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Abstract 

In this paper, a model of a bearingless permanent magnet synchronous motor 

(BPMSM) is proposed, the expressions of radial suspension forces are derived, and an 

accurate model is established. Furthermore, decoupling and basic linearization are 

carried out for the radial suspension forces using the theory of differential geometry, and 

a sliding mode controller with fractional order based on a neural network is designed for 

the decoupled, pseudo-linear subsystem. Finally, a simulation experiment is conducted for 

the designed control system and the feasibility of this decoupling control approach is 

validated. The simulation results indicate that the application of the proposed control 

scheme to a bearingless permanent magnet synchronous motor modeled using differential 

geometry can achieve steady and independent control of radial suspension forces. 
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1. Introduction 

A bearingless motor is a new type of magnetic suspension motor, whose suspension 

force is controlled based on the resultant force produced by two kinds of magnets. 

Because they operate similarly to alternating current motors, in bearingless motors, the 

suspension control winding which generates the radial force in the magnetic bearing is 

installed on the motor stator, thus changing the magnetic field distribution in the air gap. 

Through decoupling control, the motor torque and radial suspension force can be 

controlled independently, and stable suspension of the motor can be realized. The 

bearingless permanent magnet synchronous motor (BPMSM) has the advantages of being 

friction-free, non-abrasive, lubrication- and seal-free, high precision, low maintenance, 

low cost, etc. Moreover, a magnetizing current is not required. Therefore, BPMSMs are 

widely used in equipment such as chemical pumps, turbine molecular pumps, blood 

pumps, high speed milling machines, compression engines, high-speed flywheels, etc., 

[1]. 

Due to their nonlinear, multivariate and strong coupling (between the radial suspension 

forces) features, independent and accurate control for the suspension forces must be 

realized to enable a basic, stable working condition of a bearingless motor. The sliding 

mode variable structure control method possesses unique advantages in solving 

multivariable and nonlinear-coupled problems; hence, this paper applies it to the control 

of bearingless permanent magnet synchronous motors. Further, nonlinear differential 

geometry was employed to carry out the decoupling control and linearization of the radial 

suspension forces. Thus, the original multivariable system was transformed into a non-

coupled, pseudo-linear subsystem with two independent radial positions, and then a 

sliding mode controller with fractional order was designed for the decoupled pseudo-

linear subsystem using a neural network. From the simulation results, the feasibility of 
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this kind of decoupling control method was validated, and the control quality and 

robustness of the system was verified. 

 

2. The Basic Principle of BPMSM and the Mathematic Model of the 

Radial Suspension Force 

The principle of the rotor radial suspension force produced in a BPMSM can be 

explained using an equivalent direct-current motor model. Figure 1 shows a schematic 

diagram describing the radial suspension forces. In a BPMSM, the suspension forces are 

produced by the combined actions of quadrupole torque windings and dipolar suspension 

windings, which combined enable stable suspension of the motor. When only the 

quadrupole torque windings are present, the magnitude of the radial suspension forces is 

equivalent and the directions of the radial suspension forces are uniformly distributed. So 

the resultant torque is zero. When the dipolar suspension windings are taken into 

consideration, the uniform distribution of the magnetic field is broken, and a radial 

suspension force is produced. Again, consider Figure 1: It can be seen that, according to 

the given current direction, when the strength of magnetic field in one magnetic pole is 

weakened, that of the opposite direction will become stronger. So a radial suspension 

force is produced along the direction of the x-axis. If the current in conductor N2 is 

increased, the radial force will be also increased. However, if the current direction is 

opposite, the radial force will be produced along the negative x-axis. The generation of y-

axis forces in dipolar windings is similar [2-8]. 

 

 

Figure 1. Principles of Radial Force Generation 

TPrior to the establishment of our mathematic model, we first hypothesizing assume 

that the any magnetic circuit saturation of magnetic circuit in the motor is negligible, and 

the strategy of a rotor orientation strategy is employed in the magnetic suspension system. 

Furthermore, i


and i


are defined as the equivalent currents in the windings Nα and Nβ, 

respectively. Furthermore, 
p

 and 
p

 are defined as the flux linkages produced by the 

torque equivalent windings of Nα and Nβ respectively, 
4

L  and 
2

L are respectively defined 

as the self-inductances of the torque winding and suspension winding, .and 
'

M is defined 

as the derivative which of the mutual inductance between the torque winding and 

suspension winding is relative with respect to the radial displacement of the motor. While 
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finally, the equivalent currents of suspension windings Nx and Ny are defined as 
x

i  and 

y
i  respectively. Then Given the above definitions, the flux linkage of the torque winding 

in a bearingless permanent magnet synchronous motor BPMSM is: given as 
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in which, 
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n4 and n2 respectively are the HP numbers of the torque winding in the equivalent stator 

and suspension winding, r is the inner circle radius of the stator, l is the length of the rotor 

core, 
0

  is the permeability of free space, 
m

l is the thickness of the permanent magnet, 
g

l

is the thickness of the air gap and  m g
l l is the length of valid air gap between the stator 

and rotor. 

The magnetic energy stored in the windings can be expressed as 

'
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,                                                         (3) 

Now, based on the principle of virtual displacement of the electromagnetic field, and 

ignoring magnetic saturation, the magnetic suspension forces fed by eccentric shafts in x 

and y can be represented as: 

m
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,                                                                    (4) 

Substituting Equations (1), (2) and (3) into Equation (4) results in 

' '

' '
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,                                                                 (5) 

The radial suspension force, which is produced by the uneven distribution of the air-

gap field caused by the eccentricity of stator and rotor, can be expressed as 

x s

y s

f k x

f k y






,                                                                                  (6) 

Where 
s

k  is the stiffness of radial displacement. 

The equation of rotor motion for a BPMSM is then given by Newton’s second law as 
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x x

y y

F f m x

F f m y

 


 

,                                                                               (7) 

where m is the mass of the rotor. 

According to Equation (7), the mathematical model of the radial suspension force in a 

rotor during eccentricity can then be expressed as 

 
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,                                                         (8) 

It can be seen from Equation (8) that when the motor operates in a condition of 

constant load, the current component of the torque is also a constant value, and further, 

the radial force and the current of the suspension winding are nonlinearly coupled. 

To further characterize the system, state variable vector

   1 2 3 4

T T
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TT

x y
U u u i i  

 
 

and output variables    1 2

T T

Y y y x y  are selected so as to obtain the state 

equation 
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. 

The system is a typical affine, nonlinear system defined in a four dimensional space 

with continuity C
 and popular   1 2 3 4

T

M X x x x x  . 

 

3. The Linear Decoupling of Radial Suspension Force for BPMSM 

Based on Differential Geometry 

For the given multivariable nonlinear system  
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In which X is defined as the local coordinates of popular M in an n-dimensional space 

with continuity C
 ，

1 2
, , , ,

l
f g g g  are vector fields of C


in M, and h is a mapping of 

C


 in M, that is : ;
j
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
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The sufficient and necessary condition for decoupling of the nonlinear system is that 

matrix  D X  is nonsingular on M [12]. The state feedback control law is given by  
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The system can then be decoupled in M as 
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Where the output functions are    1 1 2 2
,h X x h X x  . Next, we define 
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From Equation (13) and (14), we find that
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Finally, we have that 
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So that  D X is nonsingular and meets the decoupling condition. 

For Equation (12), since
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The state function of the system under the new coordinate system is given by 
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 ,                                                              (16) 

Finally, it is evident that the original system can be decoupled into two independent 

subsystems, and each of them is in the linear controllable canonical form with critical 

stability. 

 

4. Design of a Sliding Mode Controller with Fractional Order Based On 

a Neural Network 

A sliding mode controller with fractional order based on a neural network can be 

designed for the two decoupled pseudo-linear subsystems described above. A sliding 

mode controller is a robust method for nonlinear control. It can purposefully and 

continuously change the structure of the controller according to the current state of system 

(e.g., deviation, order, etc.,) and the chosen switching manifold, which forces it to move 

along a predetermined state trajectory. Once the state trajectory of the system enters a 

sliding mode state, the system will be completely self-adaptive and invariable to 

interference and any variation of its parameters. However, in practical applications, the 

following three facts, 1) the output of a sliding mode controller consists of oppositely 

signed switching parameters at high frequency, 2) the switching device of the actual 

system has inertia, 3) and the BPMSM is a time-varying system with strong coupling and 
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load disturbance, may result in the actual state of the sliding mode not occurring in the 

setting switch manifold, which easily causes high frequency chattering of the system. This 

chattering phenomenon limits the application of the nonlinear control method—the 

sliding mode variable structure—in some circumstances requiring high accuracy [15]. 

Specific to the chattering problem in sliding mode control systems, the theory of 

fractional calculus is introduced into sliding mode control in this paper. By using the 

strong learning ability of neural networks, a control system is designed based on the 

surface of sliding mode with fractional order so that the controller can achieve robust 

control of an uncertain system and eliminate the chattering phenomenon. The control 

block scheme of the sliding mode control system with fractional order based on a neural 

network is shown in Figure 2. The design of the controller includes two parts: The design 

of the switching surface and the learning algorithm of the network weights. 

 

 

Figure 2. A Block Diagram of the Control System 
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and defining the position as r, system error as e, and the velocity error of e as 
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the switching function of fractional order is then 
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Where c R


 , and the selection of c directly determines the dynamic quality of the 

sliding mode control for system. 

The output of the neural sliding mode controller is given as  
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 is a Gaussian function, 
j

  is the weight vector of the 

network, 
j

c  is the central vector of the node j, 
j

b  is the base width for network node j 

and m is the neuron number of the implicit layer. The outputs of the neural sliding mode 
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control system must assure the system state meets the condition    s t s t o . The 

following performance indexes of control are taken into consideration: 

   0

r

t
E s t D s t ,                                                               (21) 

Where  0

r

t
D  the fractional derivative, 0 and t is are the upper and lower limits of 

integration and r is the order. The definition of the fractional order derivative is
 
[16]
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Based on Equation (22), when n=1, we have 
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Only if the following condition is satisfied can the output of the neural sliding mode 

control system assure that the system state meets the constraint    s t s t o , 
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0

r

t
E s t D s t                                                                 (24) 

The following learning algorithm of network weights is adopted: 
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In which,   is the learning rate, and   is a momentum. 

 

5. Simulation Experiment 

In order to validate the control strategy for the pseudo-linear subsystem derived from 

the decoupling and linearization, the Matlab toolbox Simulink is adopted to construct the 

control system simulation. During the simulation process, the parameters of the neural 

sliding mode variable structure are initialized as random values. The parameters of the 

Gaussian function are  2 1 .5 0 1 .5 5c     and  1 1 1 1
T

b  . The parameters 

of motor were given as: The mass of rotor was m=0.5 kg, the moment of inertia was 
-4 2

J= 3 .9 x 1 0 kg m , the number of pole-pairs in torque winding is 1P  , the stator 

resistance is 2 ,
'

M =3.8 mH and the linkage of the permanent magnet pole and stator 

winding is 0.125 Wb. The given rotational speed is 800 rad/s. In the simulation 

experiment, with the initial eccentric displacement of rotor centroid given as

0 0
0 , 0 .0 2 5x m m y m m   , the response curve in the y-direction is shown in Figure 3. 
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Figure 3. The Response Curve of the Displacement in the Y-Direction 

It can be seen from Figure 3 that the rotor comes into stable suspension very quickly. 

In order to further understand the disturbance resisting capabilities of our scheme, 300 N 

external disturbing forces in  
x

f  and 
y

f  are applied to the rotor in t=0.7 and  t=1.9. In the 

simulation, the rotors are subjected to the disturbances and fluctuation of displacement is 

apparent; however, the rotor can be still stably suspended as shown in Figure 4. 

 

 

(A)The Radial Displacement in the X-Axis      (B) The Radial Displacement in the Y-Axis 

Figure 4. Response Curves of the Radial Displacements with an Applied 
Disturbance 

6. Conclusions 

Using basic principles of the operation of bearingless permanent magnet synchronous 

motors, this paper developed a mathematic model of the radial suspension forces for a 

BPMSM. Nonlinear differential geometry was employed to conduct the basic 

linearization of the radial suspension forces. A sliding mode controller with fractional 

order based on a neural network was designed for the decoupled pseudo-linear subsystem 

resulting from the above analysis and a simulation was implemented and tested. The 

results of the simulation show that our control scheme has desirable static and dynamic 

performance and strong robustness, which establishes a foundation for further research on 

the radial suspension forces of bearingless motors, decoupling control of electromagnetic 

torque and the motor with various loads. 
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