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Abstract 

 
During the design process of the DC motor composite positioning control system (CPCS), 

in order to solve the contradiction between the positioning accuracy and the stability, we 
introduce the equioscillation and equiprecision lines in the root locus plane, analyze and 
compare root locus maps, the frequency characteristics, and the dynamic responses for PID 
and CPCS on MATLAB. The results show: within the high-order control system root locus 
configuration boundary, there always exist three specific boundaried subspaces. Under the 
condition of simplifying the transferring function to fifth-order from using zero, poles 
cancellation method, the subspaces’ controllability and observability are not changed. The 
determination of status feedback matrix K and estimator gain L for the high-order control 
system can be transformed to solving the third-order dynamic equations for specific boundary 
conditions, and by constructing the dynamic regulator or compensator achieve zero-pole 
optimal configuration. 

Keywords: High-order control system; Dynamic performance; Positioning accuracy; 
Positioning stability; Equioscillation line; Equiprecision line 

1. Introduction 
Due to the constantly increasing demands on precision control and stability, composite, 

nonlinear, and other high-order control systems have been widely used in industry [1]. In 
order to increase, decrease, or change zero pole positions according to design expectations, 
and achieve the objectives of enhanced control accuracy and improved system structure, the 
system status feedback gain matrix K and the estimator gain matrix L should be analyzed 
quantitatively [2]. Unfortunately, high-order control system transfer function simplification 
may cause changes in state variables [3], resulting in the generation of uncontrollable and 
unobservable subspaces [4]. As a result, the determination of system dynamic performance 
tends to be complex [5], and the establishment of zero-pole configurable conditions and the 
solution to the status feedback gain matrix would be tedious [6]. Currently, matching 
approximation methods such as iteration and trial and error are most widely adopted [7].  

In this paper we analyze the influences of various pole and zero position distribution 
changes to system dynamic performance in an attempt to find the precise mathematical 
solutions to the high-order control systems status feedback gain matrix and the estimator gain 
matrix. Using these we can achieve zero-pole optimal configuration.  
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2. DC Motor Composite Positioning Control System Design
2.1. DC Motor Composite Positioning Control System Construction 

Characteristic and Bode diagram analysis showed that the piezoelectric ceramic micro 
displacement positioning control system (PZT) and the proportional-integral-derivative 
controller (PID) exhibited strong complementary functions in the DC motor positioning 
control process [8]. Taking advantage of this, we constructed a DC motor composite 
positioning control system. The result is shown in Figure 1. 

In order to increase the effective positioning reference displacement of PZT to 
approximately ± 0.1 mm, piezoelectric ceramics employed 50 cascaded piezoelectric stacks 
[9]. In order to reduce the piezoelectric stacks’ hysteresis, creep, and nonlinear effects, PZT 
adopted displacement feedback close-loop control [10], which resulted in linear displacement 
of the feedback signal. The 1 mm high precision lead screw in Figure 1 was used to alternate 
the angular output of the DC motor to linear displacement and input it into the piezoelectric 
stack. After they were converted to electrical signals and compared in the position controller, 
the real and reference displacement signals coming from the piezoelectric stack were 
exported to the piezoelectric stack controller. From there, signals were finally sent back to the 
piezo stack to form a feedback close-loop through high-frequency filtering and current-limit 
handling. 

The PID controller adopted a dual closed-loop feedback incremental algorithm [11]. The 
inner loop was a current loop and the outer loop was composed of position and speed loops. 
In order to improve control precision, a 20 Hz low pass filter was used to filtrate the feedback 
signals between the outer and inner rings.  

     
Figure 1. DC Motor Composite Positioning Control System Model 

Taking 10mm and 0.05mm unit step pulses as two kinds of positioning reference 
displacement signals, we tested PID and CPCS’s positioning effects. Position and velocity 
responses are shown in Figure 2.   

Figure 2 (a) and (c) show the positioning responses of the PID and CPCS respectively in 
response to two different signals. It was observed that when the positioning reference 
displacement was greater than the piezoelectric effective positioning displacement (Figure 
2(a)), CPCS’s positioning effect was decided only by the PID. Conversely, when the 
positioning reference displacement was less than the effective positioning displacement of 
PZT (Figure 2(b)), CPCS automatically switched, turning off PID and instead starting PZT 
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for location. The overshoot and maximum positioning time of CPCS were much smaller than 
those for PID, and positioning accuracy was significantly improved. These results met our 
design expectations well. However, we found that CPCS’s speed experienced oscillation at 
the beginning of the control process under both positioning signals, showing a certain degree 
of instability when compared with the single PID controller (Figure 2(b), 2(d)).  

 

 
             a) 10mm position response             (b) 10mm velocity response  
 

 
   (c) 0.05mm position response          (d) 0.05mm velocity response 

Figure 2. 10mm-0.05mm Positioning Displacement Dynamic Response 

2.2. DC Motor Composite Positioning Control System Transfer Function Simplification  

In order to explore the correlation between the velocity oscillations and control system 
internal structure, the root loci of PID and CPCS were analyzed (Figure 3). It was found that 
PID was an eleventh-order system composed of 5 zeros and 11 poles, and CPCS was a 
high-order system with 8 zeros and 12 poles. The zero and pole position distributions are 
shown in Table 1.  
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Figure 3. Root Locus of PID and CPCS 
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Table 1. Poles and Zeros Location of PID and CPCS 
PID 
Position 1 2 3 4 5 6 7 8 9 

Zero -3.43 -50 -100 -126 -7.69×103     
Pole -4.19 -50 -94.6 -100 -167 -549±3.28×103 j -3.85±12.8j -32500 -208000 

CPCS  
Position 1 2 3 4 5 6 7 8 9 10 

Zero -0.957 -7.47 -50.9 -92.4 -167 -3.04±6.62j --2.08×105    
Pole -0.957 -6.67 -50 -92,4 -168 -502±3270j -3.33±6.85j -195 -32500 -208000 

When system gain k was simply given value of 1, the closed-loop transfer functions of PID 
and CPCS would be: 

PID: 

5 4 2 2 7

( 7690)( 126)( 100)( 50)( 3.43)( )
( 2.08 10 )( 3.25 10 )( 167)( 100)( 94.6)( 50)( 4.19)( 7.7 178.7)( 1098 1.106 10 )

s s s s sh s
s s s s s s s s s s s

+ + + + +
=

+ × + × + + + + + + + + + ×
. (1) 

    CPCS: 

2 2 7

( 208000)( 167)( 92.4)( 50.9)( 7.47)( 0.957)( 3.04 6.62 )( 3.04 6.62 )( )
( 208000)( 32500)( 195)( 168)( 92.4)( 49 ( 6.66 58.01)(.7)( 1004 1.094 16.67) 0( 0.957) )

s s s s s s s i s iH s
s s s s s s s s s s s s

+ + + + + + + + + −
=

+ + + + + + + + ×+ + + +
.                                                                          

(2) 
Considering that the influence of pairs of poles and zeros at relatively close positions could 

approximately offset each other and that the impact on the system was weak when poles or 
zeros were further from the origin [12], formulas (1) and (2) could be simplified using 
cancellation methods. After further taking into account the compensation of the system gain 
caused by the simplification [13], we obtained the following results: 

PID：   
6

2 2 7

1.2 10 ( 3.43)( )
( 4.19)( 7.7 178.7)( 1098 1.106 10 )

sh s
s s s s s

−× +
=

+ + + + + ×
.                    (3) 

CPCS：  
5

2 7( 195)( 10
2.8 10

04 1.094 10 )
( )

s s s
H s

−

+ + + ×
×

= .                         (4) 

Figure 4 displays the comparison of closed-loop Bode diagram, position, and velocity 
responses between the transfer functions of PID ((1) and (3)) and CPCS ((2) and (4)). We 
found that both systems showed a high degree of consistency with regards to frequency 
characteristics and dynamic performance before and after the simplification up until the 4000 
rad / s frequency range corresponding to its -3600 phase angle (PID), and the 10000 rad / s 
frequency range corresponding to the -2700 phase angle (CPCS), both of which are much 
greater than their operating band ranges.  
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Figure 4. Root Locus, Bode Diagram and Dynamic Response before and after 
Simplifying of PID and CPCS 

Generally, the high-order control system transfer function could be expressed as [14]: 
 

1

1

( )...( )( )
( )...( )

ts m

m

s z s zG s e k
s p s p

− + +
= ⋅

+ +
.                                          (5) 

 
Because the time delay e-ts was a non-minimum phase link, its existence did not affect the 

zero and pole position distributions [14]. Thus its optimization need not consider its impact, 
and equation (5) could be translated into:  

 
1

1

( )...( )( )
( )...( )

m

m

s z s zG s k
s p s p
+ +

=
+ +

.                                               (6) 

 
Its basic fifth-order simplifying form according to 2.1 would be:  

'
2 2 2 2

1 1 1 2 2 2

( )( )
( )( 2 )( 2 )

s zh s k
s p s s s sξ ω ω ξ ω ω

+
=

+ + + + +
                        (7) 

 
Decomposed into typical links: 

'

2 22 2
1 21 2

2 2
1 1 2 2

1(1 )
( )

2 21(1 )( 1)( 1)

sk z zH s
s ss sp s

p
ξ ξω ω

ω ω ω ω

+
=

+ + + + +
.                      (8) 

Formula (8) showed that the logarithmic frequency characteristic of high-order control 
system closed-loop transfer function simplified form could always be the superposition of 
five typical links, and that all parts were minimum phase links [14].      

Comparing formula (3) and (4), we found that during the process of combining PID with 
PZT to build CPCS: a) the system gain k was increased from 61.2 10−× to 52.8 10−× ; b) the real 
zero was moved from original location of -3.43 left away to infinity; c) the real pole from 
-4.19 to -195; d) the dominant complex conjugate pole A was moved to infinity; e) the 
non-dominant complex conjugate poles B’s position remained basically unchanged. 

CPCS had an obvious difference from PID in both positioning accuracy and stability. 
These differences in dynamic performance were clearly independent from the change of the 
system gain [15], which might be caused by the pole and zero position distribution changes. 
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3. High-order Control System Zero-pole Optimal Configuration 
3.1. The Establishment of High-order Control Systems Third-order Dynamic Equation  

Analysis of literature [16] regarding the effect of various components in formula (7) on 
system dynamic performance has led to the following conclusions: 

1) The gain k only guarantees system steady-state error requirements and does not affect 
the dynamic performance [12]. 

2) The location changes of real zeros and poles had no effect on the system stability, and 
had a minimal impact on the positional accuracy when compared with the dominant complex 
conjugate pole [16]. 

3) The non-dominant complex conjugate pole B had no effect on system dynamic 
performance, but limited the configurable interval [16]. More specifically, when the dominant 
pole moved within the region, the system dynamic performance was almost entirely 
determined by the position of A, and when it moved outside the region, the system dynamic 
performance was primarily determined by B. 

Based on 1) and 3) above, we determined that only the real zero, the real pole, and the 
dominant complex conjugate pole took place in configuration during the high-order control 
system optimization process. Changes in the system gain, k, had no effect on dynamic 
performance and could therefore be given a value of 1. The non-dominant complex conjugate 
pole B did not participate in configuration by itself, so it could be reasonably removed from 
formula (5) and treated as a configurable interval limit. This allowed us to express the system 
transfer function (7) in the following third order form: 

 

2 2
1 1 1

( )( )
( )( 2 )

s zh s
s p s sξ ω ω

+
=

+ + +
.                                         (9) 

Its state-space model was: 

[ ]

1 1

2 2
2 2

3 31 1 1 1 1 1

1

2

3

0 1 0 0
0 0 1 0

1( 2 ) (2 )

1 0

x x
x x x u

x xp p p

x
y z x

x

ω ω z ω z ω

       
       = = +       
       − − + − +       


 
  =  
   



 


.          (10)  

 
The high order control system zero-pole optimization problem was then transformed into: 

(Ⅰ) Seeking the target set P of the real zero, the real pole, and the dominant conjugate pole A 
within the root locus configuration interval defined by the non-dominant conjugate pole B, 
and according to design specifications, i.e. satisfying either the highest positioning accuracy 
point under a particular stability, or the most stable point under a specific positioning 
accuracy condition. (Ⅱ) Computing the feedback gain matrix K and the estimator gain L such 
that the eigenvalues of formula (10) match the entries of P. (Ⅲ) Forming a dynamic regulator 
or compensator given the state-space model (10), the state-feedback gain matrix K, and the 
estimator gain matrix L to optimize system dynamic performance.  

Further considering the limited roles of the real pole and the real zero in the system’s 
optimal process according to conclusion 2), we can adopt a two step model to optimize the 
system: ( Ⅰ) Keeping the real pole and real zero constant, we seek the best target location 
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distribution of the dominant pole A within the root locus configuration interval to achieve the 
system optimum. (Ⅱ) We correct results by considering the impact of the real zero, and real 
pole on the system’s dynamic performance.  

 
3.2. Equioscillation and Equiprecision Lines Drawn 

The dominant pole was the second-order oscillation link [14]:  

2

1( )
( / ) 2 ( / ) 1n n

G s
s sω ξ ω

=
+ +

,   0,0 1nω ξ> < < .                       (11) 

Its frequency characteristic was: 

2 2
2 2

2 2

1( )
(1 ) 4

n n

A ω
ω ωξ
ω ω

=

− +

.                                            (12) 

Taking ( ) / 0dA dω ω = ，got the resonant frequency: 
21 2r nω ω ξ= − ，   0 2 / 2ξ< ≤ .                                     (13) 

Formula (13) into (12), obtained the resonant peak: 

2

1( )
2 1

r rM A ω
ξ ξ

= =
−

，  0 2 / 2ξ< ≤ .                             (14) 

And had the definition of bandwidth frequency substituted into formula (12), we obtained: 
1

2 2 2 2[(1 2 ) (1 2 ) 1]b nω ω ξ ξ= − + − + .                                     (15) 
The resonant peak Mr and the bandwidth frequency ωb shown by Eq (14) and (15) had 

already been proved to be available as the description of system stability and accuracy 
respectively [16]. 

When it was expressed with real part a and imaginary part b, Eq (11) would be: 
1( )

( )( )
G s

s a bj s a bj
=

− + − −
.                                           (16) 

Simultaneous (11) and (16), the congruent relationship between the parameters was 
obtained: 

    

'

2
2 '

2

2 2 '

2
'

2 2

1

2

3

4

n

n

a

ab a

a b

a
a b

ω ξ

ξ

ω

ξ

 = −



= ± −



= +

 = +

  .                                             (17) 

 
Formula (17) into (14), we received: 
 

2 2

2r
a bM

ab
+

=
−

.                                                        (18) 
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Equation (18) reflects the correspondence between the system stability (Mr) and the 
dominant pole position distribution (a, b). When Mr was assigned a different value, we could 
draw a series of equioscillation lines (equi-Mr) in the root locus configuration interval based 
on its value.  

Similarly, having (17) into (15), we scored: 
 

4 4 2 22( )b a b b aω = + + − .                                            (19) 
 
Equation (19) reflects the relationship between the positioning precision (ωb) and the 

position distribution (a, b) of the dominant pole. When ωb was assigned different values, a 
series of equiprecision lines (equi-ωb) could be drawn.  

Values of Mr and ωb are shown in table 2, and equi-Mr and equi-ωb are plotted on the root 
locus plane in Figure 5(a) (because of the symmetry relation, only the half plane above the 
real axis is drawn in the graph). The straight lines through the origin O are equi-Mr, according 
to the gradient from small to large followed by: equi-Mr1, equi-Mr2, …,until equi-Mr16; and the 
curves are equi-ωb, along the |b| increasing direction from down to up order of: equi-ωr1, 
equi-ωr2,…,until equi-ωr16. 

Table 2. Mr and ωb of Equioscillation and the Equiprecision Lines 
Mr M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

Value 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 
ωb ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16 
Value 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 
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(a) equioscillation and equiprecision lines       (b) uncontrollable subspace of PID 

Figure 5. Equioscillation, Equiprecision Lines and Subspaces 

3.3. Controllable and Observable, Unobservable and Uncontrollable Subspaces 

Comprehensive analyses of Table 2 and Figure 5(a) allow us the following conclusions: 
1) When the dominant pole moved along any equi-Mr to the lateral relative to the origin, 

the positioning accuracy was improved despite the system stability being kept constant, 
dynamic response results are shown in Figure 6(a) and (b); and when the dominant pole 
moved along any equi-ωb relative the origin to the lateral, the system positioning accuracy 
stayed constant and the stability was improved, dynamic response results are also shown in 
Figure 6(c) and (d).  

2) In the configuration interval between the equi-Mr and the equi-ωb, numbers of "grid" 
were formed by the intersecting lines. When the dominant pole moved within any grid, the 
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system’s positioning stability and accuracy varied between Mrn - Mr(n+1) and ωbN - ωb(N+1) 
respectively, and when the dominant pole was moved between grids, either positioning 
accuracy or stability was bound to change. Supposing that the configuration interval was 
infinitely fractionized by the equi-Mr and equi-ωb, the grid would fade to location point, It 
was naturally inferred that system dynamic performance (Mr, ωb) was uniquely determined by 
the point coordinates (a, b), forming a fully controllable and observable subspace. 

3) In the configuration region between two equi-Mr1, the system stability was the same at 
each point (Mr=1). When the dominant pole was moved along any equiprecision line in the 
region, there were different positions (a, b) corresponding to the same system dynamic 
performance (Mr, ωb), the results of which are shown in Figure 7 (a) and (b). We saw from 
this case that the system state was not fully reflected by the output, since it formed an 
unobservable subspace with boundaries (b=±a) that had no relevance with any zero or pole 
locations.  

4) When the dominant pole was shifted into the configuration interval between the 
boundaries b=±bB and the upper and lower equi-ωbB were as shown in Figure 5 (b), the 
system positioning accuracy should have been higher than at point B, meaning that there a 
wider bandwidth frequency should have been generated. This abnormal situation indicated 
that the non-dominant pole would inevitably incur correlative changes with the dominant pole 
generated by the uncontrollable state. In addition, the uncontrollable subspace’s boundaries 
were clearly determined by only the non-dominant complex conjugate pole. The dynamic 
response results are shown in Figure 7 (c) and (d).  

The configuration results for moving the dominant pole along any equi-Mr within the 
controllable and observable subspace are shown in Figure 6(a), (b). The position of each point 
was selected as follows: A (a = -3.84, b = 12.8), E (a = -185.28, b = 784.36), F (a = -367.28, 
b = 1552.49) and D (a = -549, b = 2320). It can be seen from the Bode graph in Figure 6(a) 
that all curves had the same resonant peak size despite an increasing bandwidth frequency. 
This corresponds to the velocity response in Figure 6(b), which shows that system stability 
stayed constant, but positioning accuracy improved successively. 

When the dominant pole moved along any equi-ωb, we selected points with the following 
values: G (a = -150, b = 2383), H (a = -300, b = 2396), M (a = -450, b = 2417), and D (a = 
-550, b = 2435). The Bode diagram and velocity response curves are shown in Figure 6 (c), 
(d). From that figure it can be seen that each curve has almost the same bandwidth frequency, 
and the gradually decreasing resonant peak size (Figure 6 (c)), corresponds to the improving 
system stability and the constant positioning precision (Figure 6 (d)).  

 

-400

-350

-300

-250

-200

L
/d

B

101 102 103 104
-450

-360

-270

-180

-90

0

Ψ
/d

eg

Bode diagram

ω/(rad/s)

MrA MrE MrF
MrD

0 0.00 5 0.01 0.01 5 0.02 0.02 5 0.03
-2

0

2

4

6

8

10

12
x 10

-10 Velocity response

t/s

v/
(m

m
/s

)

D

F

E

 
   (a) Bode diagram comparison on equi-Mr   (b) Dynamic response comparison on equi-Mr 



International Journal of Control and Automation 

Vol.8, No.3 (2015) 

 

 

226   Copyright ⓒ 2015 SERSC 

-380

-360

-340

-320

L
/d

B

103-450

-360

-270

-180

-90

Ψ
/d

eg

Bode diagram

ω/(rad/s)

G H

NM

v/
(m

m
/s

)

t/s

Velocity

 
  (c) Bode diagram comparison on equi-ωb    (d) Dynamic response comparison on equi-ωb  

Figure 6. Bode Diagram and Dynamic Response within Controllable and 
Observable Subspace 

Figure 7 (a), (b) shows the Bode diagram and the dynamic performance comparisons when 
the dominant pole was moved along any equi-ωb in the unobservable subspace. The values of 
the points selected were: O (a = -200, b = 52.38), P (a = - 300, b = 68.37), Q (a = -400, b = 
76.30) and R (a = -500, b = 88.45). It was detected that although position distribution changes 
between points were large, the resonance peaks, bandwidth frequencies, positioning 
accuracies, and system stabilities were basically the same, reflecting that different position 
distributions corresponded to similar dynamic performance within the subspace.  

The Bode diagram and dynamic performance for the dominant pole moving in the 
uncontrollable subspace are shown in Figure 7 (c), (d). All selected points are as follows: B (a 
= -549, b = 3280), S (a = - 300, b = 3260) and T (a = -100, b = 3240). From the Bode diagram 
in 7 (c), we found that even though the dominant pole remained in the configuration region, 
its resonance peak disappeared, meaning that only the non-dominant pole’s, B, single 
resonance peak appeared on the frequency resonance curve. This told us that a) the 
underlying frequency of the resonant peak was completely identified by the non-dominant 
complex conjugate pole, having no relevance to the dominant pole, and b) the size of the 
resonant peak was wholly determined by the position distribution of the dominant pole, being 
independent of the non-dominant pole B. Velocity response curves are shown in Figure 7 (d), 
and it was discovered that when the dominant pole moved from B to T along the line BT, the 
system stability reduced. However, the accuracy did not change accordingly, indicating that 
the region was surprisingly displayed as an “equi-precision” area, and that the 
correspondence between the dominant pole position distribution and the positioning accuracy 
disappeared there, appearing in the uncontrollable state.  
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Figure 7. Bode Diagram and Dynamic Response within Uncontrollable and 
Unobservable Subspace 

3.4. High-order Control System Dominant Complex Conjugate Pole Optimal 
Configuration 

Figure 8 (a) shows the comparison of PID and CPCS root loci. It was found that during the 
process of combining PID and PZT to build CPCS, the dominant pole had not been 
configured within the controllable and observable subspace, but rather moved along the 
greater slope equi- Mr line into the uncontrollable subspace, resulting in CPCS having greater 
oscillations and almost the same accuracy as at point B (Figure 8 (b) speed response curves). 
This appears in the result shown in Figure 2.  
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Figure 8. Root Locus and Dynamic Response of CPCS 

Taking the CPCS transfer function (4), its state-space model is the plate G: 
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  −   
    = − +    
    − − ×     = 

 
   = ×   
   



  .                    (20) 

 
We tried to keep CPCS’ real zero and real pole positions unchanged, and to configure the 

dominant pole from the original position, (502±6358.5i), to point B, (549±3286.03i), by 
building a positive feedback regulator as shown in Figure 9, in order to realize the 
optimization of the system’s dynamic performance.  

 

 
     Figure 9. Regulator of CPCS 

1) The vector P of desire self-conjugate close-loop pole location was then: P=[-195, 
549+3286.03i, 549-3286.03i]; 

2) Computed the gain matrix K such that the eigenvalues of  

4

195 0.01749 0 0
0 502 3269 0
0 3269 502 5.465 10

K
−

 − 
  − −   
  − − ×   

matched the entries of P: 

.K=[0, 0.6798×106, -3.8460×106] 
3) We could also compute the estimator gain L such that the eigenvalues of  

4

'

195 0 0 8.96 10
0.01749 502 3269 0

0 3269 502 0
L

− − × 
  − − −   
  −   

 matched the entries of P: 

11

11

0
1.1869 10
4.3125 10

L
 
 = × 
 × 

. 

4) Formed the dynamic regulator C given the state-space model (20) of the plate, the 
state-feedback gain matrix K, and the estimator gain matrix L: 
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   



.          (21) 

The closed-loop H∞ optimal cost of Figure 9 was:  

1

1( , ) 1.84
( ) [ , ]

b G C
I

I GC G I
C

γ
−

∞

= = =
 

+ 
 

 .                           (22) 

This gives a good indication of robustness of stability to a wide class of unstructured plant 
variations [17]. 

Figure 10 shows CPCS’ positioning effect on the position continuously changing mobile 
after configuring the dominant pole to location B. Figure 10 (a) displays the dynamic 
response curves and Figure 10 (b) shows a 5s-10 s partial enlarged view. It was clearly seen 
that to the continuously position changing mobile, the optimized CPCS’ position response 
remained consistent with the signal changes, and both overshoot and maximum positioning 
time were significantly less than those of PID, meaning that CPCS could preferably solve the 
discrepancy between the positioning accuracy and time delay, and meet the exact dynamic 
tracking requirement, giving an effect far better than any kind of single PID controller.  

 
(a) Whole dynamic response curve       (b) 5 s-10 s partial enlarged view          

Figure 10. System Dynamic Response Comparison of PID and CPCS in the 
Dynamic Positioning Process 

3. 5. High-order Control System Real Zero Pole Optimal Configuration 

As was mentioned before, our previous systematic studies have shown the effect of real 
zero and pole position distribution changes to systematic dynamic performance in literature 
[16]. However, no distinct evidence was found about their pivotal role in the optimal 
configuration process. Therefore, we deduced that their function might only be to fine tune 
the system dynamic performance, and maintain the balance of the system internal structure. If 
so, further research will be done in the future.  
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4. Conclusion 
This article divided the high-order control system root locus configuration interval into 

controllable and observable, and uncontrollable and unobservable subspaces by introducing 
equioscillation and equiprecision lines. Bode diagram and dynamic response results showed 
that simplifying the transfer function to its fifth-order form using the zero and pole 
elimination method, and further ignoring the influence of the real poles and zeros on system 
dynamic properties did not change the subspaces’ controllability and observability. 
Accordingly, the determination of the high-order control system status feedback gain matrix 
and estimator gain can be converted to the solution on the third-order state or dynamic 
equation under specific boundary conditions and the original state. This conclusion could 
effectively solve the contradiction between positioning accuracy and system stability, 
preferably achieving the optimal configuration, and having significance in improving 
high-order control system dynamic performance.  
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