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Abstract 

 
The cane sugar boiling was a process involved syrup-sugar physical transformation, which 

had still been operated manually in the sugar production fields across China. The major 

reason for this was that the syrup brix in the process had not yet been measured accurately 

on-line. Aimed to solve this issue, an improved LS-SVM based soft sensor model for it was 

proposed. This model was able to predict the syrup brix based on five auxiliary variables. 

Since this was a statistical model, the unusual samples in the training set had to be removed, 

which could be achieved by adding weighting coefficients to the empirical errors of samples. 

Also, the optimization function of LS-SVM was improved to ensure the generalization 

capacity of the model. Then, this model was verified in a self-regulating comprehensive 

experimental platform, which proved that the predicted brix was close to the real brix where 

the maximal relative error was nearly 2.5%. 

Keywords: Syrup brix, Soft-sensor, LS-SVM 

1. Introduction 

The regular cane sugar process can be described as follows: juice squeezing out of canes; 

cane juice clarification; evaporation and concentration (sugar cane boiling); crystal separation 

etc. With heat and mass transmission, sugar boiling process is featured with nonlinearity, 

large inertia, strong coupling and delaying. To achieve automatic sugar production, it was 

essential to measure key parameters measurement in sugar process [1]. Therefore, a lot of 

researchers had dedicated their efforts in putting forward various advanced control methods 

for automation in the cane sugar process field. Nevertheless, even if advanced control 

methods had been proposed (nonlinear model based predictive control; genetic model control; 

HN control etc) for both continuous and batch crystallization processes [2-7], the lack of 

advanced sensors remain a major difficulty to the implementation of relevant control 

strategies [8]. 

Syrup brix was one of the most important variables and its measurement determined the 

efficiency and quality of sugar production. However, the surface of brix sensor was easily 

accumulated with filth during the process, which made the on-line measurement unstable and 

discontinuous. In addition, the brix sensor was a very expensive device [9]. Therefore, it was 

highly demanded to develop a method for on-line brix measurement with stability and 

affordability. 

This paper defined five easy-to-measured auxiliary variables of the sugar process as the 

inputs, and these variables included vacuum degree, syrup temperature, steam pressure, steam 

temperature and flow of material. Brix was considered as the output of the model. An 

improved LS-SVM, called proximal least squares support vector machine (PLS-SVM) was 
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utilized to build the model because it featured with high stability, great generalization and 

excellent model accuracy. 

 

2. Soft-sensor Algorithm 

2.1. LS-SVM based Soft Sensor Algorithm 

The sample set of soft sensor was 
1( , ) m

i i iS y { x } , where m was the number of the 

samples,
1 2 3 4 5 1 2 3( [ , , , , ], , , )i i i i i i i i i ix x x x x x R x R x R    x x was a vector that represents the 

auxiliary variables. Vacuum, syrup temperature, steam pressure, steam temperature and feed 

flow of the i-th sample were denoted by xi1, xi2, xi3, xi4, xi5 respectively. The syrup brix was 

defined as yi. According to the principle of LS-SVM, the relationship between syrup brix and 

the auxiliary variables was described as: 

  ( ) ,
T

i iy b b R  x w x  (1) 

where w represented the weight vector, b represented the offset value. 

Obviously, the relationship between the syrup brix and the auxiliary variables was 

nonlinear. In Eq. (1), ( )i x  mapped the nonlinearity to a high dimensional feature space, in 

a way to turn the nonlinearity into the linear feature space. The LS-SVM based soft sensor 

algorithm for syrup brix could be expressed as an optimization approach (2) with constraint 

equation (3), which was defined as follows: 

2
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F e C e


  w w w  (2) 

The constraint condition was: 

w ( ) ,  i=1, ,
T

i i iy b e m   x  (3) 

where ei was the empirical error variable, C denoted the penalty factor that expressed the 

extent of empirical error. According to Eq. (2) and (3), a Lagrange function was constructed 

as: 
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where i  represented Lagrange multiplier. In order to obtain the optimal solution, the partial 

derivatives of w, b, e,   obtained from ( , , , )L b e w  in Eq. (4) were set to equal to 0, 

which was described as Eq. (5). 

1

1

0 ( )

0 0

, 1, ,
0

0 ( ) 0

m

i i
i

m

i
i

i i

i

T

i i i

i

L

L

b
i m

L
Ce

e

L
b e y





























  




  


 


  




     



w x
w

w x

 

(5) 

The inner product of vector in high dimensional space could be replaced by kernel function 

if it met Mercer conditions [12-13]. Hence, the calculation of the specific form of ( )i x  was 
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avoided, all we needed to do was to solve the kernel function values in the original input 

space. 

The kernel function was set as ( , )i jK x x , and we had ( ) ( ) ( , )i j i jK  x x x x . The 

Gaussian RBF ( , )=exp( )i j i jx xK  x x was selected as the kernel function of the soft sensor 

algorithm, where γ represented the kernel function parameter. Hence, the optimal solution of 

Eq. (5) was defined as: 

 

11
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(6) 

 

It could be solved to obtain the α and b using numerical solution method for linear system 

of equations. Finally, with Eq. (1) and 
1

( )
m

i i
i




w x  in Eq. (5), the relationship between the 

syrup brix and the auxiliary variables through the soft sensor was described as: 

2

1 1

^
( , ) exp( | | )

n n

i i i i
i i

y K b b  
 

      x x x x
 

(7) 

where n represented the number of support vectors, vector x represented the auxiliary 

variables, xi was the i-th support vector and y was the syrup brix. 

The soft sensor algorithm modeled by the principle as described above could obtain the 

syrup brix value from the auxiliary variables while it involved several challenges, which were 

described as follows: 

1). The coefficient matrix in Eq. (6) was semi-definite and the its inverse may not exist, 

which would make its calculation complicated. 

2). The penalty factor parameter in every sample was set as the same value for the soft 

sensor algorithm. Namely, the extent of the empirical error in a sample was consistent with 

others, and it would compromise the performance of the soft sensor model for the syrup brix 

because of the unusual samples. 

3).γ and C were obtained from the offline optimization while the soft sensor algorithm 

model development was constructed online, which couldn’t dynamically reflect the effects the 

online samples brought to. The auxiliary variables of soft sensor were nonlinear and the 

auxiliary variables detected from sensors had uncertain components, which would decrease 

the accuracy of the soft sensor for syrup brix when the online dynamic feedback was not 

possible. 

 

2.2. Stability Improvement for the Soft Sensor Algorithm 

To improve the stability of soft sensor algorithm, b was input into the optimization 

objective function to turn the coefficient matrix positive [14], which ensured the calculation 

of the coefficient matrix much easier. The soft sensor algorithm for the syrup brix with 

improved optimization objective function was described as follows. 

The optimization objective function was: 

2

1 1

( , ) exp( | | )
n n

i i i i
i i

y K b b  
 

      x x x x  (8) 

The constrained condition was: 
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( ) , 1,w xi

T
i iy b e i m    ,L  (9) 

According to Eq. (8) and (9), a Lagrange function was deduced as: 
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The conditions for the optimal solution were described as: 
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(11) 

 

Hence the optimal solutions based on Eq. (11) were as follows: 
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(12) 

Finally, with Eq. (1) and xx and xxx in Eq. (11), the relationship between the syrup brix 

and the auxiliary variables was described as follows: 

 

2

1 1 1 1

( , ) exp( | | )
n m n m

i i i i i i
i i i i

y K    
   

        x x x x
 

(13) 

 

With the introduction of improved optimization objective function, the coefficient matrix 

was positive definite. As we know, every positive definite matrix was reversible. Hence, the 

solution of Eq. (12) could be obtained smoothly. 

 

2.3. Performance Improvement for Soft Sensor 

For the existence of the unusual samples, the soft sensor model for syrup brix was affected 

by some extent. To solve this problem, the empirical errors were attached with weights 

[15-16]. The weights attachment was proceeded on the purpose of getting rid of the unusual 

sample, so as to improve the soft sensor model performance. 
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The weight coefficient of empirical error was presumed as zi and Eq. (8) become as 

follows: 

  2 2

1

1 1 1
,
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   w w w  (14) 

According to Eq. (9) and (14), a Lagrange function was formed as: 
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(15) 

Then the conditions of the optimal solution were defined as follows: 
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And the optimal solution equations based on Eq. (16) were described as: 
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(17) 

Every absolute empirical error value was obtained as 
^

| |,1i i i
error y y i m     using 

cross validation (CV) method under condition of zi=1. And the average value of the absolute 

empirical error was 1

m

i
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the weight coefficient was 
2
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, where v 

could be confirmed based on the distribution of actual samples (in this paper v=1.65). And 

every weight coefficient would be obtained and substituted into Eq. (17). Finally, with Eq. (1) 

and 
1

( )
m

i i
i




w x  and 
1

m

i
i

b 


  in Eq. (16), the syrup brix and the auxiliary variables 

constructed the following relationship: 
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(18) 

 

According to the calculation process of weight coefficient, the absolute empirical error 

value was involved. When the absolute empirical error of a sample deviated from its average 

value at a larger scale, the probability of the sample being unusual was greater and the weight 

coefficient became smaller. Before the absolute empirical weight coefficient was attached, the 

lagrange multiplier with respect to the unusual sample was defined as Cei. Then it became 

Cziei after the weight coefficient was attached. Based on Eq. (18), when the absolute value of 

i  of the support vector became smaller, it had less effect on the soft sensor model. Hence, 

the empirical error coefficient was able to weaken the influence the unusual sample had on 

the model. To some extent, it improved the stability and enhanced the performance of the soft 

sensor model. 

 

2.4. Calculation Process Improvement 

The improved soft sensor algorithm turned the coefficient matrix in Eq. (17) positive 

definite. According to the definition of positive definite, application of a square root method 

for the solution of Eq. (17) would lead to a higher accuracy level. Its specific solving process 

was described as follows: 
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where: 
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2). Decomposed A as A=LL
T
, where 
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L . The calculation steps for L 

were described as follows: 
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Step 2: 
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      (21) 

Step 3: Set Lp=q, L
T
a=p, where P was a temporary vector. 

Step 4: 
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5). 
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    (23) 

2.5. Improvement for Parameter Optimization 

K fold cross validation (K-CV) method was widely used to estimate generalization error. 

Generally the estimated generalization error was a biased estimation when compared with the 

actual predicted error. But leave-one-out cross validation (LOO-CV), as one of K-CV 

methods, could yield an unbiased estimation [15-16]. It took one sample from the sample set 

as the verification object and trained the rest of sample set repeatedly until all the samples 

were verified. However, LOO-CV was rather time-consuming and not suitable for on-line 

estimating generalization error because all samples needed to be verified one by one. 

References [16-17] proposed an improved LOO-CV method which simplified its own solving 

process. Based on the improved LOO-CV method, a CV process of parameter optimization 

applied in the soft sensor algorithm was further improved, making it more suitable for the soft 

sensor algorithm. The improvement was described as follows. 
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1). Rewrote the coefficient matrix of system of Eq. (18): 
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2). Blocked the Eq. (24): 
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3). Rewrote Eq. (17): 
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4). Rewrote Eq. (26): 
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5). Took the first sample as test set, the rest as training set and had Eq. (27) go through 

LOO-CV: 

1 1 1 Aα y  (28) 
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1

1 1 1



 α A y  (29) 

Premultiply both sides of Eq. (29) with
1aT : 

1
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6). Obtained the syrup brix with the auxiliary variables via Eq. (17): 
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Substituted Eq. (16) into Eq. (31): 
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7). The inverse of Eq. (25): 
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where g11 was the element of A
-1

 in the first row and the first column. B, C and D were sub 

matrixes of A
-1

. The output of the soft sensor model with respect to the first sample was 

described as: 

1 1 1

^
e y y   (34) 

where y1 was the syrup brix obtained from the first sample through Eq. (32): 

1
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Therefore, the test error of the first sample was: 
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Since the i-th sample was defined as test set and the rest was considered as the training set, 

then the test error of the i-th sample was: 

i
i

ii

e
g


  (37) 

where gii represented the element of A
-1

 with respect to the i-th row and the i-th column. 

To sum up, it needed k steps to solve Eq. (17) when using K-CV method to optimize 

parameters of the soft sensor algorithm for syrup brix. And the generalization error obtained 

was biased estimation of an actual soft sensor error. However, the improved K-CV method 

only needed one step calculation to obtain the inverse of the coefficient matrix in Eq. (17) and 

the test error of every sample. Besides, it was easy to carry out the improved K-CV method 

and its performance was better than the original K-CV method.   

 



International Journal of Control and Automation 

Vol.8, No.3 (2015) 

 

 

180   Copyright ⓒ 2015 SERSC 

2.6. On-line Optimization for Parameters 

The on-line optimization method applied in the soft sensor model was used to optimize the 

kernel function and penalty factor based on on-line samples. The parameters of LS-SVM 

were optimized quickly by a three-step search (TSS) method [19-23]. A TSS and improved 

LOO-CV based method was applied to speed up and simplify the calculation of this soft 

sensor model. 

The mean square error (MSE) of the training samples was defined as 2

1
1

^1
( )

m

i
i

MSE y y
m 

  , 

where 
1

^
y  and yi denoted the soft sensor output and the original value. m represented the 

capacity of the sample dictionary. The auxiliary variables and syrup brix at time t could be 

put into the sample dictionary. The coefficient matrix in Eq. (17) was described as follows 

after adding a new sample: 
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(38) 

The capacity of the sample dictionary needed to be controlled in order to avoid the 

limitless expansion. Hence the earliest sample was abandoned and the coefficient matrix 

became: 
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The MSE of the training samples based on the improved LOO-CV was expressed as 
^

2 2

1 1 1

1 1 12( )
m m m

i
i ii

i i i ii

yMSE y e
m m m g



  

     （ ） , where i  was the Lagrange multiplier with 

respect to the i-th sample and g was the element of K in the i-th row and i-th column. 

Then the parameters optimization, soft sensor model learning and development were 

repeated again based on the on-line samples at time t, in a way to prepare the soft sensor 

model for the next moment. To simplify the large calculation of the parameters optimization, 

an improved LOO-CV method with TSS was applied. Details of it were described as followed 

[17]: 



International Journal of Control and Automation 

Vol.8, No.3 (2015) 

 

 

Copyright ⓒ 2015 SERSC  181 

(a)Define the searching accuracy as precision and the initial searching step size as l. 

Developed a two dimensional plane with y and C in the step size of l at the last moment. 

(b)Calculated the MSE of every point with respect to the relevant parameters based on the 

improved LOO-CV; Obtain the optimal point on the current plane by taking 
1

1MSE 
 as a 

standard. 

(c)Develop a quadrangle via setting the optimal point as center and the 2l as the length of 

the quadrangle; took the four peaks of the quadrangle and the four midpoints of its four sides 

as the new points; obtained the MSEs of the eight new points; selected the point with the 

smallest MSE. 

(d)If l was less greater than precision, jumped to (g) step, otherwise proceed the process. 

(f)Cut half of l, namely, 
2

l
l  , then jumped to (c). 

(g)Saved the optimal parameters and exit the optimization process. 

 

3. Model Simulation and Experimental Analysis 

3.1. Model Simulation 

We tested PLS-SVM using different number of samples, where the outputs of samples 

were taken as actual brix and the outputs of PLS-SVM as the predicted brix. The maximal 

relative errors (MRE) between actual brix and predicted brix were calculated out as described 

in Figure 1. 

 

 

Figure 1. Simulated Brix Comparison under Different Sample Number 
Condition 

The syrup brix predicted by model fall into the acceptable range when the capacity of the 

sample dictionary exceeded 150. Fig.1 showed that the MRE of the model was nearly 2.5% 

when the samples were between 150 and 200. Besides, the performance of PLS-SVM was 

compared with other algorithms (BP, SVM, LS-SVM) with 250 samples, where 200 samples 

were selected randomly as the training set and the rest (50 samples) was regarded as testing 

set. 

The comparison of the actual brix and the brix predicted by different models with 50 

testing samples was depicted in Figure 2. The maximal relative error (MRE) and mean square 

error (MSE) of each model was given respectively in Figure 3 and Figure 4 from Figure 2. 

Each model’s consuming time was showed in Figure 5. 
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Figure 2. Test Results of Different Algorithms 

From Figure 3 to Figure 5, the the MRE and MSE of PLS-SVM were both less than other 

models, which yielded the MRE and MSE by 2.5% and 1.17% respectively. In addition, the 

consuming time of PLS-SVM was obviously less than others. 

 

   

Figure 3. MRE 
Comparison 

Figure 4. MSE 
Comparison 

Figure 5. Time 
Consuming 

3.2. Experimental Validation 

The soft sensor model was validated on a self-regulating platform, a platform simulated the 

cane sugar process to an extensive level. And a refractometric brix sensor named MRP 

E-Scant was installed on the platform for brix measurement. In experiments, every cane sugar 

process took about 170 minutes, and the probe sensing surface of MRP E-Scant may be 

accumulated with some adhesive, which would compromise the performance of the sensor. 

Figiure 7 showed a fraction of the experiment results, in which the value measured by MRP 

E-Scant online was set as actual brix, the soft sensor model output was defined as predicted 

brix. It was found in Figure 7 that the MRE was close to 2.5%. The accuracy of MRP E-Scant 

was largely determined by its own surface. However, the soft sensor model was always 

feasible, reliable and highly accurate. 
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Figure 6. Overall Framework of Experimental Platform 
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Figure 7. Experimental Test Results 

4. Conclusions 

We applied an improved LS-SVM in the soft sensor algorithm for predicting syrup brix, in 

this way to optimize the object function, add weighting to the empirical error and feed the 

online samples to the model. Also, the model was ensured to obtain solutions by removing the 

unusual samples, which improved the accuracy and generalization capacity of the model. 

Besides, a soft sensor system for the syrup brix was developed to complete the offline and 

online soft sensor under VC++ 6.0 environment. This system showed a good performance 

when run on the experiment platform. 
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