
International Journal of Control and Automation

Vol. 8, No. 6 (2015), pp. 89-98

http://dx.doi.org/10.14257/ijca.2015.8.6.10

ISSN: 2005-4297 IJCA

Copyright ⓒ 2015 SERSC

A Distributed Multi-protocol Crawler based on Fuzzy Control for

P2P IPTV Applications

Wenxian Wang, Xingshu Chen, Haizhou Wang
*
 and Yi Duan

Network and Trusted Computing Institute, College of Computer Science, Sichuan

University, Chengdu, China

catean@scu.edu.cn, chenxsh@scu.edu.cn, whzh.nc@qq.com, 8403428@qq.com

Abstract

With the rapid development of P2P technology, P2P IPTV applications have received

more and more attention. And program-list distribution is very important to P2P IPTV

applications. In order to collect IPTV program information, a distributed multi-protocol

crawler was proposed based on principle of program-list distribution. The IPTV

programs information will be used for characteristic analyses of program and for

automatic sorting of program and establishment of IPTV repository in next work. In

addition, a task scheduling model based on fuzzy control is introduced to improve

performance of the crawler. In the experiment, three task scheduling algorithms are

compared, and the results show that the fuzzy algorithm can balance service nodes’ load

effectively with less task execution time.

Keywords: P2P IPTV, Program-list distribution, Crawler, Task scheduling, Fuzzy

control

1. Introduction

Peer-to-Peer (P2P) applications take advantage of resources such as storage, CPU

cycles, content or human presence available at the edge of the Internet to provide a service

[1]. With the development and maturity of P2P technology, P2P applications become

more and more popular in recent ten years, which include file-sharing applications, audio-

based VOIP applications, and video-based IPTV applications. However, they account for

a significant proportion of Internet traffic. According to a survey from ipoque [2] in

February, 2009, P2P generates most traffic in all regions. In Addition, P2P IPTV

applications become popular gradually and contribute a great amount of P2P traffic to

Internet [3].

Internet Protocol Television (IPTV) denotes the transport of live streams and recorded

movies or video clips by means of advanced packet-switched Internet technologies [4]. In

2000, Chu proposed End System Multicast (ESM) [5], the first known P2P IPTV

application, which constructs an overlay tree to distribute video data, and continuously

optimizes the tree to minimize end-to-end latency. Later on, there was a proliferation of

proposals that use overlay networks for efficient distribution of live video. However, they

were limited in their capabilities and were not deployed in large scale. Cool Streaming

was released in summer 2004 and arguably represented the first large-scale P2P video

streaming experiment [6]. Since then, many P2P IPTV applications emerged in 2005. The

known applications include PPTV (former PPLive), PPStream and UUSee. From 2006,

related measurements of P2P IPTV were done by a number of academic staff, and we

carried out the related work [7-9] from 2007.

* Corresponding author

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

90 Copyright ⓒ 2015 SERSC

There have been many studies about P2P IPTV measurement. The measuring methods

they use can be classified in two discrete tracing approaches: passive tracing approach and

active tracing approach.

The passive method is performed by deploying code at suitable points in the network

infrastructure. The passive approach does not increase the traffic on the network. And it is

often used to analyze and identify P2P IPTV traffic from general Internet traffic with the

known behavior (e.g., connection ports, feature or patterns). It is also used to capture

traces analyze them to have a look about a P2P IPTV applications. Du [10] developed a

machine learning methodology to identify PPLive and PPStreasm traffic. Argawal [11]

studied the program startup time and the quality of service in term of number of

consecutive lost block. Silverston [12] studied four IPTV applications and gave a global

view of the impact of P2P media streaming on the network traffic. With abundant traces

from a successful commercial P2P IPTV application, Wu [13] characterized inter-peer

bandwidth availability in large-scale P2P streaming networks. The passive approach is

potentially transparent, scalable and allows comparison of traffic from multiple domains

side-by-side. However, it is dependent upon access to core network infrastructure, which

is not always feasible. So it is often used for flow control in firewall or gateway devices.

The active method relies on special crawler, like an ordinary client, to inject test

packets into P2P network or send packets to servers and peers, following them and

measuring characters of P2P network. Hei [14] carried out the first active tracing of a

commercial P2P IPTV application, namely, PPLive. They further developed a dedicated

PPLive crawler to study the global characteristics of PPLive system [15]. Wu [16]

presented Magellan to characterize topologies of peer-to-peer streaming networks of

UUSee.

Most of existing research work surveyed the P2P IPTV network-centric metrics (e.g.,

traffic characterization, TCP or UDP connections, and video traffic) or user-centric

metrics (e.g., user arrival and departure, geographic distribution, channel population).

And none of them addressed program-list distribution. Our studies focused primarily on

program-list distribution of P2P IPTV applications. A distributed program crawler was

proposed to collect various kinds of information of programs. And a task scheduling

model based on fuzzy control was also introduced to improve the crawler’s performance.

2. Crawling Mechanism

In this section, the basic principle of program-list distribution in P2P IPTV networks

was presented, and a feasible and efficient crawler was put forward for crawling

programs.

2.1. Principle of Program-list Distribution

When the program-list is downloaded and extracted by an IPTV client, one user can

select a program to watch. So program-list distribution is very important to P2P IPTV

applications. The program-list includes program name, categories, play-link which is the

most important identification of signal communication among peers, descriptions and so

on.

The client-server architecture is usually used to distribute program-list file in IPTV

systems, as shown in Figure 1 [7]. When an IPTV client starts up, it requests program-list

file from program-list servers and updates the local information of all programs

immediately. XML is usually used in program-list files to organize various metadata of

programs.

With the number of programs increasing rapidly, the size of program-list file becomes

bigger and bigger. For example, PPTV had about 300 thousand programs in 2011, and the

size of program-list file was more than 20MB. That is a heavy burden to program-list

servers, and makes bad experience to users. Some IPTV applications use compression to

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 91

decrease the file size, and others use multiple program-list files based on program

categories. Furthermore, some IPTV applications encrypt program-list files to prevent

hotlinking.

Program-List

Servers

Client

Client

Client

P2P IPTV

Network

Client

1

2

Figure 1. Program-List Distribution Architecture of IPTV

2.2. Architecture of DMP-Crawler

In order to obtain programs information of IPTV applications, two things must be

done. One thing is to summarize principle of program-list distribution of most IPTV

applications. The other is to decrypt the encrypt algorithm and XML metadata of

program-list file.

When the two things were done, an efficient distributed multi-protocol crawler (DMP-

Crawler) was proposed to collect various kinds of information of programs in popular P2P

IPTV applications. {Program name, IPTV application name} was used to uniquely

identify a program. Figure 2 presents an overview of architecture of DMP-Crawler,

composed of one crawler controller and a number of crawler clients.

C
raw

ling E
ngine

PPTV

C
ontrol Interface

PPStream

UUSee

PPfilm

CNTV

SopCastQQLive

Others

Database
Program-List Crawling Module

PPTV PPStream

UUSee

PPfilm

CNTV

SopCastQQLive

Others

Program-list Extracting Module

Crawler Controller

Crawler Client

Crawler

Module

Crawler Client

Crawler

Module

Crawler Client

Crawler

Module

...

Program-List

Servers

P2P IPTV Network

C
lassification M

odule

 D
ata Storage M

odule

Crawler Client

...

Figure 2. Architecture of DMP-Crawler

Definition 1. A crawling task is defined as the process that a crawler client collects all

programs of one IPTV application at one time.

The crawler controller gets an IPTV applications list from database and initializes

crawling tasks queue according priorities of all crawling tasks. Then the crawler controller

pulls a task from the queue and assigns the task to an independent crawler client by a task

scheduling algorithm which is on the basis of statuses of all crawler clients and servers.

Each crawler client periodically reports its crawling status, CPU and memory

consumption to crawler controller. When a task is allocated, the crawler client invokes

crawler engine to judge IPTV application type, requests program-list file from program-

list servers and reports crawling status to crawler controller. When a program-list file is

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

92 Copyright ⓒ 2015 SERSC

downloaded, the crawler client extracts metadata of programs from the file, classifies

these programs and stores all information of programs into database for further analyses.

3. Task Scheduling Model Based on Fuzzy Control

As the task scheduling and load balancing is a NP complete problem in a distributed

computing environment. In order to shorten crawling time of DMP-Crawler and to

balance loads of servers, fuzzy control theory is introduced to the distributed task

scheduling of DMP-Crawler in this section.

3.1. Fuzzy Model of Dynamic Performance of Service Nodes

Definition 2. A service node (SN) is a computing unit used to complete tasks in the

distributed computing network.

We usually call a server as a SN. In order to balance the task scheduling, it is necessary

to analyze performance of all SNs and to establish a model to balance the load of SNs.

CPU utilization, memory utilization, network response time, CPU reference coefficient

and memory reference coefficient are chosen to evaluate the load of SNs. We define CPU

utilization as UCPU, memory utilization as UMEM, network response time as RTT, CPU

reference coefficient as CCPU and memory reference coefficient as CMEM. The unit of RTT

is millisecond. When RTT is beyond 1000 millisecond, response of the SN is very slow

and RTT is set as 1000 millisecond. CCPU and CMEM can be calculated by



























)(,1

)(,
)(

)(,1

)(,
)(

MEMAvgMEMC

MEMAvgMEM
MEM

MEMAvg
C

CPUAvgCPUC

CPUAvgCPU
CPU

CPUAvg
C

MEM

MEM

CPU

CPU

 (1)

Where)(CPUAvg is average value of CPU frequency of all SNs and)(MEMAvg is

average value of memory size of all SNs. Based on the above definition, the load of a SN

can be expressed as













1

1000

RTTMEMCPU

RTTMEMMEMMEMCPUCPUCPU

WWW

RTT
WUCWUCWSNLoad (2)

Where WCPU, WMEM and WRTT are the weights of CCPU, CMEM and RTT, respectively.

Definition 3. Fuzzy set of SNLoad is defined as SNL= {Very Low, Low, Middle Low,

Middle, Middle High and High}. Triangular fuzzy number [17] is used to fuzzify SNLoad,

and the membership function (Figure 3) is defined as

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 93





























































































5.0,0

5.04.0,
4.05.0

5.0

4.03.0,
3.04.0

3.0

3.0,0

4.0,0

4.025.0,
25.04.0

4.0

25.01.0,
1.025.0

1.0

1.0,0

2.0,0

2.01.0,
1.02.0

2.0

1.0,1

x

x
x

x
x

x

x

x
x

x
x

x

x

x
x

x

ML

L

VL



































































































9.0,1

9.08.0,
8.09.0

8.0

8.00

85.0,0

85.075.0,
75.085.0

85.0

75.065.0,
65.075.0

65.0

65.0,0

7.0,0

7.055.0,
55.07.0

7.0

55.04.0,
4.055.0

4.0

4.0,0

x

x
x

x

x

x
x

x
x

x

x

x
x

x
x

x

H

MH

M







 (3)

So the fuzzy result can be expressed as

HMHMMLLVL
SNLoadf

HMHMMLLVL 
)((4)

For example, when SNLoad = 0.45, the fuzzy result can be expressed as

HMHMMLLVL
SNLoadf

0033.05.000
)(

.

Figure 3. Membership Function

3.2. Fuzzy Model of Task Request Load

Definition 4. Task Request Load (TRLoad) is the load generated by a task in a SN.

Fuzzy set of Task request load is defined as TRL = {Very Low, Low, Middle Low,

Middle, Middle High, High}.

Task request load can be calculated by a SN’s load status of whether the SN

executes the task or not. To facilitate modeling of load, values of SNL and TRL

fuzzy sets are translated into corresponding numbers in Table 1.

Table 1. Corresponding Number of Fuzzy Sets

Value/

Load Level

Very

Low

(VL)

Low

(L)

Middle

Low

(ML)

Middl

e

(M)

Middle

High

(MH)

High

(H)

Number 1 2 3 4 5 6

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

94 Copyright ⓒ 2015 SERSC

3.3. Defuzzification

In order to obtain the load level of SNs and tasks, we adopt center of gravity

method [18] to take defuzzification for SNLoad and TRLoad.

HMHMMLLVL

HMHMMLLVL

i

ii

HMHMMLLVL

x

xx
Loadl





















)(

)(
)(

 (5)

In the front example, load level of SNLoad can be calculated by Equation (5), e.g.

40.3
0033.05.000

060533.045.030201
)(




Loadl

The value is closer to ML level, so load level of SNLoad is ML level.

3.4. Inference Rules

In the task scheduling model, the inference rules are used to select the most

suitable SN to execute a task. There are six levels of task request load and six levels

of service node load, and they can be designed to be related by some rules. The

inference rules are expressed as follow:

If TRL value is Very Low, then SNL value is High.

If TRL value is Low, then SNL value is Middle High.

If TRL value is Middle Low, then SNL value is Middle Low.

If TRL value is Middle, then SNL value is Middle.

If TRL value is Middle High, then SNL value is Middle Low.

If TRL value is High, then SNL value is Very Low.

If the current most appropriate SNL value does not exist, select the closest SNL

value. For example, if TRL value is Middle and all of SNL values are not Middle,

the system will select the SNL value of Middle High or Middle Low.

3.5. Task Scheduling Process of DMP-Crawler

Based on the front task scheduling model, task scheduling process of DMP-

Crawler was realized as follow:

1) Initializing scheduling queue according priority of all tasks.

2) Calculating all tasks’ TRLoad and TRL value.

3) Computing SNLoad and SNL value of all SNs in a fixed period.

4) Selecting the most appropriate SN to complete the task by inference rules

when the crawler controller pulls a task from the scheduling queue.

4. Results and Analysis

DMP-Crawler crawls 33 IPTV applications in China every day, and there are 33

tasks for crawler controller to assigns to crawler clients through the task scheduling

model based on fuzzy control. Moreover, we can added or remove crawling tasks in

the future. Therefore, task scheduling experiments were conducted in two

conditions. One condition is 6 tasks scheduled on 3 servers, and the other is 100

tasks scheduled on 5 servers. TRL values of all tasks were showed in Table 2.

In the experiments, a task is the process that a testing downloads a txt file from a Web

server and calculates the number of words in the file. In the tow experiments, all servers

have the same configuration and were deployed in a LAN. Let WCPU=0.5, WMEM=0.4 and

WRTT=0.1.

Three task scheduling algorithms are used to compare scheduling performance

including load balance and execution time of tasks. The first is random scheduling

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 95

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3

algorithm (Random), which randomly selects a server to execute a task. The second is the

fuzzy scheduling algorithm (Fuzzy) proposed in this paper, which selects the ‘best’ server

to perform a task. The third is also based on the fuzzy scheduling algorithm, but it selects

a server with the lightest load to execute a task, and is also called fuzzy optimal choice

algorithm (Fuzzy-Best).

Table 2. TRL Values of All Tasks

TRL value
Number of task

Experiment I Experiment II

1 1 20

2 1 20

3 1 10

4 1 15

5 1 15

6 1 20

4.1. Load of SNs

The results of Experiment I are shown in Figure 4. From Figure 4, we can observe

that Fuzzy algorithm and Fuzzy-Best algorithm can balance the load of servers

broadly with fewer tasks, while random algorithm has a great difference load

between each server because of uneven task allocation.

a) Random Algorithm (b) Fuzzy Algorithm

(c) Fuzzy-Best Algorithm

Figure 4. Effects of Task Scheduling Algorithms in Experiment I

The results of Experiment II are shown in Figure 5. From Figure 5, we can find

that fuzzy algorithm has a better server load control in task scheduling, and the

server load is mostly kept between 0.5 and 0.8. When the server load increase or

decrease suddenly, such as the load of Server 1 increases suddenly in the 25s , and

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

96 Copyright ⓒ 2015 SERSC

0.0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1.0

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3 Server 4 Server 5

0.0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3 Server 4 Server 5

the load of Server 5 decreases suddenly in the 55s, fuzzy algorithm can quickly

adjust the tasks distribution to make the load of these servers return to steady state.

Random algorithm has great load fluctuations of each server and cannot balance

the server load effectively. Fuzzy-Best algorithm select the server with the smallest

load to execute task scheduling and the running of each task effects the server load

differently, which leads to some servers have heavy load in a long time while some

servers have a smaller load, such as the load of Server 3 and Server 2 has a large

difference in the 15~60s. Meanwhile, some servers are not assigned to execute new

task after completing a task, which results in larger bouncing of server load.

(a) Random Algorithm (b) Fuzzy Algorithm

(c) Fuzzy-Best Algorithm

Figure 5. Effects of Task Scheduling Algorithms in Experiment II

4.2. Execution Time of Tasks

Figure 6. The Time to Complete Tasks of Each Algorithm

0.0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (Second)

S
N

L
o

a
d

Server 1 Server 2 Server 3 Server 4 Server 5

0

50

100

150

200

250

Fuzzy Algorithm Random Algorithm Fuzzy-Best Algorithm

T
im

e
 (

S
e
c
o

n
d

)

Experiment І Experiment Ⅱ

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 97

From the total execution time of the tasks in Figure 6, we know that Fuzzy

algorithm has the minimum time to complete all tasks with 200s, Random algorithm

required for the longest time, and the Fuzzy-Best algorithm takes time for 219s in

Experiment II. But the execution time of tasks of three algorithms are near in

Experiment I.

According to the results of Experiment І and Experiment II, Fuzzy algorithm and

Fuzzy-best algorithm can control the server load relatively well with less tasks.

When there are many tasks, Fuzzy algorithm can control the server load

significantly better with less executing time than Fuzzy-best algorithm.

5. Conclusion

In this paper, we have studied the program information collection in P2P IPTV

applications. We proposed a distributed multi-protocol crawler which is used to harvest

program information of various P2P IPTV applications. Moreover, we used a task

scheduling model based on fuzzy control to improve performance of the crawler. The

results show that fuzzy algorithm can balance the nodes load effectively with less task

execution time. In the next work, we focus on characteristic analysis and automatic

sorting of programs and establishment of IPTV repository.

Acknowledgements

This work was sponsored by the National Key Technology R&D Program (Grant

No. 2012BAH18B05) and the Scientific Research Foundation for the Youth

Scholars of Sichuan University (Grant No. 2013SCU11017).

References

[1] D. Hughes, J. Walkerdine and K. Lee, “Monitoring challenges and approaches for P2P file-sharing

systems”, The First International Conference on Internet Surveillance and Protection, Cap Esterel, Cote

d Azur, France, (2006) August 27-29.

[2] Ipoque Internet study 2008/2009 finds Web and streaming outgrows P2P traffic [EB/OL]. [2011-3-12].

http://www.ipoque.com/en/news-events/press-center/press-releases/2009/ipoque-internet-study-

20082009-finds-web-and-streaming.

[3] Wang, Y. Liu, Y. X. Yang and X. Y. Zhou, “Solving the app-level classification problem of P2P traffic

via optimized support vector machines”, Proceedings of the Sixth International Conference on

Intelligent Systems Design and Applications, Jinan, China, (2006) October 16-18.

[4] P. Eittenberger, U. R. Krieger and H. M. Markoyich, “Measurement and analysis of live-streamed

P2PTV traffic”, 6th International Working Conference on Performance Modeling and Evaluation of

Heterogeneous Networks, Zakopane, Poland, (2010) January 14-16.

[5] Y. H. Chu, S. G. Rao, S. Seshan and H. Zhang, “A Case for End System Multicast”, Proceedings of

ACM SIGMETRICS, Santa Clara, CA, USA, (2000) June 18-21.

[6] X. Y. Zhang, J. C. Liu, B. Li and T. P. Yum, “DONet/CoolStreaming: A Data-driven Overlay Network

for Peer-to-Peer Live Media Streaming”, Proceedings of 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, Miami, FL. USA, (2005) March 13-17.

[7] W. X. Wang, X. S. Chen and H. Z. Wang, “IPTV-RM: A Resources Monitoring Architecture for P2P

IPTV Systems”, Journal of Networks, vol. 7, no. 10, (2012), pp. 1624-1630.

[8] H. Z. Wang, X. S. Chen and W. X. Wang, “A measurement study of polluting a large-scale P2P IPTV

system”, China Communications, vol. 8, no. 2, (2011), pp. 95-102.

[9] H. Z. Wang, X. S. Chen, W. X. Wang and Z. H. Hao, “Understanding pollution dynamics in large-scale

peer-to-peer IPTV system”, Journal of Central South University, vol. 19, no. 8, (2012), pp. 2203-2217.

[10] M. Du, X. S. Chen and J. Tan, “A novel P2P traffic identification algorithm based on BPSO and

weighted KNN”, China Communications, vol. 8, no. 2, (2011), pp. 52-58.

[11] S. Agarwal, J. P. Singh and A. Mavlankar, “Performance and quality-of-service analysis of a live P2P

video multicast session on the Internet”, Proceedings of 16th International Workshop on Quality of

Service, Enschede, the Netherlands, (2008) June 2-4.

[12] T. Silverston and O. Fourmaux, “Measuring P2P IPTV systems”, 17th International Workshop on

Network and Operating Systems Support for Digital Audio & Video, Urbana-Champaign, IL, USA,

(2007) June 4-5.

International Journal of Control and Automation

Vol. 8, No. 6 (2015)

98 Copyright ⓒ 2015 SERSC

[13] C. Wu, B. C. Li and S. Q. Zhao, “Characterizing peer-to-peer streaming flows”, IEEE Journal on

Selected Areas in Communications, vol. 25, no. 9, (2007), pp. 1-15.

[14] X. J. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, “Insight into PPLive: A measurement study of a

large scale P2P IPTV system”, Workshop on Internet Protocol TV (IPTV) services over World Wide

Web in conjunction with WWW2006, Edinburgh, Scotland, (2006) May 23.

[15] X. J. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, “A measurement study of a large-scale P2P IPTV

system”, IEEE Transactions on Multimedia, vol. 9, no. 8, (2007), pp. 1672-1687.

[16] C. Wu, B. C. Li and S. Q. Zhao, “Exploring large-scale peer-to-peer live streaming topologies”, ACM

Transactions on Multimedia Computer Communication Applications, vol. 4, no. 3, (2008)., pp. 1-23.

[17] K. H. Lee, “First course on fuzzy theory and applications”, Springer, Germany, (2005), pp. 137-144.

[18] W. S. Cheng, “Intelligent control theory and application”, Shanghai Jiaotong University Publishing

House, Shanghai (2006), pp. 44-45.

Authors

Wenxian Wang, he was born in Jinjiang of Fujian province of

China in 1978. He received his Ph.D. degrees from College of

Mathematics, Sichuan University, China, in 2012. He is a

lecturer of Network and Trusted Computing Institute, Sichuan

University. His research interests include peer-to-peer networks,

information security and trusted computing.

Xingshu Chen, she was born in 1968. She received her Ph.D.

degree from Institute of Information Security at Sichuan University,

Chengdu, China, in 2004. She is a professor and Ph.D. supervisor of

College of Computer Science. She is currently the director of

Network and Trusted Computing Institute (NTCI) and vice director

of Information Management Center. Her general research interests

include peer-to-peer networks, information security, computer

networks and cloud computing.

Haizhou Wang, he was born in 1986. He received his Ph.D.

degree from College of Computer Science, Sichuan University, China,

in 2014. He awarded Outstanding Graduate Student of Sichuan

University twice in 2009 and 2010, and 3rd Prize in 2010 NVIDIA

CUDA Collegiate Programming Contest of China. His research

interests include peer-to-peer IPTV systems, information security,

and network measurement.

Yi Duan, He was born in 1985. He received his B.E. and M.E.

degrees from College of Computer Science, Sichuan University,

China, in 2010 and 2013. He is currently working at Tencent. His

research interests include peer-to-peer networks and information

security.

