrium points of the system. In 

stabilization of the uncertain equilibrium point, the uncertainty of the equilibrium point 

results in nonzero steady-state control input so that a different equilibrium point is 

stabilized. 

As a control method for stabilizing equilibrium points without their exact information, 

delayed feedback control[1]–[2], adaptive feedback control [3], washout filter-aided 

feedback control [4], washout control [5], and state-derivative feedback control [6] have 

been proposed in previous researches. These feedback controllers eliminate the 

dependence on the steady-state by using its steady-state blocking zero. Then, steady-state 

blocking zeros mean blocking zeros at zero frequency. 

In this paper, we focus on the class of state-derivative feedback control as with [6]. 

Then, there exists some practical problems where the state-derivative signals are easier to 

obtain than the state signals. For example, vibration suppression in mechanical systems: 

car wheel suspension, vibration control of bridge cables, and so on. Since the sensors used 

in these cases are accelerometers, if the state variables are defined by the velocities and 

displacement, then it is available the state-derivative as feedback. 

State-derivative feedback control has been used by many researchers [7]–[10]. In [7], 

the decoupling of linear time-invariant (LTI) systems by proportional and state-derivative 

feedback was discussed. In [8],for linear descriptor systems, the design method of state-

derivative feedback based on Linear Matrix Inequalities(LMIs) was proposed. In [9] and 
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[10], for LTI systems with single-input, the pole assignment and the optimal control 

problem were considered. However, in contrast to the simple controller structure of state-

derivative feedback, the design of feedback parameters is complicated. 

In this paper, as an easier way, we introduce a dynamic controller with state-derivative 

feedback. Then, we propose the design methods of the feedback parameters stabilizing 

uncertain equilibrium points. Moreover, we show that the poles of the closed-loop system 

with the proposed controller can be assigned at the desired locations. 

This paper is organized as follows: first, in section2, a local stabilization problem of an 

uncertain equilibrium point existed in a nonlinear continuous-time system is presented. In 

section 3, we propose a dynamic state-derivative feedback controller which can reject the 

dependence on the uncertainty of equilibrium points. Then, we give a design method of 

the proposed controller. In section4, we show numerical simulations which illustrate the 

effectiveness of the proposed method. 

 

2. Problem Statement 

We consider an nth-order linear continuous-time invariant system described by 

 ̇                , (1) 

where       
 

 is the state vector, and       
 

 is the input vector. We assume 

that f is differentiable, and there exists an equilibrium point of the system (1) with 

        , that is,  

         .  

The linearized system around the equilibrium point    is given by 

  ̇                , (2) 

where 

                   
       

  
|

        

 

   
       

  
|

        

 

 

Then, we assume that       is stabilizable. 

The control purpose in this paper is to stabilize the equilibrium point    of the system 

(1), that is, to design a feedback controller such that 

            , (3) 

where 

     [
     

    
]. 

(4) 

To this end, we consider the local stabilization of the equilibrium point    of the system 

(1) without changing its equilibrium point  .  

If the equilibrium point    is available, it can be directly used in state feedback as 

                 

                    

 

where   is a feedback gain. However, it is generally difficult to get the exact value of the 

equilibrium point    in the real system. In this paper, it is assumed that the equilibrium 
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point    of the system (1) is uncertain, that is, the measured output      is described 

by 

                          (5) 

where     is a measurable equilibrium point having a uncertain term     given by 

            . Therefore, we consider the stabilization of the uncertain 

equilibrium point    by using only information of      as feedback. 

By using       (      )
  
  and a dynamic feedback controller     , the 

closed-loop system is depicted in Figure 1. For the closed-loop system, the uncertain term 

for the equilibrium point,    , can be regarded as a steady-state disturbance. Then, a 

transfer function from the steady-state disturbance     to the state and input z is given 

by 

     [
        (            )

  

    (            )
  

]. 

(6) 

By this steady-state disturbance, in the steady-state, the state      and the control input 

     may be biased. Because, when the closed-loop system is stable, from the final 

value theorem, we have 

   
   

        
   
     

 

 
             

(7) 

This suggests that another equilibrium point   
 

 is stabilized so that    

  (  
 
    )where ue      and   

 
   . Hence, in the uncertain equilibrium 

stabilization, it is important that the dynamic controller      stabilizes the linearized 

system (2) and eliminates the influence of the steady-state disturbance    . 

 

 

Figure 1. Closed-loop System of Linearized System and Controller 

In this paper, to reject the influence of the uncertain term     in the steady-state, we 

focus on controllers with a blocking zero at zero frequency. 

Definition 1: Blocking zeros of a transfer function matrix      are     which 

satisfy       . Moreover, a blocking zero at     is said a steady-state blocking 

zero. 

When the closed-loop system by a dynamical controller      having a steady-state 

blocking zero is asymptotically stable, from (7), we have 

            . 

Dynamic controllers with a steady-state blocking zero have been studied by several 

researchers [1]–[6]. In this paper, we focus on state-derivative feedback control, and 

propose a new dynamic state-derivative feedback controller which has steady-state 

blocking zeros.  
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Remark 1: In [6]–[10], by a state-derivative feedback controller, 

 
            ̇   , (8) 

the pole placement problem has been considered. In fact, since the transfer function of 

this controller  
       , it has the steady state blocking zero. 

In contrast to the simple controller structure of statederivative feedback (8), the design 

of feedback parameters is complicated. In the next section, we introduce a dynamic 

controller with state-derivative feedback.  

 

3. Dynamic State-Derivative Feedback Controller 

We consider an  ̃th-order dynamic state-derivative feedback controller described by 

     
 ̇      ̂      ̂ ̇   

      ̂    
, (9) 

where  ̂   
 ̃  ̃

,  ̂   
 ̃  

, and ̂   
   ̃

 are design parameters. 

In the vicinity of the equilibrium point   , we derive the closed-loop system with the 

dynamic controller (9). From (5), we obtain 

 ̇    
 

  
               ̇    

(10) 

Therefore, from (2), (9), and (10), the closed-loop system is given by 

[
  ̇   

 ̇   
]    [

     

    
], 

(11) 

where 

    [    ̂

 ̂    ̂  ̂
]. 

(12) 

Then, we have the following lemma and theorem. 

Lemma 1:The transfer function of the feedback controller (9) is given by 

        ̂(    ̂)
  
 ̂ 

(13) 

Proof: It is obviously from (9).  

Theorem 1: If the closed-loop system (11) is asymptotically stable by a dynamic state-

derivative controller (9), then   and  ̂ are nonsingular.  

Proof: When the closed-loop system (11) is asymptotically stable,    does not have 

any zero eigenvalues, that is,  

          

Since 

         [
  

 ̂  
] [   ̂
  ̂

]          ̂, 
 

we have        and      ̂   . 

From Theorem 1 and Lemma 1, when the closed-loop system is asymptotically stable, 

pole zero cancellation does not occurred. Thus, the dynamic state-derivative feedback 
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controller (9) has a steady-state blocking zero. Therefore, if the closed-loop system is 

asymptotically stable by the state-derivative controller (9), we have 

            ,  

that is, such the controller eliminates the influence of the steady-state disturbance    .  

In the following, we will give a full order dynamic state-derivative feedback controller. 

The term „full order‟ implies that the order of the controller is the same as that of the 

plant. Then, we have the following theorem.  

Theorem 2: If   is nonsingular, then there exists a full order dynamic state-derivative 

feedback controller stabilizing the closed-loop system (11). Moreover, one of the 

controllers is given by 

 ̂               

 ̂       

 ̂      

 

(14) 

where   and   are matrices such that      and      are asymptotically 

stable, respectively.  

Proof: Using (14) and a similarity transformation of Ac by the matrices 

  *
  
   

+     
  

 *
  
   

+  (15) 

we have 

    
  

 *
  
   

+ [    ̂

 ̂    ̂  ̂
] *
  
   

+ 

                *
       
     

+  

 

 

(16) 

Thus,    is asymptotically stable by the feedback parameters (14). 

From the theorems 1 and 2, it is concluded that there exists a dynamic state-derivative 

feedback controller (9) which stabilizes the linearized system (2) if and only if A is 

nonsingular. Moreover, from (16), the poles of the closed-loop system of the linearized 

system (2) and the state-derivative controller (9) are eigenvalues of      and 

    . As a result, we can assign the poles of the closed-loop system at the desired 

locations. 

 

4. Numerical Example 

In this section, we show the numerical example of thestabilization problem of uncertain 

equilibrium points. Weconsider the second-order linearized system with 

uncertainparameters is described by 

 ̇    *
  
    

+     *
 
 
+      , 

(17) 

 

where    
 
 is an uncertain parameter. In this paper,we assume that the system (17) is 

the true system when   . Then, the true system has an equilibrium pointgiven by 

   *
 
 
+. (18) 
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Moreover, it is assumed that true equilibrium points (18)are unknown. Then, we know the 

equilibrium point withuncertainty, 

     *
  
    

+
  

  *
     
   

+ , 
(19) 

that is, the measured output      is given by 

              . (20) 

The control purpose in this example is to stabilize theequilibrium point (18), that is, 

              and             .  

Then, we will design a stabilizing controller (9) by usingonly derivative information of 

(20) as feedback. 

From Theorem 2, there exists a full order controller(9), because the eigenvalues of A 

are       and 1.28.Then, matrices   and    such that the eigenvalues of    are 

equal to     , and the eigenvalues of     are equal to      , are given by 

  [      ]   *
   
    

+.  

From (14), feedback parameters are given by 

 ̂  *
  
  

+   ̂  *
   
    

+   ̂  [      ]. 
(21) 

Figure 2 shows the poles and blocking zeros plots for the closed-loop system of the 

system (17) and the dynamic state-derivative feedback controller (2) with (21). Figure 

2(a) is that from     to  , and (b) is that from     to . The poles are plotted as 

„x‟ and the zeros are plottedas „o‟. It can be seen that the poles are placed at 

desiredlocations and the blocking zeros are placed at the origin. 

 

Figure 2. Poles and Blocking Zeros Plots for Closed-loopsystems 

Figure 3 shows the time responses of the state      [          ] , control 

input     , and the measured 

output              [          ]  in the the system(17) with the 

dynamic state-derivative feedback controller(2). Then, the uncertain parameter d is given 

by 

  *
   
 

+.  
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The dashed line indicates       and       , respectively.Figure 3 shows that both the 

control input      and the state    in the controlled system converge to 0 by the 

proposedstate-derivative controller. As a result, the uncertainequilibrium point xe in the 

system (17) can be stabilizedby the dynamic state-derivative feedback controllerwith the 

steady-state blocking zero. 

 

5. Conclusions 

In this paper, we have considered a local stabilizationproblem of an uncertain 

equilibrium point existed in anonlinear continuous-time system. Then, we have 

proposedthe controller which is a dynamic state-derivativefeedback controller with 

steady-state blocking zeros. Wehave also shown that the proposed state-derivative 

controllercan fully eliminate the bias of the output signal inthe steady-state. Moreover, we 

have illustrated the effectivenessof the proposed control method by the numericalexample 

which is the stabilization problem of the uncertainequilibrium point. 

Future researches are to extend the proposed methodsto output feedback, applying 

robust control. 

 

 

Figure 3.Time Responses for the System (17) with the Proposedcontroller 
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