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Abstract 

A bottle up hyperbox granular computing (HBGrC) is developed based on distance 

measure. Firstly, hyperbox granule is represented by the beginning point and the end 

point. Secondly, the distance measure between two hyperbox granules is defined by the 

beginning points and the end points. Thirdly, operations between two hyperbox granules 

are designed to the transformation between two hyperbox granule spaces with different 

granularities, HBGrC is developed by the join operator and the user-defined granularity 

threshold  on the basis of bottle up scheme. Experimental results shown that HBGrC 

achieved the better testing accuracies over the machine learning benchmark datasets. 
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1. Introduction 

Many researchers have worked in the granular computing (GrC) field. Zadeh identified 

three fundamental concepts of the human cognition process, namely, granulation, 

organization, and causation [1,2]. Granulation is a process that decomposes a universe 

into parts. Conversely, organization is a process that integrates parts into a universe by 

introducing operation between two granules. Causation involves the association of causes 

and effects. Pedrtcz computed information granules based on sets, fuzzy sets or relations, 

and fuzzy relations [3]. Karburlasos and his colleage use the fuzzy relation between two 

granules to realize the transformation between two granule spaces with different 

granularities[4-9]. These studies enable us to map the complexities of the world around us 

into simple theories. 

In this paper, hyperbox granular computing is proposed based on distance measure. 

Firstly, two points, such as the beginning point and the end point, are used to represent the 

hyperbox granule, and each sample is regarded as the atomic hyperbox granule which 

cannot be divided. Secondly, the distance measure between two hyperbox granules is 

defined. Thirdly, two operations  and  between two hyperbox granules are designed to 

the transformation between two hyperbox granule spaces with different granularities. 

Finally, HBGrC is formed on the basis of bottle up scheme. 

The rest of this paper is presented as follows. The motivation and related work is 

described in Section 2. Section 3 designs hyperbox granular computing based on distance 

measure. The experiments are used to demonstrate HBGrC in Section 4. Section 5 

summarizes the contribution of our work and presents future work plans. 

 

2. Motivation and Related Work 

In this section, the motivation for this proposed research work is presented, and some 

related works are discussed. 
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2.1. Motivation 

For GrC in the view of set theory, the granule is represented as the subset for the 

training set S. In general, distance between two non-empty sets is the minimum of the 

distances between any two of their respective points [10], i.e. 

                                                 (1) 

where d(x,y) is Euclidean distance between two points. For aforementioned distance 

formula (1), it is suitable that intersection of set A and set B is empty set. In Figure 1, sets 

A={x1, x2, x3, x4, x5} and B={y1, y2, y3, y4, y5, y6} are denoted by ball A and B. In Figure 1 

(a) distance between A and B is the distance between point x5 and y6, obviously d(A,B) is 

greater than 0. In Figure 1(b), distance between set A and B also is the distance between x5 

and y6. If the distance between x5 and y6 in Figure 1(a) is equal to the distance between x5 

and y6 in Figure 1(b), the distance d(A,B) in Figure 1(a) is equal to the distance d(A,B) in 

Figure 1(b). Obviously, the distance d(A,B) in Figure 1(b) is less than Figure 1(a), but 

d(A,B) in Figure 1(b) is equal to Figure 1(b) according to formula (1). Distance formula 

(1) does not reflect the real distance between two sets, and we define the distance between 

two sets, where sets are represented as the form of hyperbox, and form the hyperbox 

granular computing based the defined distance measure. 
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Figure 1. Distances Defined by Formula (1) between Two Sets 

2.2. Related Work 

GrC has been proposed and studied in many fields, including machine learning and 

data analysis [11-14]. 

Two granular structures induced by a rough set are proposed by Yao: one is a partition 

induced by an equivalence relationship, and the other is a covering induced by a reflexive 

relationship. Each equivalence class can be viewed as a granule, and each block induced 

by the similarity relationship is regarded as a granule. Yao also suggested the inclusion 

measure to form granular structures. A measure of the graded inclusion of two sets is 

defined as 

µ(A, B)=|A∩B|/|A| 

µ can be interpreted as the conditional probability that a randomly selected element in 

A belongs to B, which can be used to measure the degree to which A is a subset of B. µ 

can be interpreted as a fuzzy partial order relation of 2
U
, and the use of a complete lattice 

corresponds to the lattice-based fuzzy partial order relations in the fuzzy set theory.  

The difference between the granular structure proposed by Yao and GrC introduced by 

Kaburlasos is that the fuzzy inclusion measure in GrC is computed by the ratio of the 

granule to its dilation or the ratio of the erosion to the original granule.  

In recent years, GrC is one of main research focus [15-17]. A notion of 

knowledge distance is introduced to differentiate two given knowledge structures 

and investigate some of its important properties [16]. This is accomplished via a 

near rough set framework in the approximation of a pair of disjoint sets and 

measurement of distances between sets using various fuzzy pseudometrics [17]. 
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3. Hyperbox Granular Computing Based Distance Measure 

For N-dimensional space, we form HBGrC in terms of the following steps. Firstly, two 

points called the beginning point and the end point are used to represent the hyperbox 

granule, and each sample is regarded as the atomic hyperbox granule which cannot be 

divided. Secondly, the distance measure between two hyperbox granules is defined. 

Thirdly, operations called join operation  and meet operation  between two hyperbox 

granules are designed to the transformation two hyperbox granule spaces with different 

granularities. Finally, HBGrC is formed on the basis of bottle up scheme. 

 

3.1. Representation and Granularity for the Hyperbox Granule 

For the training set S composed of ℓ N-dimensional input vectors, two points x=(x1, x2, 

. . . , xN) and y=(y1, y2, . . . , yN) are used to represent the hyperbox granule. The form of 

the granule is HB=(x, y, gr), where x≼y. x≼y is the partial order relation between two 

vectors and defined as follows. 

x≼y=x1y1& x2y2& ...& xNyN 

 is the less than or equal relation between two scalars. Here, point x is called the 

beginning point, and y is called the end point. The granularity is the size of hyperbox 

granule and defined as the distance between the beginning point and the end point. 

For example, in two-dimensional space, HB1 = [0.1, 0.2, 0.4, 0.6, 0.5] represents the 

hyperbox granule shown in Figure 2 which has the beginning point (0.1, 0.2) and the end 

point (0.4, 0.6). The length of hyperbox granule equals 0.4, and its width equals 0.3. The 

granularity of hyperbox granule is 0.5, which is determined by the beginning point and 

the end point. The another example is the atomic hyperbox granule HB2=[0.5, 0.6, 0.5, 

0.6, 0] shown in Figure 2 with the granularity 0, which represents the single point (0.5, 

0.6). 

 

 

Figure 2. Hypergranules in 2-dimensional Space 

3.2. Distance Measure 

Distance is a numerical description of how far apart objects are. Distance between two 

hyperbox granules is the measure of farness between two objects, such as hyperbox 

granules. In analytic geometry, the distance between two points of the xy-plane can be 

found using the distance formula. In the Euclidean space R
N
, the distance between two 

points is usually given by the Euclidean distance. In mathematics, in particular geometry, 

a distance function on a given set M is a function d: M×M → R, where R denotes the set 

of real numbers. Similarly, in granule space induced the hyperbox granules, we define the 

distance between two hyperbox granules HB1=(Bp1,Ep1,g1) and HB2=(Bp2,Ep2,g2) as 

follows. 
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Firstly, the distance between point P and hyperbox granule HB is defined as  

D(P,HB)=d(P,Bp)+d(P,Ep)-d(Bp,Ep)                                         (1) 

where Bp is the beginning point and denoted as Bp=(x1,x2,...,xN), Ep is the end point 

and denoted as Ep=(y1,y2,...,yN), d(.,.) is the Manhattan distance between two points. 

We explain the distance between point and hyperbox granule HB in 2-dimensional 

space. For HB = [0.1 0.2 0.4 0.3 0.316] and the point P(0.3,0.4), d(P,Bp)=0.4, 

d(P,Ep)=0.2, d(Bp,Ep)=0.4, D(P,HB)=0.2. The location of P and HB is shown in Figure 

3. 

 

 

Figure 3. Distance between a Point and a Hyperbox Granule 

Suppose P=(p1,p2,...,pN),  

D(P,HB)=d(P,Bp)+d(P,Ep)-d(Bp,Ep) 

=|p1-x1|+|p2-x2|+...+|pN-xN|+|y1-p1|+|y2-p2|+...+|yN-pN|-(|y1-x1|+|y2-x2|+...+|yN-xN|) 

=(|p1-x1|+|p1-y1|-|y1-x1|)+(|p2-x2|+|p2-y2|-|y2-x2|)+...+(|pN-xN|+|pN-yN|-|yN-xN|) 

0 

Theorem 1. P is included in HB if and only if D(P,HB)=0 

Proof. Suppose Bp=(x1,x2,...,xN), Ep=(y1,y2,...,yN), P=(p1,p2,...,pN).  

If P is included in HB, Bp≼P and P≼Ep, d(P,Bp)=p1-x1+p2-x2+...+pN-xN.  

  d(P,Ep)=y1-p1+y2-p2+...+yN-pN, d(P,Bp)+d(P,Ep) 

  = p1-x1+p2-x2+...+pN-xN+y1-p1+y2-p2+...+yN-pN 

 =y1-x1+y2-x2+...+yN-xN 

 =d(Bp,Ep) 

namely D(P,HB)=d(P,Bp)+d(P,Ep)-d(Bp,Ep)=0. 

  D(P,HB)=d(P,Bp)+d(P,Ep)-d(Bp,Ep) 

= |p1-x1|+|p2-x2|+...+|pN-xN|+|y1-p1|+|y2-p2|+...+|yN-pN|-(|y1-x1|+|y2-x2|+...+|yN-xN|) 

=
N

i=1(|yi-pi|+|xi-pi|-|yi-xi|)=0 

because |yi-pi|+|xi-pi|-|yi-xi|0 and xiyi, |yi-pi|+|xi-pi|-|yi-xi|=0, namely xipi and piyi. P is 

included in HB. 

Secondly, the distance between two hyperbox granules HB1=(Bp1, Ep1, g1) and 

HB2=(Bp2, Ep2,g2) is defined as 

D(HB1,HB2)=(D(Bp1,HB2)+D(Ep1,HB2))/2                                         (2) 

The distance between two hyperbox granule has the follow properties. 

Property 1. D(HB1,HB2)0, D(HB1,HB2)=0HB1HB2 

Proof. Because D(Bp1,HB2)0 and D(Ep1,HB2)0,  

D(HB1,HB2)= (D(Bp1,HB2)+D(Ep1,HB2))/20. 

If D(HB1,HB2)=0, D(Bp1,HB2)=0 and D(Ep1,HB2)=0. Both Bp1 and Ep1 are included in 

hyperbox granule HB2, namely HB1HB2. 
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If HB1HB2, both Bp1 and Ep1 are included in hyperbox granule HB2. According to 

theorem 1, D(Bp1,HB2)=0 and D(Ep1,HB2)=0, namely  

  D(HB1,HB2)= (D(Bp1,HB2)+D(Ep1,HB2))/2=0 

Property 2. D(HB1,HB2)D(HB2,HB1) 

Proof. D(HB1,HB2)= (D(Bp1,HB2)+D(Ep1,HB2))/2 

=(d(Bp1,Bp2)+d(Bp1,Ep2)-d(Bp2,Ep2)+d(Ep1,Bp2)+d(Ep1,Ep2)-d(Bp2,Ep2))/2 

=(d(Bp1,Bp2)+d(Bp1,Ep2)+d(Ep1,Bp2)+d(Ep1,Ep2))/2-d(Bp2,Ep2) 

Similarly, D(HB1,HB2)= (d(Bp1,Bp2)+d(Bp1,Ep2)+d(Ep1,Bp2)+d(Ep1,Ep2))/2-

d(Bp1,Ep1). 

Generally, D(HB1,HB2)D(HB2,HB1), especially, D(HB1,HB2)=D(HB2,HB1) when 

d(Bp1, Ep1)=d(Bp2,Ep2). 

For 2-dimensional space, two hyperbox granules HB1=[0.2 0.1 0.3 0.4 0.316] and 

HB2=[0.25 0.15 0.4 0.5 0.381], the distance between HB1 and HB2 are shown in Figure 3. 

In the figure, d(Bp1,Bp2) =0.1, d(Bp1,Ep2)=0.6, d(Ep1,Bp2)=0.4, d(Ep1,Ep2)=0.2, 

d(Bp1,Ep1)=0.3, d(Bp2,Ep2)= 0.5, D(HB1,HB2)=0.15, D(HB2,HB1)=0.35. 

 

3.3. Operations between Two Hyperbox Granules 

In N-dimensional space, any two points x=(x1,x2,...,xN) and y=(y1,y2,...,yN) can be 

formed a hyperbox granule HB=(Bp,Ep), where 

Bp=xy=(min{x1,y1},min{x2,y2},...,min{xN,yN}) and Ep =xy=( max{x1,y1}, 

max{x2,y2},...,max{xN,yN}).  

The join operator  between two hyperbox granules is designed to achieve the 

hyperbox granule with larger granularity compared with the original hyperbox granules. 

For two hyperbox granules HB1=(Bp1,Ep1) and HB2=(Bp2,Ep2), the join operation  is 

designed as follows. 

HB1HB2=(Bp1Bp2, Ep1Ep2)                                                (3) 

Conversely, the meet operation  between two hyperbox granules is designed to obtain 

the hyperbox granule with the smaller granularity compared with the original hyperbox 

granules. The meet operation  is designed as follows. 

                          (4) 

From formula (3), we can see Bp1Bp2≼Bp1, Bp1Bp2≼Bp2, Bp1≼Ep1Ep2, 

Bp2≼Ep1Ep2, ||Bp1Bp2-Ep1Ep2||2||Bp1-Ep1||2, ||Bp1Bp2-Ep1Ep2||2||Bp2-Ep2||2, 

namely the granularity of HB1HB2 is greater than or equal to the granularities of HB1 

and HB2, and the operation  induces the hyperbox granule with larger granularity 

compared with original granules. From formula (4), we draw the opposite conclusion that 

the meet operation induces the hyperbox granule with the smaller granularity compared 

with original granules. 

We explain the operation  and operation  between two hyperbox granules in 2-

dimensional space. For hyperbox granules HB1=[0.2, 0.1, 0.3, 0.4, 0.316] and HB2=[0.25, 

0.15, 0.4, 0.5, 0.381], the join hyperbox granule is HB=[0.2, 0.1, 0.4, 0.5, 0.5] shown in 

Figure 4, the meet hyperbox granule is HB=[0.25,0.15,0.3,0.4, 0.255] shown in Figure 5. 
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Figure 4. Two Hyperbox Granules and their join Hyperbox Granule 

 

Figure 5. Two Hyperbox Granules and their Meet Hyperbox Granule 

3.4. The Hyperbox Granular Computing Based on Distance Measure 

For training set S, the granular computing classification algorithms are proposed by the 

following steps. Firstly, the samples are used to form the atomic granule. Secondly, the 

threshold of granularity is introduced to conditionally union the atomic granules by the 

aforementioned join operation, and the granule set is composed of all the join granules. 

Thirdly, if all atomic granules are included in the granules of GS, the join process is 

terminated, otherwise, the second process is continued. The algorithms include training 

process and testing process which are listed as follows. 

Suppose the hyperbox atomic granules with the same class labels induced by S are g1, 

g2, g3, g4, g5. The training process can be described as the following tree structure shown 

in Figure 6, leafs denote the atomic hyperbox granules, root denotes GS including its child 

nodes G1, G2, and g3. G1 is induced by join operation of child nodes g1 and g2, G2 is the 

join hyperbox granule of g4 and g5, g3 is the atomic hyperbox granule. The whole process 

of obtaining GS is the bottle up process. 

 

GS

G1 G2

g1 g2 g4 g5

g3

 

Figure 6. The Training Process of Training Set Including 5 Samples 
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The training algorithm and testing algorithm are described as algorithm1 and 

algorithm2. 

 

Algorithm1. Training process 

Input: Training set S, threshold  of granularity, the class number n 

Output: Granule set GS, the class label lab 

S1. initialize the granule set GS=, lab= 

S2. i=1 

S3. select the samples with class i, and form set X 

S31. initialize the granule set GSt= 

S32. j=1 

S33. for the jth sample xj in X, form the corresponding atomic granule Gj 

S34. k=1 

S35. compute the distance djk between the atomic granule Gj and the kth 

granule Gk in GSt 

S36. k=k+1 

S37. find the minimal distance djm 

S38. if the granularity of the join of Gj and Gm is less than or equal to , the 

granule Gm is replace by the join, otherwise Gj is the new member of GSt. 

S39. remove xj until X is empty. 

S4. GS=GSGSt, lab=lab{i} 

S5. if i=n, output GS and class lab, otherwise i=i+1 

Algorithm2. Testing process 

Input: inputs of unknown datum x, granule set GS, the class label lab 

Output: class label of x 

S1. x is represented as granule g 

S2. for i = 1:|GS| 

S3. compute the distance di between g and gi in GS 

S4. find the minimal distance dm 

S5. find the corresponding class label of the gm as the label of x 

 

4. Experiments 

We compared HBGrC with KNN by classification problems including classification in 

2-dimensional space and N-dimensional space. For the selection of parameter 𝜌 of HBGrC 
and parameter K of KNN, we used the stepwise refinement strategy. All the experiments 

are performed with an 3.2GHz Intel(R) Core(TM) i5 CPU and 8GB RAM, running 

Microsoft Windows7 and Matlab2008. 

For the selection of parameter 𝜌, we used the stepwise refinement strategy. Firstly, we 

explored the probable optimal parameter 𝜌. Secondly, the optimal parameter is found near 

the probable optimal parameter. The maximal testing accuracy is the selection indicator of 

optimal parameter. 

 

4.1. Classification in 2-dimensional Space 

The spiral classification is a difficult problem to be classified and is used to evaluate 

the performance of classifiers. The training data are generated by the method proposed in 

[7]. The training set and the testing set in reference [8] are used to evaluate the 

performance of GrC. 

For the selection of parameter, if all the training data are used to form a granule, the 

granularity of the granule is 1.09. Firstly, the parameter is from 1.0 to 0 with step 0.1, and 

the probable optimal parameter is from 0.2 to 0. Secondly, the parameter is selected from 

0.2 to 0 with step 0.01 in the interval [0, 1], and the optimal parameter is 0.09, which 

made HBGrC achieved the best testing accuracy.  
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HBGrC achieved the best testing accuracy and the GS included 102 hyperbox granules 

when 𝜌=0.09. The relation between 𝜌 and training accuracy and the relation between 𝜌 

and testing accuracy are shown in Figure 6. From the figure, we saw the classification 

accuracy increases when the threshold of granularity decreases. Namely, the granule set 

including hyperbox granules with the small granularities achieved the large classification 

accuracy. The training data and achieved hyperbox granules were shown in Figure 7.  

 

 

Figure 6. The Relation between 𝜌 and the Classification Accuracies 

 

Figure 7. The Training Data and Achieved Hyperbox Granules 

4.2. Classification in N-dimensional Space 

Six data sets, named skin, pendigits, image, optdigits, shuttle, and madelon, are list in 

table 1 and selected to verify the classification performances of HBGrC in N-dimensional 

space.  

Table 1. The Data Sets of Classification Problems in N-Dimensional Space 

Datasets Inputs Outputs Training size Testing 

size 

Skin 3 2 163371 81686 

shuttle 9 7 43500 14500 

pendigits 16 10 7494 3498 

image 19 7 210 2100 

optdigits 64 10 3823 1797 

madelon 500 2 2000 600 
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Table 2 lists the classification performances, including the number of granules (Ng), 

the training accuracy, and the testing accuracy. From table 2, we can see, (1) HBGrC 

achieved the better testing accuracies than KNN, (2) HBGrC needed the less number of 

granules than KNN. Data set skin is not applicable to KNN for large number of training 

data. The optimal testing accuracies are 99.8839% (shuttle), 97.799% (pendigits), 

87.667% (image) 97.997% (optdigits), 76.833% (madelon) by KNN algorithms. For the 

data set skin, owing to the large training size, the computer is out of memory. We used the 

selection of parameter , HBGrC achieved the better or the same testing accuracies, such 

as 99.332% (skin), 99.91% (shuttle), 97.827% (pendigits), 92.619% (image), 97.997% 

(optdigits), 73.883% (madelon), and the less granule number compared with KNN. 

Table 2. Classification Performance of HBGrC for N-dimensional Space 

Datas

ets 

algorith

ms 

Parameter 

/K 

Ng Training 

 accuracy 

Testin

g 

 

accuracy 

Skin HBGrC 90 91 99.59 99.332 

KNN N/A N/A N/A N/A 

shuttle HBGrC 0.001 1335 99.995 99.91 

KNN 1 43500 100 99.883 

pendi

gits 

HBGrC 60 1468 100 97.827 

KNN 3 7494 100 97.799 

image HBGrC 17 170 100 92.619 

KNN 1 210 100 87.667 

optidi

gits 

HBGrC 39.2 743 100 97.997 

KNN 1 3823 100 97.997 

madel

on 

HBGrC 1730 271 100 73.833 

KNN 16 2000 100 76.833 

 

5. Conclusion 

The hyperbox granular computing classification algorithms are proposed based on 

distance measures in the paper. Firstly, a training datum is represented as an atomic 

hyperbox granule. Secondly, the distance measure between two hyperbox granules 

is form based on the beginning points and the end points. Thirdly, the training 

process is constructed based on the join operator and the user-defined threshold of 

granularity jointly. Finally, the proposed granular computing classification 

algorithms are demonstrated by the dataset selected from machine learning 

benchmark datasets. HBGrC is affected by the sequence of the training data the 

same as the other granular computing. The distance measure defined in the paper 

does not satisfy the properties, such as the symmetrical characteristic. For the future 

work, we will focus on the novel distance measure between two hyperbox granules.  
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