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Abstract 
 

For T-S fuzzy systems with hard constraints and disturbances modeled by impulses, a 

constrained H2 control scheme in the framework of LMI (Linear Matrix Inequality) 

optimization is proposed in this paper. First, the H2 norm is chosen as measurement of 

disturbance attenuation level, and sufficient conditions for guaranteeing an H2 performance 

are given. Then, under the bound assumption of the disturbance energy, another fixed 

ellipsoid containing all perturbed trajectories is confirmed. Finally, hard constraints are 

enforced and translated into LMI conditions. The multi-objective design is lead to solving an 

optimization problem with LMI constraints. Simulation results for application in TORA 

system are discussed.  

Keywords: T-S Fuzzy System; H2 control; LMI; hard constraints. 

1. Introduction 

Most real world control systems are nonlinear and must deal with hard constraints [1-2], 

e.g., control inputs are limited due to the saturation nature of the actuator, some states or 

process outputs must lie between pre-specified ranges arising from safety, stringent product 

specifications or environmental regulation. In addition, there exist kinds of external 

disturbances, which may degrade the performance of the control system and even lead to 

instability in some cases. Hence, disturbance attenuation control problem of nonlinear system 

with hard constraints is a valuable research issue.  

As a convenient and flexible tool for handling complex nonlinear systems, T-S fuzzy 

model [3] and control of T-S fuzzy systems received considerable interests, with which one 

can design controller for nonlinear systems using mature linear control theory. A number of 

results have appeared on disturbance attenuation control synthesis for T-S fuzzy systems, 

such as H∞ control [4-14], H2 control [15-16], generalized H2 control [17], H2/H∞ control 

[18-20], etc. It is somewhat unfortunately, the fore-mentioned approaches were developed 

only focusing on the disturbance attenuation performance, there is no direct way to enforce 

constraints on the control inputs or outputs. Primary contributions to satisfaction of 

constraints for T-S fuzzy systems can be found for example in [21], where an invariant state 

ellipsoid (for all) is employed to enforce the constraints. This implies that the satisfaction 

guarantee of constraints is obtained under the assumption of no external disturbances imposed 

on the systems. But in actual applications, the assumption is too restrict and even impossible. 

 In this paper, we exploit a constrained state-feedback controller design scheme for T-S 

fuzzy systems which suffer from the disturbances modeled by impulses. Since the H2 norm is 

the square root of the total output energy in the impulse response of the system [22], so for 

the impulse disturbance, the H2 norm is more suitable and less conservative as the 

measurement of disturbance attenuation level than the H∞ norm. A main aim of this paper is 
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to design state feedback controller such that the H2 norm form disturbance to performance 

output is minimized. First, sufficient conditions for guaranteeing an H2 performance level and 

the ellipsoid set including the initial state are given. With the assumption of the disturbance 

energy bound, we seek a fixed ellipsoid set containing all perturbed trajectories, i.e. the state 

of the closed-loop system is guarantee staying in the set when there exist some disturbances 

whose energy under a certain bound. Then time-domain hard constraints are enforced and 

translated into LMI conditions using the concept of reachable sets and state-space ellipsoids. 

Finally, the multi-objective design is lead to solving an optimization problem with LMI 

constraints. 

This paper is structured as follows: Section 2 describes the control problem of T-S fuzzy 

systems with hard constraints in the frame work of multi-objective control. In Section 3, a 

state-feedback solution is derived on LMI optimization. Simulation results for TORA system 

are given and discussed in Section 4.  

 

2. Control Problem 

Consider a nonlinear system with external disturbances can be described by the following 

T-S fuzzy model 

1 11 1 2 2

1, 2, 0

1 1, 1 ,

2 2, 2 ,

:

IF ( ) is  and ( ) is , and ( ) is 

THEN ( ) ( ) ( ) ( ), (0) ,
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( ) ( ) ( ),  1,2 , ,
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   

 

  
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                                             (1) 

subject to hard constrains (including control constraints, state constraints or output 

constraints) 

2 2 ,max 2( ) , 1,2, , , 0,zt n t        z z                                                     (2) 

where i
R  denotes  rule  i , 

i

jM  is fuzzy set and r  is the number of model rule,   1 
r

t R  is 

the known premise variable which can be measured directly or be function of the measurable 

variable, and/or time,   n
x t R  is the state,   um

u t R is the control input,   wm
w t R  is the 

external disturbances,   1

1 
z

z t R  is the performance output,   2

2  zn
z t R  is the constrained 

output. 

For the T-S fuzzy system (1), assume iC  is the state-feedback controller designed for the 

i th subsystem 

1 11 1 2 2:  IF ( ) is  and ( ) is , and ( ) is 

THEN ( ) ( ), 1,2, , ,

i i i i

r r

i

C t M t M t M

t t i r 

λ λ λ

u K x
                                           (3) 

here um n

i


K R  is a constant feedback gain to be determined. Via PDC[23], the overall fuzzy 

controller is constituted by 

1

( ) ( ) ( ),
r

i i

i

t h t


u λ K x                                                         (4)  

where ih  is weighted coefficient of the i th sub-controller in the whole controller. Its 

definition and calculation please refer to relevant literatures, and the same below. 
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The disturbance attenuation control problem for T-S fuzzy system with hard constraints 

discussed in this paper can formulated in the framework of multi-objective control as follows: 

Find a controller (4) such that, the closed-loop system is internally stable, the H2 norm 

from the disturbance w  to the controlled output 1z  is minimized, while the hard constraints 

(2) are satisfied. 

 

3. Constrained 2 Control for T-S Fuzzy System  

This section describes a state feedback solution to the above control problem based on LMI 

optimization. Using state feedback (4), the closed-loop system is then be described by the 

parameter-varying linear system 

1, 0

1 1,

2 2,

( ) ( ) ( ) ( ) ( ), (0) ,

( ) ( ) ( ),

( ) ( ) ( ),

cl cl

cl

cl

t t t x
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                                            (5) 

with 2,

1 1

( ) ( ) ( ){ },
r r

cl i j i i j
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 A λ h λ h λ A B K 1, 1, 1 ,

1 1
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cl i j i u i j

i j 
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1, 1,
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B λ h λ B 2, 2, 2 ,
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( ) ( ) ( ){ }
r r
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i j
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 C λ λ λ C D K . 

In the framework of multi-objective control, it is shown that ( )clA λ  is stable, the H2 norm 

from the disturbance w  to the controlled output 1z  less than  , if and only if there exist 

0T P P  and 0S  such that[24] 

1,

1,
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1,

1,
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0
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P C λ
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， ( )Tr S .                                          (6b) 

In the following, we seek conditions for guaranteeing the satisfaction of constraints. With a 

candidate Lyapunov function ( ) TV x x Px , it is easy to prove that (6) implies 

( ( )) ( ) ( ) 0Td
V t t t

dt
 x w w

. 

The integration of both sides from 0 to t  then yields 

0
( ( )) ( (0)) ( ) ( )

t
TV t V d    x x w w .                                               (7) 

Assume the disturbances energy is bounded, i.e. max
0

( ) ( )T d w  


 w w . Then, (7) leads to  

     max
0

( ( )) ( (0)) ( ) ( ) ( (0))
t

TV t V d V w     x x w w x .                                 (8) 

With the definition max: ( (0))V w  x , (8) implies that the closed-loop state trajectory stays in 

an ellipsoid defined by  

 ( , ) : | ( )nR V    P x x .                                                     (9) 



International Journal of Control and Automation 

Vol.8, No.3 (2015) 

 

 

24   Copyright ⓒ 2015 SERSC 

In other words, the fixed ellipsoid set ( , ) P contains all possible perturbed trajectories 

with disturbances whose energy is bounded by  ( (0) 0x  is assumed). With the ellipsoid 

set, we can cast the hard constraints into matrix inequalities.  

Introduce e  as the standard basis vector in constrained output space, then th constrained 

output can be rewritten as 2 2,( ) ( ) ( )T

clt t z e C λ x and the corresponding hard constraint of (2) is 

equivalent to 

2, 2,

2

2 ,max
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( ) ( ) 1

T T
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


C λ e e C λ

x x
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,.                                                (10) 

Since ( ( )) ( ) ( )TV t t t  x x Px  for 0t  , if  
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then (10) holds. It is equivalent to  
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for any ( ) 0t x , if  
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(11) hold, in other word, the constraints are satisfied. By Schur complement, we arrive at the 

equivalence of the above inequality  

2
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 The above discussion can be summarized as follows.  

 Lemma1 For a given positive scalar 0  , if there exist symmetric 0P  satisfying 

(6a), (6b) and (14), then, the system (5) is stable and the H2 norm from the disturbance w  to 

the controlled output 1z less than  . 

Substitute ( )clA λ , 1, ( )clB λ , 1, ( )clC λ  and 2,clC  ( )λ  into (6) and (14). By 

defining
1Q P , i iY K Q , pre- and post-multiplying both sides of (6) with diag( Q , I ), and 

pre- and post-multiplying both sides of (14) with diag( I , Q ), (6) and (14) become 
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21,2, , zn  ,                                                                
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Here
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Note (15)-(17) are parameter-varying matrix inequalities. From [25], one can infer that the 

following LMIs are sufficient conditions of MIs (15)-(17). 

1 1
0,  ( ) 0,  

1 2
ii ii ij ji

r
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
M M M M                              (18) 

1 1
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1 2
ii ii ij ji

r
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, , , ,

1 1
0,  ( ) 0,  

1 2
ii ii ij ji

r
      


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                              , 1,2, ,i j r i j  , 21,2, , zn  . 

which are LMIs in  , Q , iY  and S  for a fixed  .Then the following optimization problem  

, , , ( 1,2, )
min     

jS j r


Q Y  s.t. LMIs (18)-(20)                                 (21) 

is then convex and numerically tractable. 

We are now at the place to state the following result. 

Theorem 1 If there exists an ( almost) optimal solution (
* ,

*
Q ,

*

iY ,
*S ) to optimization 

problem (21),  the i th  state feedback gain can be computed by 
* * 1

i i

K Y Q  and the closed-

loop system (5) with controller (4) achieves : 

I. that it is globally asymptotically stable; 

II. a H2 disturbance attenuation level 
* for external disturbances; 

III. that hard constraints are guaranteed to be satisfied for all disturbances whose energy is 

below  ( (0) 0x  is assumed). 

Remark 1 As an adjustable parameter for controller, the value of   reflects the trade-off 

between achieving good performance and respecting hard constraints, so it can be chosen 

according to the priory knowledge about the disturbances and/or an expected disturbance 

attenuation level. If there probably exist large disturbances or we hope the close-loop system 

keeping high attenuation level for large disturbances, one should choose a large  , which 

probably leads to low performance. Otherwise, enforcing high performance levels (small  ) 

requires to reduce  , which might result in control constraints violation in case that the 

system is affected by unexpectedly large disturbances. So a priori knowledge on disturbances 

is very useful in determining a suitable   
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4. Simulation Application: TORA System  
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F

 

Figure 1.   Diagrammatic Sketch of TORA 

Consider a TORA system (Translational oscillator with an eccentric rotational proof mass 

actuator, see Figure 1) can be described by the following T-S fuzzy model [26]: 
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Because of actuator saturation and mechanical structure constraints, there exist the 

following hard constraints for this system 

max1 ,u u 
4 max2x y  .                                                                        (22) 
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A control problem of this system is to design a controller such that the closed-loop system 

has a certain disturbance attenuation level while the hard constraints are respected.  When 

solving the controller gains, we choose the same controlled output parameters, that is   
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0 1 0 0
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From  (9), the constrained  output matrix selected is  
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i
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u
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  
 

z . 

Parameter   can be treated as adjustable controller parameter, Figure 2. shows the 

relationship of the H2 performance level   and parameter  ( (0) 0x ) by solving the 

optimization problem (21), from which, we can see the increase in   from the value 0.05 to 

1.5 results in an increase in   from 0.0166 to 23.44(implies the decrease of control 

performance). Just as the discussion in Section 3, hoping the system a certain disturbance 

attenuation level for larger energy disturbances implies a larger   being chosen, but in this 

case, the control performance will decrease largely.  

 

Figure 2. The Effect of Varying Controller Parameter ( (0) 0x ) for Performance 

Level   

By solving optimization problem (21), we can obtain T-S fuzzy controllers with different 

value of 0.5,0.8,1  . With these controllers, Figure 3 and Figure 4 show the system 

responses while imposing an impulse variation in w  with a width of 0.05s， amplitude of 5 

at time 0t  , and the initial state is  (0) 0 0 0 0
T

x  . From the results we can see in these 

three cases, the systems all diverge from equilibrium point when the disturbance occurred, 

and converge to original point (see Fig. 3) when the disturbance disappeared, at the same 

time, the hard constraints (22) are respected (see Figure 4). We also can see that the value of 
  is chosen smaller, the control performance is better, but the variables with constraints tend 

to constraints boundaries more closely (see Figure 4) and the margin of respecting constraints 

is smaller. Actually, supreme small value of   will lead to violation of the hard constraints. 

Therefore, the value of   reflects the trade-off between achieving good performance and 
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respecting hard constraints, it can be chosen according to the priory knowledge about the 

disturbances and/or an expected disturbance attenuation level. 

 

Figure 3.  Response ( 1x and 2x ) with Different  (  : 1  ,  : 0.75  ,  

: 0.5  ) 

 

Figure 4.  Response 4x  and Control Input u  with Different  (  : 1  , 

 : 0.75  ,  : 0.5  ) 

5. Conclusion  

In the framework of multi-objective control, a constrained H2 state-feedback T-S fuzzy 

control approach is presented. The H2 norm is used as a measurement for disturbance 

attenuation level, and by the assumption of disturbance energy bound, a fixed ellipsoid set is 

adapted to translate hard constraints into LMI conditions. The bound value reflects the trade-

off between achieving good performance and respecting hard constraints, so it can be treated 

as adjustable parameter for controller and can be chosen according to the priory knowledge 

about the disturbances and/or an expected disturbance attenuation level. A state-feedback 

solution to the control problem is then given, based on LMI optimization. Simulation results 



International Journal of Control and Automation 

Vol.8, No.3 (2015) 

 

 

Copyright ⓒ 2015 SERSC  29 

for TORA show that the presented approach makes the closed-loop system have a certain 

disturbance attenuation level with hard constraints are respected. 
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