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Abstract 

This paper focuses on the controller parameterization method of H


 control for 

switched dissipative Hamiltonian systems (SDHSs) via multiple Lyapunov functions 

(MLFs) and proposes an algorithm for solving parameters of the controller with symbolic 

computation. An important merit of the proposed parameterization method is that it is 

based on the explicit construction of Lyapunov functions, which avoids solving the 

Hamilton-Jacobi (HJ) equations (or inequalities), sufficient conditions for the solvability 

of the robust H


 control problem are presented. A numerical example shows that the 

controller is effective to SDHSs and the proposed method is feasibility. 

 

Keywords: Robust control, Switched dissipative Hamiltonian systems, Controller 

parameterization, Multiple Lyapunov functions 

 

1. Introduction 

Switched systems consist of a family of dynamical subsystems together with a set of 

operating conditions under which one subsystem will be switched to the active subsystem 

at switching time instant arise in many areas. The widespread applications of switched 

systems are also motivated by increasing performance requirements in control, especially 

in the presence of large uncertainties or disturbances [1]. A common Lyapunov function 

for all subsystems was proved to be a necessary and sufficient condition for switched 

system to be asymptotically stable under arbitrary switching laws [2, 3]. It has been 

shown that the MLFs approach proposed in [4] is an effective tool for choosing such 

switching laws. Ref. [5] developed the sufficient conditions for exponential stability and 

weighted 
2

L -gain for a class of switching signals with average dwell time. A concept of 

passivity for switched systems was presented in [6] using multiple storage functions. The 

passivity property is invariant under compatible feedback interconnection and the 

asymptotic stability is reached if all subsystems are asymptotically detectable. A hybrid 

nonlinear control methodology for a broad class of switched nonlinear systems with input 

constraints was proposed in [7], which is the integrated synthesis, via MLFs, of “lower-

level” bounded nonlinear feedback controllers together with “upper-level” switching laws 

that orchestrate the transitions between the constituent modes and their respective 

controllers. The switched dissipative Hamiltonian system (SDHS) is a kind of important 

nonlinear hybrid systems. Such system not only plays an important role in development of 

hybrid control theory, but also finds many applications in practical control designs for 

obtaining better control performance [8, 9]. The stability of switched dissipative 

Hamiltonian systems under arbitrary switching paths has been investigated in [10]. 
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On the other hand, the H


 control of switched systems is a valuable issue for 

nonlinear systems, which deserves us to pay more attention. However, H


 control 

problem has been rarely addressed for SDHSs, especially for the nonlinear case in which 

results mainly focus on solving HJ equations [11-13]. The robust H


 control problem for 

a class of switched nonlinear systems with neutral uncertainties has been considered in 

[14]. Ref. [15] focused on a class of switched nonlinear cascade systems in which 

stabilization and weighted 
2

L -gain have been achieved and H


 control for such system 

was investigated in [16], and both of them relied on the solution of the corresponding HJ 

equations. However, Ref. [17] solved the problem of robust H


 control for a class of 

switched nonlinear cascade systems with parameter uncertainty using the MLFs approach, 

which avoids solving the HJ equations. 

 Controller parameterization is a fundamental problem in the control theory and has 

aroused considerable attention in recent decades. Refs. [18, 19] proposed a family of 

nonlinear H


 controller via output feedback. Ref. [20] presented a family of nonlinear 

state-feedback controller, in which the system state and the external disturbance are 

measurable. Refs. [21, 22] extended the state-space formulas and presented a family of 

H


 state-feedback controller for n-dimensional nonlinear system. Ref. [23] proposed a 

family of reliable nonlinear H


 controller via solving the HJ inequality. The controllers 

obtained in [18-23] are intended to solve a class of HJ equations (or inequalities), which 

have actually imposed a considerable difficulty. 

Therefore, how to find ways for solving the controller parameterization problem of H


 

control for switched nonlinear systems, which do not depend on the solution of HJ 

equations (or inequalities), is a challenging issue. In this paper, we present a novel, 

straightforward and convenient strategy to design a parameterized controller to insure that 

the SDHSs are robust H


 stable via MLFs and propose a method for solving parameters 

of the controller by using symbolic computation. The proposed parameterization method 

avoids solving HJ equations (or inequalities), and thus the obtained controllers with 

parameters are relatively simple in form and easy in operation. 

The remainder of this paper is organized as follows. In Section 2, the problem of 

H


 control for SDHSs is formulated. The main contribution of this paper is then 

given in Section 3, in which a controller with parameters  and an algorithm for 

solving parameters are provided, respectively. We present a numerical example for 

illustrating effectiveness and feasibility of controller in Section 4 and conclusions 

follow in Section 5. 

 

2. Problem Formulation 

Consider the following SDHSs 

         

     

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ]
t

t t t t t

T

t t t

x J x R x H x g x u g x

z h x g x H x


    

  

     



 

                 (1) 

where n
x   is the state vector; 

( )

m

t
u u


   is the controller; s

   is the 

disturbances;    ( ) ( )

T n n

t t
J x J x

 


   ;  ( )

0
n n

t
R x




  ;  ( )

n m

t
g x




  and 

 ( )

n s

t
g x




 are sufficiently smooth functions; q

z   is the penalty;  ( )t
h x


 is a 

weighting matrix;  ( )t
H x


 is the subsystem’s Hamiltonian function (the total energy) 

satisfying  ( )
0

t
H x


  and  ( )

0 0
t

H


 , the map    0
: [ , ) 1, 2 ,t t N      is a 

piecewise constant one, called the switching law or switching path, 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

Copyright ⓒ 2016 SERSC  179 

   1, 2 , ,t i i N    denotes that the i th subsystem is realized. For an arbitrary 

switching law      0
: , 1, 2 , ,t t N     ,  

0m m
t




 is called the switching time 

sequence, which is assumed to satisfy 
0 1 2 m

t t t t       . If 
1m

t


  , the i th 

subsystem of system (1) is always realized in ,
m

t 


 and the whole system is naturally 

stable.  

To facilitate the analysis, throughout this paper, we denote by  0,1, 2 ,Z

  for the 

set of all nonnegative integers. We first propose two assumptions for system and one 

definition for system (1) as follows. 

Assumption 1. For i   , the Hamiltonian function  i
H x  satisfies  

2

i
H x C  and 

the Hessian matrix   0
H ess 0

i
H x  . 

Remark 1. Note that  i
H x  has a local minimum at the equilibrium 

0
x  of system (1). 

It is straightforward that in Assumption 1,  
2

i
H x C  guarantees the existence of 

  H ess
i

H x  and   0
H ess 0

i
H x   guarantees that  i

H x  is strict convex on some 

neighborhood of equilibrium 
0

x . 

Assumption 2. For i    and ,
n

x y  , the Hamiltonian function  i
H x  satisfies 

   i i
H x H y 

P P
x y , where 

1

su p
T

P
x

x x P x


 and 0P   is a positive definite 

matrix. 

Remark 2. Assumption 2 implies that the Hamiltonian function (Lyapunov function) 

 i
H x  increases with the increase of 

P
x . Obviously, this assumption can be satisfied 

for many Hamiltonian systems. Thus, Assumption 2 is a realistic one. 

Definition 1. The problem considered in this paper is to propose an approach to 

parameterizing controller for systems (1), which can be described as: given a disturbance 

attenuation level 0   and an arbitrary switching law ( )t , we can obtain a controller 

with parameters of the form 
( )t

u u


  such that 

R1: For , ,
m

i t       and m Z


 , the inequality 

     
2 221

2
i i

H x Q x z     holds along the trajectories of the closed-loop systems, 

which consisted of system (1) and 
( )t

u u


 , where   0
i

Q x   is a scalar function; 

R2: The closed-loop system (1) is asymptotically stable when 0  ; 

hold simultaneously. 

 

3. Main Results 

In this section, we propose an H


 controller with parameters for system (1) by using 

MLFs and an algorithm for solving parameters with symbolic computation. The 

parameterization strategy suggests a framework to solve the H


 control problem of 

SDHSs. 

 

3.1 Parameterizing Controller 

Theorem 1. Assume that Assumption 2 holds for system (1), 0u  , 0   and i   , 

then system (1) is asymptotically stable under the arbitrary switching law  t  with its 

dwell time 0  . 
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Proof. Assume that  t  be an arbitrary switching law with its dwell time 0  . 

When 0u  , 0  , we have system 

     

     

( ) ( ) ( )

( ) ( ) ( )

[ ]
t t t

T

t t t

x J x R x H x

z h x g x H x

  

  

   


 

                                         (2) 

When  t i     for system (2), we consider the i th subsystem. We have  

  
  

  
  

0

T

i i

i i

H x t H x t
H x t R x t

x x

 
  

 
,  1

,
m m

t t t


  

So we obtain that 

   1i m i m
H x H x


                                                       (3) 

From Assumption 2 and formula (3), the following result holds  

1m mp p
x x


                                                          (4) 

According to Assumption 2, we know that the following inequality holds for i   . 

   1
,

i m i m
H x H x m Z

 
                                                  (5) 

Inequality (5) shows that all the Hamiltonian functions  i
H x  of the subsystems can 

be used as the MLFs for system (2). According to Ref. [4], system (2) is stable under the 

switching law  t . 

Remark 3. From the proof of Theorem 1, under Assumption 2, all of the Hamiltonian 

functions  i
H x  of the subsystems can be used as the MLFs for system (1). 

Theorem 2. If Assumption 1 and 2 hold for system (1) and give a disturbance 

attenuation level 0  , to i    

   
2

1
0

2

T T

i i i i i
R x g g g g


                                                   (6) 

   , 0
T

i i i
H x g K x v                                                    (7) 

hold simultaneously, where  
1

,
m

i
K x 


  are parameterized parts of controller,   

are the parameters. Then under an arbitrary switching law  t , H


 control of system 

(1) can be realized by following controller which satisfies the rules R1 and R2. 

   
   

2

1 1
, ,

2

T T

i i m i i it t i
u u u h h I g H x K x

 





 
      

 

                (8) 

where 
m

I  is an m m  unit matrix and 

         
2

1

2

T T T

i i i i i i i i
Q x H x R x g g g g H x



 
     

 

 

   ,
T

i i i
H x g K x  . 

Proof. Suppose   , ,
m

t i t m Z


      is an arbitrary switching law. Choose 

Lyapunov function  as     0
i i

V x H x c    (  0i
c H x ).  
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     

   

   

 

2

2

2

1 1
,

2

1 1

2 2

1 1 1
,

2 2 2

T T T

i i i i i i i i i i

T T T T T

i i i i i i i i i i i i

T T T T T T

i i i i i i i i i i i i i

T T T T

i i i i i i i i i

H x H J x R x H H g u H g

H R x H H g h h g H K x H g

H R x g g g g H H g h h g H

H g g H H g K x H g



 




  


         
 

  
             

  

 
        

 

       

     

 

2

2

2 22

1
,

2

1 1 1

2 2

T T

i i

T T T T

i i i i i i i i i i

T

i i

g H

H R x g g g g H H g K x

z g H




  




 
       

 

    

           (9) 

From the above formula, we obtain  

       

   

 

 

2

2

2 22

2 22

1
,

2

1 1 1

2 2

1

2

T T T T

i i i i i i i i i i i

i

T

i i

H x H R x g g g g H H g K x

H x Q x

z g H

z




  


 

 
       

 

 

    

 

                      (10) 

So the rule R1 can be satisfied, which implies the 
2

L  gain of the closed-loop system 

(1) controlled by controller (8) (from   to z ) is bounded by  . Next, we prove that the 

closed-loop system is asymptotically stable at 
0

x  under the arbitrary switching law  t , 

when 0  . 

When 0  , the closed-loop system can be expressed 

     

   

   

 

   

2

2

2

2

1 1
,

2

1 1

2 2

1
,

2

1

2

T T

i i i i i i i i

T T T T

i i i i i i i i i i

T T T T T T

i i i i i i i i i i i i i

T T T

i i i i i i i

T T T

i i i i i i

H x H J x R x H H g u

H R x H H g h h g H K x

H R x g g g g H H g h h g H

H g g H H g K x

H R x g g g g











       
 

  
           

  

 
        

 

    

 
   

 

 

2

2

2

1

2

1
, 0

2

T

i i i i

T T

i i i i i

H h g H

g H H g K x 


  

    

                      (11) 

From Theorem 1, the rule R2 can be satisfied. 

The closed-loop system (1) controlled by controller (8) is globally asymptotically 

stable under the arbitrary switching law  t .This completes the proof. 
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Remark 4.  i
K x  are polynomial vectors, which are parameterized parts of controller. 

They have much simpler form and are easier to realize. When  , 0 ,
i

K x i   , the 

controller (8) is a controller without parameters. 

So the controller (8) is a family of H


 controller for SDHSs. Then we will solve the 

parameters of controller (8) and guarantee robust stability requirements to disturbances 

attenuation for system (1). 

 

3.2. Solving Parameters (SP) Algorithm 

From condition (6), when    
2

1
0

2

T T

i i i i i
R x g g g g


   , we can obtain the *

i
 . Let 

 
*

m a x
i

   such that condition (6) holds. 

 Then we propose an algorithm to find parameters ranges of controller (8) via solving 

the parameters of  ,
i

K x   in condition (7). The SP algorithm now proceeds as follows. 

S1. Set        1 1 2 2
, , , ,

T

i m m
K x N x N x N x     

 
 and suppose a positive 

integer r , which is the degree of polynomial vector  ,
i

K x  . Write 

   
1 ,

,

j l

i i i j r

j r

N x p x 





  , where  1,

r

l c n r r   ,  
1

i
n r

r ii
p x x


  , n  is the number 

of state variable and 
i

r  is the integers from 1 to r . 

S2. Let  ,
T

i i i i
S H g K x   . 

S3. Choose all terms of  d eg 3
i

S   and  d eg 1
i

S   from 
i

S  and let the coefficients 

of these terms be zero. So obtain a set of equations
i

A . 

S3.1. Observe equations 
i

A . When the right-hand side is only one item with 

parameters and the left-hand side is zero, let these parameters be zero and substitute them 

into 
i

A . Then obtain a simplified equations 
i

A  . 

S3.2. Obtain a set of parameters solution 
1i

U  via solving 
i

A   by using cylindrical 

algebraic decompositions (CAD) algorithm [24]. 

S3.3. Substitute 
1i

U  into 
i

S  and obtain a new polynomial 
i

S  , which is a quadratic 

form. 

S4. Rewrite 
i

S   as coefficient matrix 
i

M , and all principal minors of 
i

M  must be 

positive semi-definite. Choose all principal minors of 
i

M  and obtain inequalities 
i

B . 

S4.1. Observe inequalities 
i

B . Let some parameters be zero and substitute them into 

i
B . Then obtain the simplified inequalities 

i
B  . 

S4.2. Obtain a set of parameters solution 
2i

U  via solving 
i

B   by using CAD algorithm. 

S5. Let 
1 2i i i

U U U and substitute 
i

U  into controller (8), thus obtain the polynomial 

parameterized controller. This completes the algorithm. 

Remark 5. (1)The SP algorithm starts from 1r   normally. 

(2) Solve the parameters ranges of the controller 
 t

u


 by using SP algorithm, 

respectively. 

(3) It is merely to simplify computation that we let some parameters be zero before 

using CAD algorithm. However, these parameters are not necessarily zero. So the set of 

parameters solution obtained by SP algorithm is a subset of solutions. 
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4. Numerical Experiment 

Using the result proposed in this paper, this section studies an example as well 

as some numerical simulations to support our new results. Consider a SDHS, 

 

 

2

1 2 3 2

2

1 1 2 3 3

2 3

0 s in

( ) s in 0

0

x x x x

J x x x x x

x x

  

 
  
 

 
 

,
1 1

0 0

0 1

2 0

g

 

 

 

  

,
1 2

0 0

1 0

0 1

g

 

 

 

  

, 

     
2 2 2

1 1 1 2 3
D iag 0, 0 ,1 ,R x H x x x x    , 

 

 

2

3 1 2

22

2 3 3

2

1 2 3

0

( ) 0 c o s

c o s 0

x x x

J x x x

x x x

 

 

  

 
  

,
2 1

0 4

1 0

0 0

g

 

 

 

  

,
2 2

0 2

0 0

1 0

g

 

 

 

  

, 

     
2 2 2

2 2 1 2 3

1
D ia g 0 , 3, 2 , 2

2
R x H x x x x                            (12) 

4.1 Controller design and solving parameters 

From system (12), it is easy to get 

  1 0

2 0 0

H e ss 0 2 0 0

0 0 2

H x

 

 
 
 

  

，   2 0

1 0 0

H e ss 0 4 0 0

0 0 2

H x

 

 
 
 

  

 

So Assumption 1 holds. 

Then, we check that condition (6) holds for all x  and given  . From system (12), we 

have 

   1 1 1 1 1 1 2 1 22 2

1 1

1 3
D iag 0 , 0 ,1

2 2

T T
R x g g g g

 

 
    

 

 

   2 2 1 2 1 2 2 2 22 2 2 2

2 2 2 2

1 6 1 1
D iag , 3 , 2

2 2 2

T T
R x g g g g

   

 
     

 

 

Let 
1

1

 ，

2

1

2



 . To ensure that condition (6) holds, the following statement should 

be satisfied 

 
* *

1 2
m a x ,                                                             (13) 

Next, we consider condition (7) such that system (12) satisfies robustness in H


 

control. 

In this example,  1
0R x   and  2

0R x  , all of the Hamiltonian functions  i
H x  of 

the subsystems can be used as the MLFs for system (12). So choose the Lyapunov 

function    1 1
V x H x ,    2 2

V x H x . It follows from controller (8) that  
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 

 

1 1

1 1 1 1 1 1 12

1 2

2 1

2 2 2 2 1 2 22

2 2

1 1
,

2

1 1
,

2

T T

m

T T

m

u
u h h I g H K x

u

u
u h h I g H K x

u







   
        

  

   
        

  

                                (14) 

where      1 1 1 1 1 1 2 1 2
, , ,

T

K x K x K x    
 

，      2 2 1 2 1 2 2 2 2
, , ,

T

K x K x K x    
 

. 

We know 3n   in system (12) and let 1r  . We have 

 1 1 1 1 1 1 2 2 3 3
,K x a x a x a x    ,  12 12 1 1 2 2 3 3

,K x b x b x b x    , 

 21 21 1 1 2 2 3 3
,K x c x c x c x    ,  2 2 2 2 1 1 2 2 3 3

,K x d x d x d x     

where 
i

a ,
i

b ,
i

c ,
i

d , 1, 2 , 3i   are the parameters. 

From system (11), we obtain that 

   1 1 2 3
2 2 2

T

H x x x x  ,    2 1 2 3
4 2

T

H x x x x  . 

Let  1 1 1 1 1
,

T
S H g K x   ,  2 2 21 2

,
T

S H g K x   ,we have 

 
2 2

1 1 2 1 1 1 3 2 2 2 3 2 3 3 3
2 4 2 4 2 4S b x x a x x b x a b x x a x      

 
2 2

2 1 1 1 2 1 2 3 1 3 2 2 3 2 3
4 4 4 4 4S d x c d x x d x x c x c x x        

1
S  and 

2
S  are quadratic forms and can be rewritten as coefficient matrixes, 

1 1

1 1 2 2 3

1 2 3 3

0 2

2 2

2 2 4

b a

M b b a b

a a b a

  

 
    
 

     

,

1 1 2 3

2 1 2 2 3

3 3

4 2 2 2

2 2 4 2

2 2 0

d c d d

M c d c c

d c

    

 
    
 

   

. 

All principal minors of 
1

M must be positive semi-definite. We have inequalities 
1

A  

from 
1

M . From 
1

A , we can easy to obtain that 
2

0b   and
3

0a  . Substitute 

 1 1 1 1
0, 0U a b    into inequalities 

1
A  for simplify computation, we obtain simplified 

inequalities 
1

B . Solving inequalities 
1

B  by using CAD algorithm, we obtain a series of 

sets. Choose some sets, which satisfy inequalities 
1

B , and organize them. We have 

 2 2 3 3 1 1
0, 0 , 0 , 0U a b a b U                                          (15) 

Substitute U  into controller (14), 

3 3 3

1 1 1 2

2 2 2

41 1

22

T

m

x a x
u h h I

x b x

    
       

     

                                      (16) 

where,
3

0a  ,
2

0b  .  

Similar to that obtain 
1

u , we can obtain 
2

u  from 
2

M , 

2 1 1

2 2 2 2

1 1 1

41 1

42

T

m

x c x
u h h I

x d x

    
       

     

                                     (17) 

where,
1

0c  ,
1

0d  . 

So we have the controllers with parameters for system (12). The controller (16) and 

controller (17) have rather simple form. 
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4.2 Simulations and Results 

In order to evaluate the robustness of the controller (16, 17), we set the parameters of 

system (11) as: 1  ,  1
D iag 0 .5, 0 .6h  ,  2

D iag 0 .7 , 0 .6h  , and the parameters of 

controller as: 
3

1 0a   ,
2

1 0b   ,
1

1 0c   ,
1

1 0d   . We obtain the controller (18), 

 

 

 

3

1

2

2 1

2

1

1 2 .5

1 1 .3 6

0 .8 1 0

1 3 .2

t

t

t

u u

x
u

x

x x
u

x


















  
  

 


  

   
  

                                                  (18) 

Suppose that    0 1, 1, 0 .5
T

x     is the pre-assigned operating point of system (12), 

we impose an external disturbance  4 , 4
T

   on system (12) during the time period 

0.6~0.9s and 3.0~3.6s.  

Figure 1 and Figure 2 are the response of the state and the controller (18) of system 

(12) under the switching law  1
t . 

 1

2 ,

1,
t


 


 

 

2 2 1 2 1 2

2 1 2 2 2 2 2 1

, , 0 .1 5 ,   

, , 0 .1 5 ,

k k k k

k k k k

t t t t t

t t t t t

 

   

  

  
0 ,1, 2 ,k  , 
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Figure 1. Swing Curves Of x  in Switching Law  1
t  

 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

186  Copyright ⓒ 2016 SERSC 

0 1 2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

u

 

 

u1

u2

 

Figure 2. Swing Curves Of u  in Switching Law  1
t  

Figure 3 and Figure 4 are the response of the state and the controller (18) of system 

(12) under the switching law  2
t . 

 2

1,

2 ,
t


 


 

 

2 2 1 2 1 2

2 1 2 2 2 2 2 1

, , 0 .4 ,   

, , 0 .4 ,

k k k k

k k k k

t t t t t ra n d

t t t t t ra n d

 

   

   

   
0 ,1, 2 ,k  , 

where 0 1rand  . 

From Figure 1~Figure 4, we can clearly see that under the switching law  1
t  and 

 2
t , the closed-loop system (12), it takes short time for system to return back to the 

equilibrium point. It can be seen, the obtained controller with parameters can stabilization 

the system (12) under external disturbance. The simulation shows that our result is correct 

and efficient. 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

x

 

 

x1

x2

x3

 

Figure 3. Swing Curves of x  in Switching Law  2
t  
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Figure 4. Swing Curves of u  In Switching Law  2
t  

5. Conclusion 

In this paper, an H


control strategy to parameterizing controller for SDHSs has been 

considered. A controller with parameters has been obtained using MLFs method and an 

algorithm for solving parameters of the controller has been proposed with symbolic 

computation. The proposed parameterization method avoids solving HJ equations (or 

inequalities) and thus the obtained controllers with parameters are relatively simple in 

form and easy in operation. The numerical experiment and simulations show that the 

controller has efficient in H


 control. 
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