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Abstract 
 

A novel control strategy based on Hammerstein model and neural network for the speed-

regulating system of the induction motor and inverter is proposed in this paper. First, 

Hammerstein model was used to model the speed-regulation system of the induction motor 

and inverter. Auto-regressive and moving average (ARMA) model was used to identify the 

dynamic linear module of Hammerstein model of the speed-regulating system. Second, the 

ARMA model was used as a reference model for identification of the inverse model of static 

nonlinear neural network (NN) module of Hammerstein model in the framework of the model 

reference adaptive control method. For the load disturbance issue, two control strategies, 

online learning neural network direct inverse control and the traditional PI close-loop 

control strategy were studied. Simulations show that the inverse control based on 

Hammerstein model and NN is effective and the online learning neural network direct inverse 

control strategy for the speed-regulating system with load disturbance has higher 

performance.  
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1. Introduction 

The speed-regulating system of induction motor and inverter (SSIMI) widely used in 

industrial fields is a complex nonlinear system. The traditional PID control is difficult 

to meet the requirements of high performance control [1]. SSIMI has been studied by 

many researchers. The nonlinear time-delay characteristics of hysteresis current control 

PWM inverter was discussed in SSIMI [2]. For the nonlinear problem of SSIMI, the α-

th order neural network inverse system was designed to control SSIMI [1, 3-6]. 

Cascaded with the α -th order neural network inverse system which is obtained by 

training, the original system can be represented by an approximate pseudolinear system. 

Then the close loop controllers can be designed respectively according to the linear 

system theory. However, Several factors such as the time-delay of inverter and load 

disturbance were ignored in [1, 3]. And the approximate pseudolinear system was 

designed as pure integrators resulting in difficulties of realizing open loop control. 

Hammerstein model is a typical nonlinear system model with a specific s tructure, 

which consists of a static nonlinear module and a dynamic linear module [7]. The model 

can be used to model many nonlinear systems. Some research results about 

Hammerstein model applied in the fields of motor model and control have been 

achieved. The parameters identification method of permanent magnet synchronous 

motor based on Hammerstein model was proposed in [8].The newton’s method was 

used for identification of the direct and  quadrature inductances from the nonlinear 
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static module of Hammerstein model. The Hammerstein model based on radial 

functions neural network was applied in modeling traveling wave ultrasonic motor [9]. 

The application of Hammerstein model in modeling DC motor was discussed in [10]. 

Coulomb friction and dead zone nonlinearities of DC motor was described by the 

nonlinear static module of Hammerstein model. 

For the nonlinear nature of the speed-regulation system of SSIMI, a novel control 

strategy based on Hammerstein model and neural network was proposed in this paper. 

In the strategy, Auto-regressive and moving average (ARMA) model was used to 

identify the dynamic linear module of the speed-regulating system. Moreover, the 

ARMA model was used as a reference model for identifying the inverse model of static 

nonlinear module in the framework of the model reference adaptive control method. 

Finally, for the existing of load disturbance, online learning neural network direct 

inverse controller was studied and compared with PI controller. 

 

2. Speed-regulating System of the Induction Motor and Inverter 

Three phase induction motor mathematical model can be expressed by the five order 

state equation in rotating two-phase coordinate as follows [3, 11]. 
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where 1  is electrical synchronous angular velocity, r is rotor electrical angular 

velocity, isd and isq are stator currents in (d,q) axis. isd



 and isq



are given stator current in 

(d,q) axis. rd  and rq are rotor flux linkage in (d,q) axis. n p  is number of pole-

pairs. mL is mutual inductance. rL is rotor inductance. J is inertia. LT is load torque. rT is 

rotor time-constant of induction motor. sT is current lagging time-constant of inverter. 
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Figure 1. Variable Frequency Speed-regulating System in v/f Mode 
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An industrial inverter usually works in one of three modes: the V/f mode, the field-

oriented mode and the direct torque mode. And the V/f mode is the most widely used 

because of its light weight, small volume and outstanding performance. The principle 

chart of variable frequency speed-regulating system in the V/f mode is presented in 

Figure 1. Since SSIMI is a whole module, a speed response can be obtained once the 

inverter is given a frequency input which is used as the synchronous angle frequency 

that can generate a setpoint of voltage amplitude according to the V/f characteristic in 

nature. V/f control mainly is used to keep the stator’s flux linkage unchanged. With two 

phases voltages of stator in polar coordinates,  synchronous angle frequency and voltage 

amplitude make that the flux linkage of the induction motor stator remains the same [1]. 

As seen in Figure 1, in consideration of motor startup behavior and protection, the V/f 

characteristic is usually designed as a nonlinearity curve. In practical application, the 

amplitude and change rate of input signals of the V/f controller is usually limited. 

Besides, the delay in the inverter makes the nonlinearity of the SSIMI more complex. 

The fluctuation characteristics of load LT  to rotor electrical angular velocity r were 

studied in the next part. When the speed response of the induction motor reaches steady 

state, equation (1) can be written as  
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When the speed response reaches steady state, rotor field-oriented r is a constant. In 

addition, rL , n p , rT and mL in equation (4) are invariable, the relationship between the 

speed response of induction motor and setpoint 1 of inverter is linear while load LT is 

invariable. But load LT disturbance will affect the speed response. 

 

3. Speed-regulating System for Induction Motor and Inverter based on 

Hammerstein Model and Neural Network  

3.1. Hammerstein Model 

A typical structure of Hammerstein model (see Figure 2) consists of a static 

nonlinear element ( )N  in series with a dynamic linear element (z)G [12]. In Figure 

2, u(k), (k) and (k)y denote the input, internal and output signals at time k of a SISO 

system respectively. 
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Figure 2. The Structure of Hammerstein Model 

The SSIMI can be described by a Hammerstein model. For the lowpass property of 

the induction motor, the linear dynamic module of Hammerstein model can be 

identified using an ARMA model and the nonlinear static module can be approximated 

using neural network. The proposed control strategy of the SSIMI based on a 

Hammerstein model is showed in Figure 3. 
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Figure 3. Direct Inverse Control for Speed-regulating System 

The SSIMI cascaded with the NN inverse model of the static nonlinear module can 

be viewed as an approximate pseudolinear system. So the controller of the pseudolinear 

system can be designed on linear system theory.  

 

3.2. Identification of the Linear Dynamic Module  

Because of the lowpass property of the SSIMI, the linear dynamic module of the 

SISO system in Figure 1 can be identified on the step response [13]. In Figure 2,the 

change of (k) and u(k)  is synchronous [14]. If u(k)  denotes a step signal, then 

(k) denotes a synchronous step signal. Assume that the linear dynamic module (z)G is 

a system and its steady-state gain is 1 for convenience. Giving the SSIMI a step signal, 

the linear model of the original system can be identified using an ARMA model when 

the output of the system reaches steady state. 

 

3.3. Identification of the Inverse Model of the Nonlinear Static Module 

Any static neural network inverse model can be used to offset the nonlinear 

characteristic of the SSIMI in this paper. Three layers MLN network inverse model was 

adopted for indicating the suitability of the proposed method. The excitation function of 

hidden neuron is monotonic smooth hyperbolic tangent function: 
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The output layer is composed of neuron with linear threshold excitation function [15, 

16]. 

The initial connection weights of the MLN network can be obtained by training on 

the input and output of the SSIMI offline. It is important to note that the exciting signal 
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of the system should be reasonable. For the aim is to identify the inverse of the static 

nonlinear module, stairstep signal is chosen. The exciting signal and output response of 

the SSIMI are shown in Figure 4.Under the condition of the previous assume, the neural 

network inverse model of the nonlinear static module can be trained on the steady 

output and corresponding input in Figure 4. 
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Figure 4. Speed Input and Output of Speed-regulating System 

3.4. Identification and Control of the Online Learning Neural Network Inverse Model 

based on Model-reference 

In a practical application, the load disturbance is inevitable, which affect the control 

performance of neural network direct inverse control. So online learning neural network 

direct inverse control is designed to improve the control performance. Online learning 

neural network direct inverse model can compensate the nonlinearity of the SSIMI by 

online adjusting the connection weights of the NN inverse model .The structure of the 

proposed online learning neural network inverse model control is shown in Figure 5. 

The error between the outputs of identified linear dynamic model and pseudolinear 

system was used to adjust the NN inverse model online. And the conjugate gradient 

optimization method is applied in training neural network inverse model online. 
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Figure 5. Online Direct Inverse Control for Speed-regulating System based 
on NN 
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3.5. Identification and Control of the Traditional PI Close-loop  

For the load disturbance problem, the traditional PI close-loop control strategy was 

also studied (see Figure 6). The PI controller was employed to offset the system 

modelling errors causing by load disturbance. 
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Figure 6. PI Close-loop Control for Speed-regulating System 
 

4. Simulation 

4.1. Three Phase Induction Motor Parameters  

The threes phase induction motor is a kind of squirrel cage motors. Parameters are as 

follows: nominal power eP and nominal voltage eU  are 2.2kW and 220/380V 

respectively. The number of pole-pairs pn is 2.The stator resistance sR and 

inductance sL are 0.435  and 0.0022H respectively. The rotor resistance rR and 

inductance rL are 0.816  and 0.002H respectively. The mutual inductance mL is 

0.006931H.And the inertia J is 0.089 2kgm . 

 

4.2. Simulation Results 

The linear dynamic module of the SSIMI is obtained (see equation (6)) using the method 

in Section 2.2. 

2
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 (6) 

The rate of change of the frequency generated according to the V/f characteristic was 

limited and was shown in the initial parts of curves in Figure 7-15. 

 

(1) Simulations of NN direct inverse control strategy 
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(a) Dynamics of Load Disturbance 
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(b) Speed Response 

Figure 7. Speed Response in NN Direct Inverse Control with Load 
Disturbance 

With the load decreased to 6 mN from 11.9 mN at 20 seconds, then increased to 

10 mN  in Figure 7(a), the speed response curves of neural network direct inverse 

control are shown in Figure 7(b). Those indicate that the load disturbance affects the 

performance of neural network direct inverse control obviously. The main reason is that 

the neural network inverse model was trained with specific load and the trained model 

cannot be corrected online.  
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(a) Square Wave Input and Speed Response 
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(b) Triangular Wave Input and Speed Response 

Figure 8. Speed Response in NN Direct Inverse Control with Constant Load 

With unchanged load, when the input signals are square wave and triangular wave, 

the speed response curves of the NN direct inverse control system are shown in Figure 

8(a) and Figure 8 (b) respectively. From Figure 8, it can be concluded that the NN 

direct inverse control with constant load has a good track precision. 
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(a) Square Wave Input and Speed Response 
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(b)  Triangular Wave Input and Speed Response 

Figure 9. Speed Response in NN Direct Inverse Control with Variable Load 

With the load decreased to 6 mN from 11.9 mN at 20 seconds, then increased to 

10 mN  at 30 seconds, when the input signals are square wave and triangular wave, the 

speed response curves of neural network direct inverse control are shown Figure 9(a) 

and Figure 9(b). It can be found that the speed response of neural network direct inverse 

control cannot track the input signal well when load changes.  
 

(2) Simulations of online NN direct inverse control strategy 
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Figure 10. Speed Response in Online NN Direct Inverse Control 
with/without Rated Load 

Figure 10 shows the speed response curves of online learning neural network inverse 

control with no load and rated load. The curves show that the load has little effect on 

the online learning neural network inverse control system. 
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Figure 11. Speed Response in Online NN Direct Inverse Control with 
Variable Load 

With the load decreased to 6 mN from 11.9 mN at 20 seconds, then increased to 

10 mN at 30 seconds, the speed response curves of online NN direct inverse control 

strategy are presented in Figure 11, which shows that the load has little effect on the 

online learning neural network inverse control system. 
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(a) Square Wave Input and Speed Response 
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(b) Triangular Wave Input and Speed Response 

Figure 12. Speed Response in Online NN Direct Inverse Control with 
Constant Load 

With unchanged load, the input signals are square wave and triangular wave ,the 

response curves of the online NN direct inverse control strategy are shown in Figure 

12(a) and Figure 12(b) respectively. From Figure 12, it can be concluded that the online 

NN direct inverse control with constant load has a good track precision. 
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(a) Square Wave Input and Speed Response 
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(b)  Triangular Wave Input and Speed Response 

Figure 13. Speed Response in Online NN Direct Inverse Control with 
Variable Load 

With the load decreased to 6 mN from 11.9 mN at 20 seconds, then increased to 

10 mN at 30 seconds, when the input signals are square wave and triangular wave, the 

response curves of the online NN direct inverse control strategy are shown in Figure 

13(a) and Figure 13(b) respectively. From Figure 10-13, it can be found that the 

response of online neural network direct inverse control system has good robustness in 

tracking input signals.  
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(3) Simulations of  PI close-loop control 
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(a) Square Wave Input and Speed Response 
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(b)  Triangular Wave Input and Speed Response 

Figure 14. Speed Response in PI Close-loop Control with Constant Load 

With constant load, the input signals are square wave and triangular wave, the speed 

response curves of the PI close-loop control are shown in Figure 14(a) and Figure 14(b) 

respectively. The parameters of PI controller are adjusted to different input signals. 

When the input signal is square wave, KP is set to 2 and KI is set to 1. When the input 

signal is triangular wave, KP is set to 4 and KI is set to 3. From Figure 14, the tracking 

ability of PI close-loop control is not so satisfactory compared with both NN direct 

inverse control and online NN direct inverse control. 
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(a) Square Wave Input and Speed Response 
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(b)  Triangular Wave Input and Speed Response 

Figure 15. Speed Response in PI Close-loop Control with Variable Load 

With the load decreased to 6 mN from 11.9 mN at 20 seconds, then increased to 

10 mN at 30 seconds, square wave and triangular wave response curves of PI close-loop 

control are shown in Figure 15(a) and Figure 15(b) respectively. The parameters of PI 

controller are set as the same to the above mentioned. The pictures show that the PI 

control has considerable robustness against the load disturbances. However, the 

tracking precision is not as satisfactory as that of online NN direct inverse control 

strategy.  
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 The above results show that the online learning control strategy based on 

Hammerstein model and neural network for the SSIMI can reach the aim of high 

performance control compared with neural network direct inverse control strategy and 

PI close-loop control strategy. Simulations were implemented on Matlab/Simulink. 

 

5. Conclusion 

For the nonlinear nature of the speed-regulating system of the induction motor and 

inverter, a novel control strategy based on Hammerstein model and neural network is 

proposed. Auto-Regressive and Moving Average (ARMA) model was used to identify 

the dynamic linear module of the speed-regulating system, and it was used as a 

reference model for identification of the inverse model of static nonlinear module in the 

framework of the model reference adaptive control method. For load disturbance issue, 

online learning neural network direct inverse controller and PI controller were both 

studied. In addition, the trained NN inverse model is a static model, and it is easy to 

realize and can be used in open loop control in comparison with the NN α-th order 

inverse model. Simulations show the feasibility of the proposed control strategy for 

speed-regulating system based on Hammerstein model.  
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