
International Journal of Control and Automation

Vol.8, No.3 (2015), pp.387-404

http://dx.doi.org/10.14257/ijca.2015.8.3.38

ISSN: 2005-4297 IJCA

Copyright ⓒ 2015 SERSC

An Approach to Detect Conflicts for Collaborative Evolution of

Medicine Ontology

Song Yingjie
1,2,3

 , Zhang Bin
1,2

 and Mao Yanyan
1,2

1
 Key Laboratory of Intelligent Information Processing in Universities of Shandong

(Shandong Institute of Business and Technology), 264005 Yantai, China
2

School of Computer Science and Technology, Shandong Institute of Business and

Technology , 264005 Yantai, China
3
 Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of

Science and Engineering, 643000 Zigong, China

tiantianyingjie@gmail.com (Corresponding author)

Abstract

In the collaborative evolution of biomedical ontology, participants are a sizeable,

balanced mix of scholars and physicians, all of whom are experienced in the biomedical

domain and who represent diverse viewpoints, experiences, and backgrounds. In the field of

collaborative evolution of biomedical ontology on large-scale ontology, there exists

inevitable conflicts, which may cause the inconsistent ontology. In this paper, a new method

to detect conflicts in ontology evolution is presented, which classifies conflicts as three

groups: internal inconsistencies conflicts in change sequence, direct conflicts between the

sequences and Inconsistent conflict between the sequences. For different conflict, high

effective detecting algorithms are presented with evaluation. Before the conflicts detecting,

semantic extended rules are employed to depict the evolution requirements of the

participants. In particular, we discuss the situation where maximum consistent changing

subsequence is needed if there are inconsistent conflicts between changing subsequences. We

also show how detecting algorithms could be taken in the collaborative evolution of medicine

ontology. As a result, internal and mutual inconsistencies can be detected from change

sequences. And if there are conflicts between the sequences, the algorithm will provide the

maximum consistent changing subsequence as the evolution basis. The designed experiments

verify our approach and achieve the expected results.

Keywords: Collaborative Ontology Evolution; Conflicts Detecting; Semantic Conflicts

1. Introduction

In the network, there are many independently developed and different structure

biomedical databases, which are used for experts in biomedical to retrieve information

and find out the potential knowledge. Different databases have a great difference with

terminology, semantic and structure, all of these limit the knowledge sharing and hinder

the effective search of person and computer. The Biomedical Ontology Development is

working to develop a sound biomedical ontology to enable the various knowledge

processing applications to communicate with one another [1]. It is mainly focus on the

representation and (re-)organization of biomedical terminologies. Physicians developed

their own specialized languages and lexicons to help them store and communicate

general medical knowledge and patient-related information efficiently. Biomedical

information systems, on the other hand, need to be able to communicate complex and

International Journal of Control and Automation

Vol.8, No.3 (2015)

388 Copyright ⓒ 2015 SERSC

detailed medical concepts (possibly expressed in different languages) unambiguously.

For example, the Biological database Bio2RDF [2, 3] uses the Semantic web

technologies to provide interlinked life science data. It integrated more than 40

information resources of biomedicine, such as GenOntology, OMIM, PubMed, GenID,

UniProt and so on. The EU FP 7 Large-Scale Integrating Project LarKC [4] developed

by OntoText company, is to build an integrated platform for semantic computing on a

scale well beyond what is currently possible. It integrated more than 25 information

resources of biomedicine, and contains more than 4 billion. This is obviously a difficult

task and requires a profound analysis of the structure and the concepts of medical

terminologies. The size of medicine ontologies on the Web is growing exponentially in

recent years (For example, the Gene Ontology contains 333960 terms, where there are

20632 terms from Biological Process Ontology, 2819 terms from Cellular component

and 9013 terms from Molecular function, and 1496 Obsolete terms by the end of April

8, 2012. Moreover, GO have annotated near 90 million Genes and Gene Products). And

knowledge about the biomedical is constantly accumulating and changing. Take the GO

as an example, since 1998 until now, it developed by an international consortium

include full-time editors and many other part-time editors at databases, and developers

made modifications continuously. The suggested changes initially submitted by email

and Moved to an online tracking system when this became unmanageable . Larger

questions about the higher ontology structure changing remain unresolved and makes

some items impossible to close. So one of the most import problems is biomedical

ontology evolution, which is the problem of modifying an medicine ontology in

response to a certain change in the domain or its conceptualization. Several reasons are

likely to lead to medicine ontology evolution. The medicine ontology may need to

change simply because the medical circle has changed [5], we may need to change the

perspective under which the medical circle is viewed [6], or we may discover a problem

in the original conceptualization of the medicine, and so on.

Further, the process of the collaborative evolution of biomedical ontology takes place

in a distributed environment. The ontology evolution is a big challenge in collaborative

environment, in which conflicts are often a problem. In the collaborative medicine

ontology evolution, automated conflicts detection is essential. Collaborative ontology

evolution is a social process [7]. Since its participants have slightly different views on

the same domain, a harmonization effort requires discussing the resulting ontology. In

the collaborative ontology evolution, participants are a sizeable, balanced mix of

scholars and physicians, all of whom are experienced in the medicine domain and who

represent diverse viewpoints, experiences, and backgrounds. In the field of medicine

ontology evolution on large-scale ontology, there exists inevitable conflicts, which may

cause the inconsistent ontology. Traditional methods, such as SVN and so on, are

ineffective if collaborative ontology evolution with distributed participants who are

lacking communications. The traditional method for conflicts is using mechanisms of

locking to prevent the occurrence of modification of the same document. For the

existence of complicated relations and semantic, a basic change operation may exerts an

influence on the other ontologies and their applications, so the traditional one is

inappropriate for solution of ontology evolution. However, the multi-changing

sequences of ontology evolution indicate different change requests, and the target of

evolution is to meet more requests.

Ontology Evolution [8] is the timely adaptation of an ontology to the arisen changes

and the consistent propagation of these changes to dependent artifacts. Medicine

ontology evolution is one of the key problems facing ontology users today. Assessing

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 389

and comprehending changes to, and between ontologies has been a large problem within

the ontology community for some time. Adapting ontologies to meet new the

advancements of medical science requirements involves understanding various sections

of ontologies and the changes made thereafter. However, currently available

methodologies to support ontology evolution for Medicine focus their attention mostly

on the development of static ontologies, which is a complex, expensive and time-

comsuming process [9] by knowledge engineers and a small number of physicians. In

recent years, some methods and tools [10] for collaborative ontology construction are

also proposed which meet the requirements of public ontologies having relevance and

value to a broad audience better. For these systems, it is essential to keep knowledge in

consistency.

Protégé [11] is a free, open-source java-based platform that provides a growing users

community with ontologies. But it not contains reasoning function. OntoEdit [12] is a

development environment for ontology design and maintenance. It support multilingual

development, and the knowledge model is related to frame-based languages. Every

plug-in provides other feature to deal with the requirements an ontology engineer has.

In the previous works [13], we have arrived at a solution via scientific investigation

for ontologes consistency reasoning. We propose a new approach to interpreting

ontologies document in a lightweight modeling language for software design, Alloy,

which is used to provide a non-standard reasoning service for the verification of

ontologies. Motivated by the challenges of medicine ontology evolution and based on

the previous works, in this paper, we present a methodology for ontology evolution, by

focusing on the conflicts of multi-participant. In particular, we discuss the situation

where maximum consistent changing subsequence is needed if there are inconsistent

conflicts between changing subsequences. The experiments show the conflicts can be

detected.

The paper is organized as follows. First, the overview section introductions the

background and significance of the issue, and some tools of ontology evolution. Section

2 addresses the concepts and terms in ontology evolution. Section 3 proposes the

algorithms to detect conflicts. Section 4, we give out the Similarity formulas. Section 5

analyzes the time complexity of the formula. And then we show experiments with

evaluation. The last section is our conclusion.

2. Formal Description of Ontology Change

Definition 1: Medicine Ontology 𝒪 is defined as a 5-tuple:

𝒪:={C, A
C
, R, H, A }，

where:

 C is the set of medicine concepts.

 A
C
 is the set of attributes, there are many-to-one relationships between attributes

and concepts.

 R is the set of non-hierarchical relationships between concepts. The function Rel:

RCC maps the relation identifiers to the actual relationships.

 H is the set of hierarchical relationships between concepts. The function is

H((CC)⋃(RR)). If there are two concepts c1, c2, and (c1, c2)H, then we say the

class c1 is defined as a subclass of class description c2. R and H are both the subset

of the cartesian product of C.

 A is the set of axioms.

International Journal of Control and Automation

Vol.8, No.3 (2015)

390 Copyright ⓒ 2015 SERSC

For simplicity, let 𝒪. C be the shortened form of concepts C of ontology 𝒪. Its

attributes are 𝒪. A
C
, relationships are 𝒪. R, hierarchical relationships are 𝒪. H, and

axioms are 𝒪. A. The other definitions are similar.

Definition 2. The Property P is defined as a 3-tuple:

P:={name, Domain, Range},

where:

 name is the naming of the property.

 Domain asserts that the subjects of such property statements must belong to the

class extension of the indicated class description, d(P):={d|∃r,(d,r)∈P}.

 Range asserts that the values of this property must belong to the class extension of

the class description or to data values in the specified data range, r(P):={r|∃d,(d,r)

∈P}.

Definition 3: The Ontology Changes Och is defined as a 4-tuple:

Ochuser:={id, operation, subject, constraint},

where:

 id is used to as a unique identification of the sequencing in changing sequence.

 operation is the basic type of Och, which are {Add, Delete, Modify}.

 subject ⊆ 𝒪. C ∪ 𝒪. P, means that the subjects of operation are {Concept,

Property}.

 constraint⊆ 𝒪. C∪𝒪. P, is used to indicate depended concepts and properties.

The following table shows ontology change operations which this paper involved. These

operations refer to the atomic ones.

Table 1. The Atomic Change of Ontology

Operation description extension

AddConcept(C1, C2) Add concept C1 as the subconcetp of C2 Not delete C2

DeleteConcept(C1,

C2)

Delete concept C1 whose supconcetp is C2 C1 is

subconcept of C2

ModifyConcept(C1) Modify concept C1, contain renaming and the

modification of its attributes

AddProperty(P1,

{C1,C2})

Add property P1, whose domain is C1 and

range is C2

Not delete C2

and C2

DeleteProperty(P1) Delete property P1

ModifyProperty(P1,

{C1,C2})
Modify property P1，whose new domain is

C1 and new range is C2

Not delete C2

and C2

In the table1, there are three types atomic ontology changes, which are Add, Delete and

Modify. Hürsch [14] divide atomic changes into Add and Delete. We add Modify as the third

one. For that, the operation Modify can be broken down as delete the modified concept first

and then add the objective concept outwardly. However, in the actual evolution the process is

inadvisable. For example, under the assumption of Modify is nonexistent, if we want to

rename the concept C1 as C1’. First, the concept C1 should be deleted, if there is a subconcept

C2 of C1, it will also be handled, which may be deleted too or as subconcepts of C1 ‘s

supconcept C0 . Then C1’ will be added to replace C1. Obviously, the hiberarchy of the

ontology has been destroyed and the process can not satisfy the requirement.

The last column in the table is extensions for changing operations, it can also be

understood as the dependent condition when the changes take place. It reveals the implicit

semantics. For example, the add operation AddConcept(C1, C2) in the first row has extension

that the concept C2 is not allowed to be deleted. We can see from the description of the

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 391

operation that the semantic of the operation is to add the concept C1 as a subconcept of C2. If

no extension, there may be a operation of deleting the concept C2, and if the operation of

delete concept C2 take place earlier than the operation of adding operation AddConcept(C1,

C2), then the added concept C1 will become an isolated concept in the ontology, which is

unreasonable. The other extensions are the similar. However, not all operations need

extension, e.g. the operation of modifying the concept ModifyConcept(C1) in third row and

the operation of deleting property DeleteProperty(P1) in the fifth row.]

For the different operation in the table the extension rules are given as follows.

The understand from the Add-extension rules is that if add a concept C1 as the subconcept

of C2, then the supconcept C2 is not allowed to be deleted. Similarly, if we want to add a

property P, then the domain and the range of the property is not allowed to be deleted too.

When adding a axiom A, the relative object (concept, property or instance) can’t be deleted.

In summary, the dependency of Add operation is should not be deleted.

The Delete-extension rules contain three parts. The first one is that the deleted subject type

is class. In such a case, the properties of the deleted class should be deleted too. Further, if the

deleted class has subclasses, we replace the deleted class’s supclass as its subclasses’s

supclass. If the deleted subject type is property, then its subproperties are also be deleted.

Add-extension rules:

IF Ochi = Add (subject, constraint) and constraint.subject≠ ∅

 IF subject.type=Class and subject.parent≠ ∅

 THEN extended Ochi as {(Ochi ,Ochi
1
)| Ochi = Add (subject, constraint), Ochi

1
 =

⇁Delete (subject.parent) };

 IF subject.type=Property

 THEN extended Ochi as {(Ochi ,Ochi
1
, Ochi

2
)| Ochi = Add (subject, constraint),

Ochi
1
 = ⇁Delete (subject.domain) , Ochi

2
=⇁Delete (subject.range) };

 IF subject.type=Axiom

 THEN extended Ochi as {(Ochi ,Ochi
1
)| Ochi = Add (subject, constraint), Ochi

1
 =

⇁Delete (subject.domain) };

Delete-extension rules:

IF Ochi = Delete (subject, constraint)

IF subject.type=Class

 THEN extended Ochi as {(Ochi ,Ochi
i
)|Ochi = Delete (subject), Ochi

1
 =

Delete(subject.Property)};

IF subject.type=Class and (subject.children≠ ∅ and subject.parent ≠ ∅)

THEN extended Ochi as {(Ochi , Ochi
1
, Ochi

2
)|Ochi = Delete (subject), Ochi

1
 =

Delete(subject.Property), Ochi
2
= Modify ((subject.children).parent= subject.parent)};

 IF subject.type=Property and subject.subProperty≠ ∅

 THEN extended Ochi as {(Ochi ,Ochi
i
)|Ochi = Delete (subject), Ochi

1
 =

Delete(subject.subProperty)};

International Journal of Control and Automation

Vol.8, No.3 (2015)

392 Copyright ⓒ 2015 SERSC

For the Modify-extension rules, if the domain (or range) of a property is modified, the new

domain (or range) is not allowed to be deleted. It is the similar with the axioms’s

modification.

Definition 4: The Ontology change sequence is defined as

Chs=< Och1, Och2, …Ochn>,

Which is composed of a succession of Ontology Changes Och1, Och2, …Ochn. The

adjacent changes are separated by “,”. If there are two changes Ochi and Ochi+j(j>=1) ,

Ochi is the predecessor of Ochi+j, and the order of the same change sequence can’t be

changed.

Definition 5: The Ontology diagram is defined as follows:

G:={V,E},

where

 V is the set of vertexes. Each v ∈V, it is used to represent a class of the OWL

ontology. V= 𝒪. C∪(∀Chs).C. The vertexes are real line ellipses in the diagram.

Meanwhile, the changed concepts are drawn as dotted line ellipses. Using dotted

line ellipses add “+” to represent the added concepts and dotted line ellipses add “-

” to represent the deleted concepts.

 E is the set of directed edges. E={(v,u)|v,u∈V, and (v,u) is the edge from v to u, the

property of the ontology defines the semantic of the edge (v,u)，which is used to

represent the property whose domain is the class represented by v and range is the

class represented by u.}. There are two categories directed edges, one is Property-

edge and another is Inheritance-edge. When P∈C.R, the edge is Property-edge,

and sign P.name to the edge. When P∈C.H, the edge is Inheritance-edge, and the

edge with no sign. In fact, when P∈C.H, P.name is subclass for all. The changed

properties should be represented with dotted arrows, and then the dotted arrows

with “+” are used to represent added properties and the dotted arrows with “-” are

used to represent the deleted properties.

The Figure 1(a), (b) shows the source ontology biological_process and the changed

ontology respectively. The vertexs of the former corresponding to the concepts set of

ontology 𝒪.C={biological_process, response_to_external_stimulus,

response_to_endogenous_stimulus, response_to_biotic_stimulus, tropism}, the concept

biological_process is the supconcept of {response_to_external_stimulus,

response_to_endogenous_stimulus, response_to_biotic_stimulus}, the property

Property1 is from response_to_external_stimulus to tropism. (b) on the right is the

result of (a)’s changing after the sequences {Chs1, Chs2, Chs3} have acted on it.

Chs1={DeleteProperty(Property1), DeleteConcept(tropism,

response_to_external_stimulus)},

Chs2={AddConcept(response_to_extracellular_stimulus,

Modify-extension rules:

IF Ochi = Modify (subject, constraint)

 IF subject.type=Property.domain||Property.range

 THEN extended Ochi as {(Ochi ,Ochi
1
)|Ochi = Modify (subject, constraint), Ochi

1
 =

⇁Delete (constraint.subject)};

 IF subject.type= Axiom

 THEN extended Ochi as {(Ochi ,Ochi
1
)|Ochi = Modify (subject, constraint), Ochi

1
 =

⇁Delete (constraint.subject)}

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 393

response_to_external_stimulus), AddProperty (Property2,{

response_to_external_stimulus, response_to_extracellular_stimulus })},

Chs3={ModifyConcept(response_to_biotic_stimulus)}.

Figure 1. Ontology Diagram

Definition 6: Two operations Ochi and Ochi+j from the same sequence (Ochi, Ochi+j

∈Chs) are said to have Dependency relation, if and only if Ochi, Ochi+j satisfy

Ochi.operation=”Add” And Ochi+j.constraint⋂Ochi.subject≠∅, we denote this by

Dependency(Ochi,Ochi+j).

The changes of the same changing sequence are likely to have Dependency relation.

As is shown in Figure 2. Changing sequence such as Chs={

AddConcept(response_to_external_stimulus, biological_process),

AddConcept(response_to_extracellular_stimulus, response_to_external_stimulus)}.

Och1,Och2 ∈ Chs, Och1.operation=”Add” And Och2.constraint⋂Ochi.subject={

response_to_external_stimulus }. According to the definition 7, we believe that Och2

depends on Och1.

Figure 2. The Dependency Relation

Lemma 1. Two operations Ochi and Ochi+j from the same sequence (Ochi, Ochi+j∈Chs)

satisfy Dependency(Ochi,Ochi+j), the order of execution can’t be reversed.

International Journal of Control and Automation

Vol.8, No.3 (2015)

394 Copyright ⓒ 2015 SERSC

Prove: On the premise that Ochi+j depends on Ochi. Assume that Ochi+j is executed earlier

than Ochi, due to Ochi+j.constraint⋂Ochi.subject≠∅, in other words, the precondition of

Ochi+j ‘s execution is not satisfied, which restrict the happen of Ochi+j. So the assumption is

false.

Lemma 2. There is no circular dependency in the same changing sequence. That is to say,

if Och1,Och2,Och3∈Chs, then the three dependency relations, which are

Dependency(Och1,Och2), Dependency(Och2,Och3) and Dependency(Och3,Och1), cannot be

simultaneously true.

Prove: Assume that ∃Och1,Och2,Och3∈Chs, and the three dependency relations, which are

Dependency(Och1,Och2), Dependency(Och2,Och3) and Dependency(Och3,Och1), is

simultaneously true. According to the definition 7, we can come to the following conclusion:

Och1.opertation=Och2.opertation=Och3.opertation=”Add”,

Och2.constraint⋂Och1.subject≠∅, Och3.constraint⋂Och2.subject≠∅ and

Och1.constraint⋂Och3.subject≠∅, by the Ontology Changes of definition 3 and the

operations in Table 1, the type Och.constraint is class, further, the operations which is

depended on, can only be AddClass. In the assumption, the three operations are pairwise

dependent, the three operations are all AddClass. In addition,

Och2.constraint⋂Och1.subject≠∅, Och3.constraint⋂Och2.subject≠∅ and

Och1.constraint⋂Och3.subject≠∅, it can be inferred that Och2.subject.supClass=Och1.

Subject, Och3.subject.supClass=Och2. Subject, Och1.subject.supClass=Och3. Subject. Thus,

we arrive at the conclusion that there is loop circle in the hierarchy of the ontology, which

violate the rules of ontology construction. So we can deduce that the assumption is false.

3. Collaborative Evolution Conflicts Detection

Three types of collaborative evolution conflicts, which are Internal Inconsistency

within the changing sequence, Direct Conflict among different changing sequences and

Indirect Conflict among different changing sequences, and how to detect these conflicts

is introduced in this section. First, The definitions of collaborative evolution conflicts

are given, and then the propose algorithms are used to detect the conflicts. Finally, in

order to enhance efficiency of algorithms, we propose methods to account the similarity

of changing concepts and changing properties.

Internal Inconsistency occurs within the changing sequence, which means there are

semantic conflicts in changing sequence. This conflict detection is relatively simple.

We make use of the previous works [13, 15] for the Internal Inconsistency checking,

and if there are some inconsistent operations, they will be deleted. The output of the

checking algorithm is a changing sequence which meets the consistency checking.

The purpose of the following algorithm is to check Internal Inconsistency

Algorithm 1: Check Internal Inconsistency

Input：The initial ontology 𝒪 and a changing sequence Chs={Och1, Och2, …Ochn}

Output：A consistent changing sequence Chs’(Chs’⊆Chs)

1. Begin

2. Chs’←∅;

3. For (i=1; i<=n; i++)

a) ChsTemp←Chs’⋃{Ochi};

b) If IsConsistent(𝒪ChsTemp) is TRUE

i. Then Chs’← ChsTemp;

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 395

4. Return Chs’;

5. End

We provide the correctness proof of the algorithm.

Theorem 1. [Soundness] The changing sequence of the algorithm’s output is

consistent.

Proof:

1) If Chs’ is Null, it acts on the original ontology, the result ontology is consist

(Assume that the original ontology is consist).

2) Assume that i=k (1<=k<=n), the result changing sequence is consist;

3) Then when i=k+1, there are two cases which are: ⑴ The condition statement in the

3.b) line is true, in other words, the result ontology is 𝒪ChsTemp consist, and Chs’=

ChsTemp, so the result changing sequence is consist. ⑵ The condition statement in

the 3.b) line is false, it is borne out in step 2.

Theorem 2. [Completeness] The changing sequence of the algorithm’s output

contains all changing operations which are not conflict with each other.

Proof:Assume that ∃Ochk∈Chs and Ochk∉Chs’, make 𝒪Chs’⋃Ochk is consist. Then

when i=k, ChsTemp←Chs’⋃{Ochk}, IsConsistent(𝒪ChsTemp) is true, Chs’=ChsTemp,

and then Ochk∈Chs’, which contradicts the assumption.

Definition 7. Two changing sequences Chsi and Chsj are said to have Direct

Conflict, if and only if Chsi and Chsj satisfy

(Chsi.AS⋂Chsj.DS≠∅)⋃(Chsi.DS⋂Chsj.MS≠∅), we denote this by Conf(Chs1,Chs2).

Figure 3. Direct Conflict

Figure 3 shows an example of a direct conflict. The source ontology is like Figure

3(a). There are two changing sequences, which are

Chs1={AddConcept(response_to_extracellular_stimulus,

response_to_external_stimulus)}, Chs2={

DeleteConcept(response_to_external_stimulus, Concept1)}. According to the Add-

extension rules, Chs1 is extended as

Chs1={AddConcept(response_to_extracellular_stimulus,

response_to_external_stimulus), ⇁Delete(response_to_external_stimulus)}. Then

Chs1.AS={…, ⇁Delete(response_to_external_stimulus)}, Chs2.DS={

Delete(response_to_external_stimulus)}. It is apparent that Chs1.AS⋂Chs2.DS≠∅, so we

can come to the conclusion that Conf(Chs1,Chs2).

The following is the algorithm for direct conflict checking.

International Journal of Control and Automation

Vol.8, No.3 (2015)

396 Copyright ⓒ 2015 SERSC

Algorithm 2: Check Direct Conflict

Input：The extended changing sequences set {Chs1, Chs2, …Chsn}

Output：The set of conflict sequence pairs Conf

1. Begin

2. Conf←∅;

3. DS[n], MS[n]←∅;

4. For (i=1; i<n; i++)

a) For (j=1; j<=Chsi.len; j++)

i. If Chsi
j
.operation ∈{ AddConcept∪AddProperty} Then

1. AS[i]←AS[i]⋃Chsi
j
;

ii. Else If Chsi
j
.operation ∈{ DeleteConcept∪DeleteProperty} Then

1. DS[i]←DS[i]⋃Chsi
j
;

iii. Else MS[i]←MS[i]⋃Chsi
j
;

5. For (i=1; i<=n; i++)

a) For (j=1; j<=n && j≠i; j++)

i. For (k=1; k<= AS[i].len; k++)

1. For (l=1; l<= DS[j].len; k++)

a) If AS[i].k.suject = DS[j].l.subject

b) Conf←Conf⋃{(Chsi,Chsj)};

6. For (i=1; i<=n; i++)

a) For (j=1; j<=n && j≠i; j++)

i. For (k=1; k<= DS[i].len; k++)

1. For (l=1; l<= MS[j].len; k++)

a) If DS[i].k.suject = MS[j].l.subject

b) Conf←Conf⋃{(Chsi,Chsj)};

7. Return Conf;

8. End

Definition 8. The changing sequences Chsi and Chsj are said to have Inconsistent

Conflict if, and only if, Conf(Chs1,Chs2) = False, and 𝒪Chs1⋃Chs2 not satisfies

consistency checking.

As is shown in Figure 4, on the basis of Figure 4(a), which contains concepts

𝒪.C={medication, plant, animal}, where {plant, animal} is the sub-concept set of

medication, the first changing sequence is Chs1={AddConcept(aweto, plant)}, and the second

one is Chs2={AddConcept(aweto, animal), AddProperty (disjoint,{plant, animal})}. In this

example, it is obvious that the two changing sequences Chs1and Chs2 are not conflict in

operation, and can be used for evolution of the source ontology. However, the result as is

shown in Figure 4(c) is inconsistent with logic. Because there is a disjoint property from plant

to Concept3. The antagonistic fact in the result ontology is that awetois both the subconcept of

Concept2 and animal. In other words, plant and animal have the same children which is not

allowed with logic. So we say Chs1and Chs2 have Inconsistent Conflict.

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 397

Figure 4. Inconsistent Conflict

Algorithm 3 is used to check Inconsistent Conflict between changing sequences.

Algorithm 3: Check Indirect Conflict

Input：The original ontology 𝒪, the extended changing sequences set with out direct

conflict among them {Chs1, Chs2, …Chsn}

Output：The set of inconsistent conflict sequence pairs ConsisConf

1. Begin

2. ConsisConf←∅;

3. For (i=1; i<n; i++)

a) For (j=i+1; j<=n; j++)

i. For (k=1; k<=Chsj.len; k++)

1. ChsTemp←Chs1⋃{ Chsj
k
};

2. If IsConsistent(𝒪ChsTemp) is FALSE

a) ConsisConf←ConsisConf⋃{(Chsi, Chsj)};

b) break;

4. Return ConsisConf;

5. End

The algorithm 3 is used to check inconsistent changing sequence pair. For the result,

it was not wise to delete them directly, which is not meet users’ changing demand. To

satisfy the users with high limit and meet the requirement of consistent, we propose a

concept which is named as maximal consistent changing sequence. The purpose is to

find out the maximal changing sequence, which meet the consistent requirement and

contains the largest number of operations, from the inconsistent changing sequence

pairs.

The definition 8 gives the definition of Inconsistent Conflict. And the Figure 4

shows the inconsistent conflict example. In the example, the first changing sequence is

Chs1={AddConcept(Concept4,Concept2)}, the second one is

Chs2={AddConcept(Concept4, Concept3), AddProperty (disjoint,{Concept2,

Concept3})}. It is apparent that the two changing sequences are not conflict in operation

level, so can used to change the original ontology simultaneously. However, the result,

as is shown in Figure 4. (c), is logical inconsistent obviously. Because there is a disjoint

property from the concepts Concept2 to Concept3, and the concept Concept4 is both a

subconcept of Concept2, and a subconcept of Concept3. We use Och1, Och2, Och3 to

represent the changing operations separately. The target of the algorithm 4 is to find out

International Journal of Control and Automation

Vol.8, No.3 (2015)

398 Copyright ⓒ 2015 SERSC

a maximal consistent changing sequence. In the example, {Och1,Och2}, {Och2,Och3}

and {Och1,Och3} are the maximal consistent changing sequences.

Before the algorithm, we definite a data structure (Figure 5), which is used to store

the list structure of changing sequences.

Figure 5. Data Structure

typedef struct{

 ElemType *elem

 int length //length

 int listsize

} Seq_List；

The algorithm is to find out the maximal consistent changing sequence.

Algorithm 4: Getting MaxComseq

Input：the ontology 𝒪, inconsistent changing sequence pair (Chs1, Chs2,)

Output：The set of maximal consistent changing sequence MaxComseq

1. Begin

2. MaxComseq←∅;

3. List←Chs1;

4. Seq_List *p = List;

5. For first Ochi in Chs2 do

a) For each interval in *p //for the purpose of not changing the original

sequence, the insert position is behind Ochi+j of *p

i. Insert(Och, *p);

ii. Chs2←Chs2‒{Och};

iii. If ∃ Dependency(Och,Och’)

iv. Chs2←Chs2‒{Och’};

v. If IsConsistent(𝒪*p) is TRUE

1. List’ = Insert(Och, *p)；

2. InsertChild(List’, *p);

b) If *p has Sibling

i. p = *p.rightSibling;

c) Else p = *p.leftChild;

6. MaxComseq ← LeafList;

7. Return MaxComseq;

 In the example of Figure 4, if Chs1 is selected as the first changing sequence,

according to the algorithm 4, we can get the computational process as is shown in

Figure 6. Firstly, there is only one changing operation Och1 in the first changing

sequence, so there is one element in the first list. Next, the changing operations of the

second changing sequence are inserted into the list. The operation Chs2 take the first,

and we can get the two lists in the second level. And then is the operation Och3. In the

understratum, there are three sequences, which are all not met the consistent

requirement. So when the operation Chs1 is selected as the first operation, the maximal

consistent changing sequences are {Och2, Och1} and {Och1, Och2}, which are the same

one.

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 399

Figure 6. Computational Process

Similarly, if the operation Chs2 is selected as the first changing sequence, we can get two

maximal consistent changing sequences which are {Och2, Och3} and {Och3, Och1}. So for the

inconsistent changing sequence pair (Chs1, Chs2,), according to algorithm 4, we can get three

maximal consistent changing sequences {Och1, Och2}, {Och2, Och3} and {Och3, Och1}.

4. Similarity Calculation

In practice, in the different changing sequences there are always some same or similar

operations. To improve the efficiency of the algorithm, we propose the formulas to calculate

the similarity of the changing operations.

The changing operations we defined involve classes and properties. So we need to give the

changing similarity both to the changing classes and changing properties.

The similarity formula of changing class is as follow.

SemSimclass (Och1,Och2) = Equal(Och1.operation, Och2.operation) *SemSim(Och1.subject,

Och2. subject)* SemSim(Och1.constraint, Och2.constraint) (1)

where

1 2

1 2

1 2

1(.operation .operation)
Equal(. , .)

0(.operation .operation)

Och Och
Och operation Och operation

Och Och


 


 (2)

SemSim(Och1.subject, Och2. subject) and SemSim(Och1.constraint, Och2.constraint) are

both used to calculate the similarity of the changing classes. It has close relationship with the

semantic (mainly consider the class name), the location in the ontology hierarchy (Depth),

sup-class (supClass) and sub-class (subClass).

SemSim (C1,C2)= nameSim(C1,C2)*DepthSim (C1,C2)* supClassSim(C1,C2)*

subClassSim(C1,C2) (3)

where

  
  

   

1 2

1 2

1 2

1 2

1 2

(

)

1 , . .

 ,

2* ,)

C dirsupClass C dirsupClass

C andC have the same direct sup class
DepthSim C C

Depth supClass C C

Depth C Depth C









 


 

，

 (4)

where Depth(C) is used to indicate the location of class C in the ontology hierarchy.

supClass(C1,C2) gets the nearest sup-class of C1 and C2.

   1 2

1 2

1,(. .)
,

0,else

C supClass C supClass
supClassSim C C


 


 (5)

where C.supClass gets all ancesrtors sof class C. The function subClassSim (C1,C2) is

similar to supClassSim(C1,C2).

International Journal of Control and Automation

Vol.8, No.3 (2015)

400 Copyright ⓒ 2015 SERSC

  
 1 2

1 2

, 1 (

,,

)
,

, same synonym or abbreviation
nameSim C C

Str elSim eC C s


 


 (6)

StrSim(C1,C2) is the similarity function of Strings C1 and C2, it compare the name’s strings

of C1 and C2.

Unlike the changing similarity of classes, the changing similarity of properties dosen’t

involves the location of the ontology hierarchy. It is as follow

   

 

 

1 2 1 2

1 2

1 2

, . , . *

 . . , . . *

 . . , . .

propertySemSim Och Och Equal Och operation Och operation

SemSim Och subject domain Och subject domain

SemSim Och subject domain Och subject domain



 (7)

The formula 7 involves the name, domain and range of the properties. Where the similarity

of name is similar to which of the changing classes (formula 6). The domain and range of

properties are both classes. So the calculation of similarity can borrow ideas from formula 3.

According to formulas 1-7, we can merge and simplify the changing sequence pair which

have inconsistent conflict, then reducing computation load and improving the efficiency of

algorithm.

5. Time Complexity Analyzing

The purpose of algorithm 4 is to find out the maximal consistent changing sequence from

two sequences are indirect conflict sequences. The time complexity is directly related to the

siza of the two sequences. Before the time complexity analyzing, we assume that there are

two sequences are indirect conflict changing sequences Chs1 and Chs2, and contains n1 and n2

operations respectively. The process is initializing List with a changing sequence (line 3), and

then inserting the operations of another changing sequence into the List in turn. If Chs1 is used

to initialize List, then there are n1+1 positions to insert the first operation of Chs2. And at

worst, if there are no dependency relationship among the operations, there are n1+2 positions

to insert the second operation, and so on, the last operation of Chs2 will have n1+n2 positions

to select. So, we can learn that, the algorithm runs in O(n1*n2)time.

The similarity formulas are used before the algorithm. The purpose is to improve the

efficiency. For if there are two operations from different changing sequences and the different

changing sequences are indirect conflict, then the search procedures will be reduced n1 or n2

time.

6. Experimental Design

We design our experiment using Java 1.6. The server is conducted on Intel(R) Core(TM)

i3 CPU M 350 @ 2.27GHZ with RAM 2.00GB. The evolved ontology is shown in Figure 7.

It is a fraction of biological process ontology, which is one part of gene ontology

(http://www.geneontology.org/GO.ontology.structure.shtml).

http://www.geneontology.org/GO.ontology.structure.shtml

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 401

Figure 7. A Fraction of Biolobical Process Ontology

The experimental result is summarized in Table 1. In order to evaluate, we studied out

some changing sequences. The first row and the second one list the number of the changing

operations of the changing sequences. And the third row provides the number of same or

similar changing operations between the previous two. As seen from the table, if similarity

computing is used to merge same or similar operations before algorithm 4, the efficiency can

be greatly improved.

Table 1. The Experiment Data for Algorithm 3

 Chs1 Chs2
same

operations
time(sm) the result

1 3 2 1 0 1

2 3 2 0 0 8

3 4 3 1 0 1

4 4 3 0 0 21

5 5 4 2 0 1

6 5 4 0 0 48

7 6 5 2 0 1

8 6 5 0 0 124

9 7 6 3 0 1

10 7 6 0 63 425

11 8 7 3 0 1

12 8 7 0 297 1078

13 9 8 3 0 1

14 9 8 0 1716 2696

15 10 9 3 0 1

16 10 9 0 13291 8118

17 11 10 3 0 1

18 11 10 0 67954 21757

19 12 11 3 0 1

20 12 11 0 382104 54657

International Journal of Control and Automation

Vol.8, No.3 (2015)

402 Copyright ⓒ 2015 SERSC

7. Summary and Future Works

With the rapid growth in popularity and size, the complexity of ontology increases

tremendously. In the field of collaborative evolution of biomedical ontology on large-scale

ontology, there exists inevitable conflicts, which may cause the inconsistent ontology.

In this paper, we present a new method to detect conflicts for collaborative ontology of

Medicine Ontology. We classify conflicts as three groups: internal inconsistencies conflicts in

change sequence, direct conflicts and inconsistent conflict between change the sequences.

And for different conflicts, high effective detecting algorithms are presented with evaluation.

In particular, if there are inconsistent conflicts between changing subsequences we present an

algorithm to get the maximum consistent changing subsequence to ensure the process of

ontology evolution. Finally, we design our experiment to show that the approach can find out

the same operations of different changing sequences and improve efficiency of the algorithm.

In the future, we will continue work on the conflicts of collaborative ontology evolution. In

this research, we focus on the conflicts checking, and more work should be done to find out

the root of conflicts. So, our future research may focus on the conflicts diagnosis method of

collaborative ontology evolution.

Acknowledgements

This work is supported by the The PhD Start-up Fund of ShanDong Institute of Business

and Technology(DS201405), the Open Project Program of Artificial Intelligence Key

Laboratory of Sichuan Provence(Sichuan University of Science and Engineering), China

(2013RYJ05), the National Natural Science Foundation of China (Grant

No.61272244,61373079,61175023,61175053,61272430,61272369) and Shandong Provincial

Natural Science Foundation (ZR2013FL022)

References

[1] Y. Yongyan, "The study on marketing strategies using auto-reasoning model based on ontology and rules,"

International Journal of Digital Content Technology and its Applications, vol. 6, no. 14, (2012), pp. 182-188.

[2] F. Belleau, M. A. Nolin, N. Tourigny, P. Rigault, and J. Morissette, "Bio2RDF: towards a mashup to build

bioinformatics knowledge systems," Journal of biomedical informatics, vol. 41, no. 5, (2008), pp. 706-716.

[3] M.-A. Nolin, P. Ansell, F. Belleau, K. Idehen, P. Rigault, N. Tourigny, P. Roe, J. M. Hogan and M.

Dumontier, "Bio2RDF network of linked data," in Semantic Web Challenge; International Semantic Web

Conference (ISWC 2008), (2008).

[4] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. Della Valle, F. Fischer, Z.

Huang, A. Kiryakov and T.-I. Lee , "Towards LarKC: a platform for web-scale reasoning," in Semantic

Computing, 2008 IEEE International Conference on, (2008), pp. 524-529.

[5] L. Stojanovic, A. Maedche, N. Stojanovic, and R. Studer, "Ontology evolution as reconfiguration-design

problem solving," presented at the Proceedings of the 2nd international conference on Knowledge capture,

Sanibel Island, FL, USA, (2003).

[6] N. Noy, S. Kunnatur, M. Klein, and M. Musen, "Tracking changes during ontology evolution," The

Semantic Web–ISWC 2004, (2004), pp. 259-273.

[7] C. Tempich, H. Pinto, Y. Sure, and S. Staab, "argumentation ontology for distributed, loosely-controlled and

evolving engineering processes of ontologies (DILIGENT)," The Semantic Web: Research and Applications,

(2005), pp. 21-43.

[8] L. Stojanovic, "Methods and tools for ontology evolution," (2004).

[9] S. H. Hwang, H. G. Kim, and H. S. Yang, "A FCA-based ontology construction for the design of class

hierarchy," Computational Science and Its Applications–ICCSA 2005, (2005), pp. 307-320.

[10] A. G. Perez, Ó . Corcho, M. Fernandez-Lopez, and J. Angele, "Survey on Ontology Tools", no.1.3, (2002).

[11] M. Klein and N. F. Noy, "A component-based framework for ontology evolution," in Proceedings of the

IJCAI, (2003).

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 403

[12] Y. Sure, J. Angele, and S. Staab, "OntoEdit: Multifaceted Inferencing for Ontology Engineering," Journal on

Data Semantics, vol. 1, no. 1, (2003), pp. 128-152.

[13] Y. Song and R. Chen, "Non-standard Reasoning Services for the Verification of DAML+OIL Ontologies,"

in Artificial Intelligence Applications and Innovations. vol. 339, (2010), pp. 203-210.

[14] W. L. Hürsch, "Maintaining Consistency and Behavior of Object-Oriented Systems during Evolution," in

Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA'97), ACM SIGPLAN Notices, (1995).

[15] Y. Song, R. Chen, and Y. Liu, "A Non-Standard Approach for the OWL Ontologies Checking and

Reasoning," Journal of Computers, vol. 7, no. 10, (2012).

Authors

Song Yingjie

2013 Doctor's degree in Dalian Maritime University

2009 Master's degree in Dalian Maritime University

Research interests Semantic Web, Ontology Evolution, and Behavior

Identification

Zhang Bin

2010 Master's degree in Dalian Maritime University

2008 Bachelor's degree in Qilu University Of Technology

Research interests Software Quality Assurance、Embed-Software

testing、Software reliability testing

Yanyan Mao

2001 Bachelor's degree in Shandong University of Technology

2004 Master's degree in Dalian University of Technology

Research interests wireless sensor networks, internet of things,

mobile computing, and distributed simulation.

International Journal of Control and Automation

Vol.8, No.3 (2015)

404 Copyright ⓒ 2015 SERSC

