
International Journal of Control and Automation

Vol.8, No.3 (2015), pp.147-160

http://dx.doi.org/10.14257/ijca.2015.8.3.17

ISSN: 2005-4297 IJCA

Copyright ⓒ 2015 SERSC

Networked Automatic Test System based on Message-oriented

Middleware

Xiong Fengguang
1
 and Han Xie

1*

Computer Science and Control Engineering, North University of China, Taiyuan

030051, China

xfgncit98@sina.com, 4355677@qq.com

Abstract

 According to the current status of automatic test system which focuses only on a single or

the same type of weapons' performance testing, a networked automatic test system based on

message-oriented middleware is proposed in this paper, and inner architecture and process

of pus/sub in message-oriented middleware are described. Basing on the message-oriented

middleware, the networked automatic test system can shield the diversity and complexity of

the bottom test system and test equipment, and can implement cross-platform communication

of various test data about weapons. In addition, based on Kerberos protocol, the

authentication process ensures the reliability of message publish/subscribe. Experiments

show that the networked automatic test system based on message-oriented middleware is an

integrated test platform which can provide comprehensive performance test for coordinated

engagement on a variety of weapons.

Keywords: We would like to encourage you to list your keywords in this section

1. Introduction

Rapid development and application of key information technology promotes a new

revolution in military affairs and development of information warfare, and promotes

development and revolution of modern military theory and operational model, such as a

network-centric warfare. The prerequisite of winning in the future wars depends on whether

cooperative engagement between weapon platforms can be implemented. Therefore, building

an integrated test platform for comprehensive performance test of a variety of weapons'

cooperative engagement is a crucial task.

General speaking, the integrated measurement and device which are as core of computer

and can automatically perform certain test task under the control of procedure are called

automatic test system [1-2] (ATS). In order to improve the modernization level of airborne

equipment maintenance, the research of automatic test system has become the focus of

development in the world military equipment [3]. Current ATS has been widely applied to a

variety of weapon and equipment tests and has become necessary assurance of weapon'

reliable operation. However, the current ATS is different from the military, and is lack of

interoperability between different systems. So, ATS can't adapt to the demand of modern

jointness on multi-weapon systems, multi-level maintenance.

*
Corresponding Author

This paper aims to build a networked ATS based on message-oriented middleware [4-5]

(MOM). The message-based middleware is between the bottom equipment and application

International Journal of Control and Automation

Vol.8, No.3 (2015)

148 Copyright ⓒ 2015 SERSC

systems, and shields complexity and diversity of the bottom test system, and achieves data's

effective transmission and wide sharing on the internet through MOM's strong function of

sending and receiving data, and enhances interaction of networked ATS and reliability of

weapons' coordination test.

2. Architecture of Automatic Test System

In general, ATS is made of hardware and software. Hardware is made of host computer,

general board, test instrument and measured object. Board and test instrument are responsible

to control equipment or for signal acquisition, and can be based on various data bus, such as

PCI, PXI, GPIB. The measured object refers to any test equipment, systems or subsystems,

production lines, etc. In the process of putting up test system, user usually pays attention to

the operation of test board and instrument. Software is made of I/O interface, drivers of board

and instrument, executable application. I/O interface provides the interface of the bottom

hardware driver and is responsible for communications between the host computer and the

physical instrument. Instrument driver is a software assembly between the upper software and

a specific instrument, and is responsible for transferring instruction between application and

instrument, and is a middle communication layer between I/O interface and application.

Executable application promotes user-friendly interaction interface to execute test operation

by instrument driver, and promotes data analysis, data processing, and data storage. I/O

interface, board and instrument driver, executable application constitutes the entire software

architecture of automatic test system. The architecture is shown as Figure 1.

test instrument test instrument Host Computer Host Computer

B
u

s

Test Object 1Test Object 1

Test Object nTest Object n

......

DBDB

ATSATS

Figure 1. Architecture of Automatic Test System

3. Architecture of Networked Automatic Test System based on Message-

oriented Middleware

Networked automatic test system [6] (NATS) is a kind of automatic test system built on

network. Through message-oriented middleware and network, NATS based on message-

oriented middleware can build a networked test system. Each node in the network is a host

computer which obtains test information through the test bus connecting test equipment. Each

host computer can receive additional information sent by the other host computer through

message-oriented middleware, and also publishes information to other host computer that

subscribes the information. Its architecture is shown as Figure 2.

Host computer, connected to the specific test instrument in order to obtain test information

of various test instruments, is a node in the NATS. After obtaining test information, host

computer also need to analyze, show, store and send those information. Other, each host

computer can subscribe test information of other host computer. That is to say, different host

computer can realize interaction with real information and can complete coordination test of

weapon. Message-oriented middleware is a bridge for test information exchange, and is

responsible for receiving data published by host computer and distributing information to

subscribers which include host computer s or integrated test platform. Integrated test platform

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 149

is a set of application system in the server. Through message-oriented middleware, integrated

test platform can receive test information of each host computer in the network according to

demand, and also can send command to each host computer to make it test specific

information for integrated test platform. Through amount of test data [7] from different host

computer, integrated test platform can realize coordination test of weapons which includes

analysis of test data, simulation of test process, real-time display and so on.

subscribe

Messsage

subscribe

Messsage

Publish

message

Publish

message

ServerServer

Message-

oriented

Middleware

Message-

oriented

Middleware

Integrated

test

platform

Integrated

test

platform

test instrument 1test instrument 1 Host Computer 1Host Computer 1

B
u
s

Test Object 1_1Test Object 1_1

Test Object 1_nTest Object 1_n

......

test instrument...test instrument... Host Computer...Host Computer...B
u
s

Test Object 2_1Test Object 2_1

Test Object 2_nTest Object 2_n

......

test instrument ntest instrument n Host Computer nHost Computer n

B
u
s

Test Object n_1Test Object n_1

Test Object n_nTest Object n_n

......

DBDB

DBDB

DBDB

subscribe

Messsage

subscribe

Messsage

Publish

message

Publish

message

subscribe

Messsage

subscribe

Messsage

Publish

message

Publish

message

subscribe

Messsage

subscribe

Messsage

Publish

message

Publish

message

Figure 2. Architecture of Networked Automatic Test System based on
Message-oriented Middleware

4. Design and Implementation of Automatic Test System based on

message-oriented Middleware

Messaging middleware is responsible for sending and receiving messages on different

application systems, and can realize platform-independent data exchange. Communicating

parties send and receive message in synchronous or asynchronous mode, so actual physical

access is unnecessary. Therefore, the message-oriented middleware is adapted to couple loose

host computer up in order to interactive communication and coordinated test.

4.1. Design and Implementation of Message-oriented Middleware's Architecture

The key technology of message-oriented middleware is message transfer, and the model of

message transfer includes point to point and publish-subscribe.

 Point-to-point model

In this model, the producer of message is called sender, and the consumer of message is

called receiver. The sender sends a message to a queue and is stored in the queue, and the

receiver obtains message from the queue. The disadvantages of this model is that the message

sent by sender can only be received by only a receiver, and it severely limits the use range

and makes information sharing poor.

 Pub/sub model [8]

International Journal of Control and Automation

Vol.8, No.3 (2015)

150 Copyright ⓒ 2015 SERSC

 In this model, consumer of message is called as publisher and consumer of message is

called as describer. The difference with point-to-point is that a message published to a subject

can be received by more describers. Pub/sub model is a model based on push, and message

can automatically broadcast to consumers. This model can ensure that message is shared

widely and is able to adapt for transfer of test data between different host computers. The

architecture of message-oriented middleware based on pub/sub model is shown as Figure 3.

Message-oriented Middleware

Message Manager

Event Manager

Distribution Strategy

Manager

Thread Manager

Message

Queue

Application

API

Figure 3. Architecture of Message-oriented Middleware

 Message queue

Message queue is a communication model of asynchronous transfer mode between

different applications, and includes two conceptions: message and queue.

Message is a carrier of test data, and mainly consists of message head and message body.

The architecture of message is shown as figure 4. Message head is metadata of message, and

is necessary information when message delivers, and includes: ID, flag, type, publishing date,

expire date, persistence, priority, publisher, receiver, length, and so on. The code is shown as

following:

public class Message {

public long ID; //Message's ID

public int flag; //Message's Flag

public int type; //Message's type

public Date publishing_date; //Message's publishing date

 public Date expire_date; //Message's expire data

public boolean persistence; //Message's state of persistence, the value is true/false

public byte priority; //Message's priority

public SocketChannel publisher; //Publisher of Message

public SocketChannel receiver; //Subscriber of Message

public int length; //Message's length

public byte[] data; //Message's content

}

Message can be divided into event message and normal message, and we can distinguish

them by the value of "flag", in the message head, whose value is 0 that denotes the message is

event message and is 1 that denotes the message is normal message. Event message is divided

into register and unregister of application, subscription and unsubscription of distribution

strategy, and we can distinguish them by the value of "type", in the message head, whose

value is 0 that denotes register of application, and is 1 that denotes unregister of application,

and is 2 denotes subscription of distribution strategy, and is 3 that denotes unsubscription of

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 151

distribution strategy. Normal message encapsulates test data of information exchange, and has

256 kinds of types, and we can also distinguish them by the value of "type" in the message

head. In general, we can distinguish any kinds of message according to "flag" and "type" in

the message head. In addition, "data" is message body and its content is test data which can

be text information, voice, image and other binary information.

Queue is also a public storage space and it exists in memory or physical file, but generally

it exists in memory in order to ensure the speed of message transfer. Queue can be divided

into sender queue, event queue and waiting queue. Sender queue is used to storing normal

message. On the one hand, message-oriented middleware pushes the normal message

received from the publisher of normal message into the sender queue, but on the other hand,

message-oriented middleware also obtains message from the sender queue and sends it to the

subscribers in order to realize message transfer. Event queue is used to storing event message.

On the one hand, message-oriented middleware pushes the event message received from the

publisher of event message into the event queue, but on the other hand, message-oriented

middleware also obtains event message and make it handled by event manager. Waiting

queue is used to storing normal message unsuccessfully sent to subscribers. The main reason

that normal message can't be sent to subscribers is that communication between host

computers disconnects. So, once connection resumes, normal message in waiting queue can

be sent to the subscribers in order to ensure the reliability of message transfer.

 Queue manager

Queue manager is responsible for managing all event queues which includes pushing the

message into queue, popping message from queue. In addition, in order to ensure the

efficiency of pushing and popping message, multi-thread is used to managing queue; the

method of pushing and popping message is synchronized in order to ensure pushing and

popping message in order at the same time.

 Distribution strategy manager

How to distribute normal message to subscribers is determined by distribution strategy. So,

according to the difference of requirement for message, different NATS will subscribe

different distribution strategy which forms a table of distribution strategy named

"T_DistributionStrategy". Class of distribution strategy is shown as following.

public class DistributionStrategy {

 SocketChannel socket;

 int[] types;

}

In this class, "socket" object is a socket connecting NATS with message-oriented

middleware, and is used to describing IP and port of a subscriber; "types" is an array in which

all subscribed message type of a subscriber are included. The function of distribution strategy

manager is to insert a distribution strategy into "T_DistributionStrategy", and update date in

"T_DistributionStrategy" through a distribution strategy, and delete data from

"T_DistributionStrategy" through a distribution strategy.

 Event manager

Event manager is mainly used to processing the application's event requests, including

event receiver, security detector, event handler, and response notifier. The process flow is

generally divided into the following steps:

Step 1: event receiver obtains an event message from event queue, and then security

detector checks whether the event message meet the system's security; if the detection does

International Journal of Control and Automation

Vol.8, No.3 (2015)

152 Copyright ⓒ 2015 SERSC

not pass, response notifier notifies the result to the application, and if the detection passes, the

process forwards step 2;

Step 2: Parsing the value of "type" from the event message; if the value is 0 that denotes

the event is register and process forwards step 3; if the value is 1 that denotes the event is

unregister and process forwards step 4; if the value is 2 that denotes the event is subscription

of distribution strategy and process forwards step 5; if the value is 3 that denotes the event is

unsubscription of distribution strategy and process forwards step 6;

Step 3: Generating an object of distribution strategy that contains a "socket" object, and a

"types" variable whose value is null; and then, calling distribution strategy manager to add the

object into "T_DistributionStrategy", and process forwards step 7;

Step 4: Comparing one by one "socket" object in distribution strategy from

"T_DistributionStrategy" with "socket" object in the event message; if the comparison is

successful, the matched distribution strategy from "T_DistributionStrategy" will be deleted

from the table according to calling delete function of distribution strategy manager, and

process forwards step 7);

Step 5: Comparing one by one "socket" object in distribution strategy from

"T_DistributionStrategy" with "socket" object in the event message; if the comparison is

successful, the matched distribution strategy from "T_DistributionStrategy" will be updated

by the event message object according to calling update function of distribution strategy

manager to add the "data" in the event message to the "type" variable in the matched

distribution strategy object, and process forwards step 7);

Step 6: Comparing one by one "socket" object in distribution strategy from

"T_DistributionStrategy" with "socket" object in the event message; if the comparison is

successful, the matched distribution strategy from "T_DistributionStrategy" will be updated

by the event message object according to calling update function of distribution strategy

manager to delete some values of "type" variable in the matched distribution strategy object

according to the "data" in event message, and process forwards step 7);

Step 7: Response notifier notifies the result to NATS.

 Thread manager

In message-oriented middleware, in order to ensure the efficiency of message processing,

the enqueue (pushing message into queue) and dequeue (popping message from queue) of

event message and normal message are operating at the respective thread. Among them, the

logic process of enqueue and dequeue of normal message is not the same and execution

environment is not the same, so for the sending queue in per unit time, the amount of enqueue

and dequeue is certainly inconsistent. We use to the ratio of the number of enqueue's message

and dequeue's message to describe the throughput efficiency of sending queue, and it is

shown as:

Throughput = number of normal message pushed into query per second / number of normal

message popping from query per second .

Meanwhile, considering the number of normal message is enormous, if throughput

efficiency continues low, an amount of normal message will be piled up in the sending queue

over time. On the one hand, it will affect the efficiency of the implementation of message-

oriented middleware; on the other hand it can also make application receive a message in

delay. Thus, by adding thread management into message-oriented middleware and increasing

or reducing the number of dequeue' thread according to throughput in order to balance the

efficiency of enqueue and dequeue of normal message. The number of dequeue's thread is

shown in formula 1.

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 153

Thread number used to popping

message from query

Thread number used to popping

message from query
==

（length of query<2000）（length of query<2000）11

（length of query≥2000, and 2≤throughput<3）（length of query≥2000, and 2≤throughput<3）22

（length of query≥3000,and 3≤throughput<4）（length of query≥3000,and 3≤throughput<4）33

（length of query≥4000,and 4≤throughput<5）（length of query≥4000,and 4≤throughput<5）44

（length of query5000,and throughput≥5）（length of query5000,and throughput≥5）55

（1）（1）

4.2. Pub/sub of Message-oriented Middleware in NATS

 Constituent element of message's pub/sub

Pub/sub of message in NATS consists of publisher, subscriber, message center and table of

distribution strategy, so we can describe the pub/sub of message with a four-tuple (P, S, C, T).

P is a set of the message's publisher {p1, p2, ..., pn}, and S is a set of message's subscriber

{s1, s2, ..., sn}. P may intersect with S, so that is to say that the message's publisher and

message's subscriber are not absolute, and they can be a unity (both a publisher and a

describer). C is the message's center, and consists of message queue, queue manager, event

manager, thread manager, distribution strategy manager, and is responsible for contact

message's publisher and subscriber. Not only message-oriented middleware receives message

published by message's publisher, but also sends message to message's subscriber. When C is

equal to 1, all of the message's publishing and subscription use a message center, and it is the

simplest message's pub/sub system. Usually, within NATS there are multiple message

centers, so C is greater than 1. T is a table of distribution strategy which ensures correct

distribution of message between publishers with subscribers.

 Process of message's pub/sub

Step 1: NATS starts the function of message' publishing, and then generates a message:

"msg", and then sets the value of "flag" in the message to 1 (It sets the message as a normal

message in fact), and then sets the value of other variable in the message, at last, set test data

to "msg" in the message;

Step 2: NATS sends the "msg" to message center;

Step 3: After message's center receiving the message, according that the flag's value is one,

the message can be determined as a normal message, and then parsing the type of message

judges whether a ''types'' in some distribution strategy contains the type of message; if a

"types" in some distribution strategy contains the type of message, then there is ATS

subscribing the message, and then according to queue manager ,the message is pushed into

sending queue; if not a "types" in some distribution strategy contains the type of message, so

there is no subscriber to subscribe the message and there is unnecessary to push the message

into sending queue;

Step 4: Message's center parses the value of ''persistence'' in message; if the value is one

then the message is stored in the database, otherwise the message does not store in the

database;

Step 5: Message's center responses to ATS that the message is received successfully.

 Main process of message' subscription

Step 1: ATS starts the function of message's subscription;

 Step 2: Popping a message from the sending queue, and setting the message as "msg", and

parsing the "type" in the "msg", and finally getting a distribution strategy from the

"T_DistributionStrategy" and then naming it as "ds ";

International Journal of Control and Automation

Vol.8, No.3 (2015)

154 Copyright ⓒ 2015 SERSC

Step 3: If the "types" in "ds" contains the type of message, then according to "socket" in

"ds", sending the message to subscribing ATS; if sending the message unsuccessfully, then

assigning the socket to the "receiver" in message and pushing it to waiting queue;

 Step 4: If existing unvisited distribution strategy in "T_DistributionStrategy", then getting a

next distribution strategy and naming it as "ds", and jumping step 3; if all the distribution

strategies are visited, then jumping step 5;

 Step 5: If there is message in sending queue, then jumping step 2; if there is not message in

sending queue, then waiting until receiving message and jumping step 2.

 Main process of subscribing and distributing

Step 1: ATS starts the function of subscription and distribution;

Step 2: ATS generates a message named as "msg", and sets the flag of "msg" to zero, and

sets the type of "msg" to two, and convert the content of message as byte array and assigning

it to data of "msg";

Step 3: ATS sends "msg" to message's center;

 Step 4: After message's center receiving the message, according that the flag's value is zero,

the message can be determined as an event message, and then calling event manager to

complete subscription of distribution strategy.

 Main process of unsubscribing distribution strategy

Step 1: ATS starts the function of unsubscribing distribution strategy;

Step 2: ATS generates a message named as "msg", and sets the e as byte array and

assigning it to data of "msg";flag of "msg" to zero, and sets the type of "msg" to three, and

convert the content of messag

Step 3: ATS sends "msg" to message's center;

Step 4: After message's center receiving the message, according that the flag's value is zero,

the message can be determined as an event message, and then calling event manager to

complete unsubscription of distribution strategy.

4.3. Authentication Protocol of Message-oriented Middleware in NAST

The authentication protocol is based on Kerberos. Kerberos protocol is a kind used in an

open network environment, and is based on trusted and third-party TCP/IP (Transmission

Control Protocol/Internet Protocol) network security authentication protocol for user

authentication and network connections to provide enhanced network security services.

 Authentication process of Kerberos

The principle of Kerberos protocol is to compare user information with information list in

database after the user information, submitted over the user client, is verified. If the

comparison result is consistent, the Kerberos authentication server will confirm the identity of

legitimate users, while according to the client's request to provide system services such as

ticket authentication, and so on. Kerberos protocol's topology is shown in figure 4.

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 155

Key Distribution Center

Client Authentication Service

Figure 4. Kerberos Protocol's Topology

Kerberos authentication includes six processes:

Step 1：User submits verification information that can prove his legitimate user identity to

authentication service (AS), and waits for identity authentication of the authentication server;

Step 2: The authentication server receives the identity verification information submitted

by the user, and compares with its own database; if the comparison result is true, the

authentication server response the information that has been authenticated validly to the user.

Step 3: After user receives the information that has been authenticated validly from the

authentication server, user submits the authentication to ticket granting service (TGS), and

tells the ticket granting service which application server will access to;

Step 4: After the ticket granting service receives the authenticated information and

application server that wants to access to by user, the ticket granting service will

authenticated the authorized information once again by some mechanism verification. If

authenticated, the authentication server thinks that user is already authenticated by the

authentication server and is a legitimate user who can access to the service. So the ticket

granting server will provide user's ticket of application server who wants to access to,

according to user's requirements;

Step 5: After user receives the authorization ticket accessing to the application server from

the ticket granting service, user submits the ticket- authorization to the application server, and

waits for a response from the application server;

Step 6: After the application server receives the information submitted by user, the

application server will verified the granted ticket by some mechanism. If verified, the

application server will think that the user is already authenticated by the authentication

service and has gained accessing authorization of its own services from the ticket granting

service. At this time, the application server will give a response to user, and notify user who

can begin to build a transmission lines of communication with him.

 Improved Kerberos authentication model and its application in the NATS

According to the study on the authentication process, Kerberos’ security problem is shown

as follows:

Firstly, due to the packets sent to authentication service are in the form of plain text, and

the client's shared key stored in the authentication service is generated by secure hash

function of client's key, so if user's password is too simple , the attacker can obtain packets

can attack server by password guess;

International Journal of Control and Automation

Vol.8, No.3 (2015)

156 Copyright ⓒ 2015 SERSC

Secondly, Kerberos uses timestamps to resist replay attack, and in general default

maximum delay of timestamp is 5 minutes, so attackers can attack repeat during this time and

cannot be found.

The solution is to use public key infrastructure (PKI) technology, and introduce a third-

party certificate authority (CA) to improve the Kerberos authentication model. The improved

Kerberos is used in message-oriented middleware of NAST, and client of NAST is also an

ordinary client, and the server is message-oriented middleware. Client can communicate with

Kerberos through CA, and communicates with message-oriented middleware after gaining

legal ticket. The model of message-oriented middleware that includes safety certification is

shown in Figure 5.

Certificate

Authority

JNDI

NAST client

Kerberos

Authentication

Service

ticket granting

service

Message-oriented

Middleware

Figure 5. The Model of Message-oriented Middleware that Includes Safety
Certification

The authentication process is shown as follows:

Step 1: Message-oriented middleware access to JNDI (Java naming and directory interface)

in order to get the connection factory;

Step 2: NAST client requests CA for public key certification of AS, in which sending

packets includes name and ID of client. If authenticated, CA sends the public key certificate

of AS to NAST client;

Step 3: Client sends a request packet to AS for accessing TGS to get ticket-granting ticket.

Request packet includes a client's certificate, the client's name and ID, a random number,

TGS's name, and so on. The request packet is encrypted with the public key of AS, and then

use its own private key to signature.

Step 4: After AS receives the request packet, first the legitimacy of the certificate is

verified, and then the client's public key is extracted and the signature is decrypted from the

public key certificate, and its own private key is used to decrypt the request. AS generates

randomly session key for client and TGS, and then AS generates ticket-granting ticket which

is encrypted with the public key of TGS. AS sends a response packet to client, where the

response packet includes a certificate of AS, session key, ticket-granting ticket. The packet is

encrypted with the client's public key, and then uses its own private key to signature.

Step 5: After the client receives the response packet, the legality of AS certificate is

checked, the public key of AS from the certificate is extracted and decrypted to signature, and

then the packet is decrypted with its own private key in order to get the session key. NAST

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 157

client requests TGS for accessing to message-oriented middleware to get granted ticket, and

request packet includes its certificate, the name of message-oriented middleware, a random

number, ticket-granting ticket, TGS's name and authentication tokens with timestamp. This

packet is signed with the client s private key and is sent to the TGS.

Step 6: After TGS receives packet sent by NAST client, the legality verification of

certificate is authenticated. After verification is successful, the client's public key is extracts

from the packet and signature is decrypt, and its own private key is used to decrypt ticket-

granting ticket to get session key, and then the session key is used to decrypt authentication

token. After comparing the ticket-granting ticket with the authentication token, the legality of

client can be authenticated according to comparison result. A session key will be generated by

ticket granting service and is used to communicate between client and message-oriented

middleware. TGS generates ticket for accessing to the message-oriented middleware, and the

ticket includes client's name, the name of the message-oriented middleware, a random

number and session key which is used communicated between client and message-oriented

middleware, and the ticket is encrypted by public key of the message-oriented middleware.

TGS sends response packet to client, and the packet includes certificate of TGS, a random

number, the session key and ticket. This packet is signed by private key of TGS, and is

encrypted by client's public key.

Step 7: After client receives the response packet of TGS, legality of certificate is verified,

and signature is decrypted with the TGS's public key, and then client decrypts the packet with

its own private key in order to get session key. Then user sends a request packet to the server,

and the request packet includes client's certificate, the name of message-oriented middleware,

ticket of accessing to message-oriented middleware, authentication token which includes

client's name, the random number, and the authentication token is encrypted with the session

key of message-oriented middleware. This packet is signed with the public key of message-

oriented middleware.

Step 8: After message-oriented middleware receives request packet, the legality of

certificate is checked, and signature is decrypted by client's public key. Ticket is decrypted by

its own private key in order to get session key and then the session key is used to decrypt

authentication token, and then authentication token is compared with the ticket in order to

authenticate client. Then message-oriented middleware sends the response packet to client,

and the response packet includes a random number, certificate of message-oriented

middleware, and the response packet is signed by private key of message-oriented

middleware.

Step 9: After client receives the response packet, first client verifies the legality of

message-oriented middleware's certificate, and then extracts the public key to decrypt the

signature and verifies message-oriented middleware by the random number.

Step10: After that, client uses the session key to communicate with the message-oriented

middleware.

5. Application of NATS based on Message-oriented Middleware

For example, in ATS of coordinated engagement of air-ground weapon which is show as

Figure 6, first aerial reconnaissance investigates and locates enemy's targets in air, sea and

land; and then enemy's information is published via message-oriented middleware, and

ground control center subscribes the enemy's information while ground control center also

subscribes longitude, altitude, height, speed, azimuth and other information which are

published by unmanned aerial vehicles and fighter, as well as location, transmit status which

are published by precision-guided missiles; after analyzing the information published by

International Journal of Control and Automation

Vol.8, No.3 (2015)

158 Copyright ⓒ 2015 SERSC

aerial reconnaissance, unmanned aerial vehicles, fighter and precision-guided missiles,

ground control center publishes information of damaged target to message-oriented

middleware, and based on the distribution strategy, message-oriented middleware distributes

the information to precision-guided missile, fighter and unmanned aerial vehicles; finally,

unmanned aerial vehicles, fighter and precision-guided missiles attack the target and publish

the damaged information to message-oriented middleware, and evaluation control center

subscribes the damage information, and conducts a comprehensive analysis.

UAVUAV

Publishing

enemy's

message

Publishing

enemy's

message

Aerial

reconnaissance

Aerial

reconnaissance

FighterFighter

Evaluation control

center

Evaluation control

center

Subscribing

enemy's

message

Subscribing

enemy's

message

Publishing

attack

object

Publishing

attack

object

Ground control

center

Ground control

center

Subscribing

damaged

message

Subscribing

damaged

message

Message-oriented MiddlewareMessage-oriented Middleware

Publishing

message

Publishing

message

Subscribing

attack

object

Subscribing

attack

object

Publishing

message

Publishing

message

Subscribing

attack

object

Subscribing

attack

object

Publishing

damaged

message

Publishing

damaged

message

Publishing

damaged

message

Publishing

damaged

message

precision-guided

missiles

precision-guided

missiles

Publishing

message

Publishing

message

Subscribing

attack

object

Subscribing

attack

object

Figure 6. ATS of Coordinated Engagement of Air-ground Weapon

6. Test and Analysis

6.1. Test Target

Message-oriented middleware mainly provides a common information communication

platform for ATS, so test mainly considers two aspects: first, the time that message-oriented

middleware distributes messages to subscribers whether can meet the requirements; second,

the middleware system can whether distribute accurately messages to the specified

subscribers.

6.2. Test Environment and Test Data

Software Environment: Windows XP operating system and ATS of coordinated

engagement of air-ground weapon.

Hardware Environment: There are 7 computers, and a computer is used as a message-

oriented middleware server, and other six computers are used to simulating the host computer

of unmanned aerial vehicles, fighter, precision-guided missile, aerial reconnaissance, ground

control center and evaluation control center. Those computers' configurations are Intel Core2

Quard CPU 2.40 GHZ and RAM 2G.

The host computer of aerial reconnaissance publishes information of enemy, the host

computer of unmanned aerial vehicles, aircraft and precision-guided missiles publish their

information, when the length of message in sending queue is equal to 2000, message-oriented

middleware starts to distribute message, while the host computer of aerial reconnaissance,

unmanned aerial vehicles and precision-guided missiles stop publishing information, and

distribution time will be record in table 1. In the same way, distribution time of distributing

4000, 5000 and 10000 messages will be record in table 1.

Table 1. Distribution Time of Message-oriented Middleware

Number of Messages 2000 4000 5000 10000

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 159

total distribution time（
Millisecond）

120159 232877 311362 654186

Distribution time per

record（Millisecond）
60 58 62 65

The host computer of unmanned aerial vehicles, aircraft and precision-guided missiles

publish damaged information 1000 times. The statement of distribution message is shown in

Table 2.

Table 2. Statement of Distributing Message

Sender host computer of

unmanned aerial

vehicles,

Host computer of

aircraft

Host computer of

precision-guided

missiles

Receiving times 1000 1000 1000

6.3. Result Analysis

By comparing these two sets of above test, we can draw the conclusions:

(1) The basic distribution efficiency of message-oriented middleware is about 60s/record,

and distributing 4000 message wastes at the least, which shows that the number of threads of

distributing message is optimal.

(2) The Accuracy rate of message-oriented middleware distributing message is 100%, and

this indicates that the distribution accuracy of the message-oriented middleware is reliable.

7. Conclusion

Aim at the current status of the ATS that focuses on only on a single or the same type of

weapons' performance testing, this paper introduces message-oriented middleware into ATS

in order to not only shield complexity of the bottom test equipment, but also implement test

data transfer between different test equipment through the message's publish and subscription.

According to test on message-oriented middleware about publishing and subscribing message

we can draw the conclusion that the message-oriented middleware can create an integrated

test platform for a variety of weapons and implement comprehensive performance test for

weapon's coordinated engagement.

Acknowledgements

This research was supported by the National Natural Science Fund of China (no.61379080).

References

[1] Y. Feng, S. Wang, B. Feng, R. Wang, Y. He and T. Zhang, “Development of an auto test system for humidity

sensors”, Sensors and Actuators A: Physical, vol. 152, no. 1, (2009), pp. 104-109.

[2] Q. Lai, J.-W. Hua, Lü Yun, Y.-F. Chen and J. Xu, “Research on general relay protection auto-test system

software”, Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, vol. 38, no.3, pp. 90-94,

2010.

[3] Y. Qingfeng, H. Lu and S. Shen, “Auto test system resource description method based on XML. Beijing

Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics”, vol. 36,

no. 1, (2010), pp. 114-117.

[4] L. Zhai, C. Li and L. Sun, “Research on the message-oriented middleware for wireless sensor networks”,

Journal of Computers, vol. 6, no. 5, (2011), pp. 1040-1046.

http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bL%26%23252%3B%2C+Yun%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr

International Journal of Control and Automation

Vol.8, No.3 (2015)

160 Copyright ⓒ 2015 SERSC

[5] C.-Y. Miao, M.-L. Shi and J.-L. Jiang, “MOM-S: Message-oriented middleware based on Web service”,

Tongxin Xuebao/Journal on Communications, vol. 27, no. 11, (2006), pp. 96-100.

[6] J. Zhiyan and H. Xie, “Network automatic test system based on database middleware”, Lecture Notes in

Electrical Engineering, vol. 218, no. 3, (2013), pp. 603-609.

[7] J. Ni and Y. Zhang, “Study of test data generation method based on evolutionary algorithm. Telkomnika, vol.

12, no. 1 (2014), pp. 818-822.

[8] C. Sergio and E. Hiroshi, “A pub/sub message distribution architecture for disruption tolerant networks”,

IEICE Transactions on Information and Systems, vol. E92-D, no. 10, 9, (2009), pp. 1888-1896.

Authors

Xiong Fengguang, he is a Lecture at Computer Science and Control

Engineering, North University of China (NUC), China. He was born in

China, in 1979. He received master degree in computer application

technology from North University of China, China in 2005. He is

currently in doctor program of System Simulation and modeling at North

University of China.

Han Xie, She is a Professor at Computer Science and Control

Engineering, North University of China (NUC), China. She was born in

China, in 1964. She received master degree in Computer Science and

Technology, North China Institute of Technology (NCIT), China. She

received doctor degree in Institute of Information Engineering,

University of Science and Technology Beijing, China in 2002. She is

currently major in Computer Vision, Simulation and Visualization.

http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7bJiang%2C+Jin-Lei%7d§ion1=AU&database=5&yearselect=yearrange&sort=yr

