
International Journal of Control and Automation

Vol.8, No.3 (2015), pp.109-114

http://dx.doi.org/10.14257/ijca.2015.8.3.13

ISSN: 2005-4297 IJCA

Copyright ⓒ 2015 SERSC

An Integrity Checking Mechanism Using Physical Independent

Storage for Mobile Device

Jae-Kyung Park* and Sang-Yong Choi**

*Chief researcher at Cyber Security Research Center, Korea Advanced Institute of

Science and Technology,

Seoul 135-854, Korea

**Chief researcher at Cyber Security Research Center, Korea Advanced Institute of

Science and Technology,

Daejeon 305-701, Korea
*
wildcur@kaist.ac.kr,

**
csyong95@kaist.ac.kr

Abstract

The dissemination of smartphones is rapidly progressing and there are many similarities

of smartphones and PCs in terms of security risks. Recently, in mobile network environment,

there is a trend of increasing damages and now, there are lots of active research on a system

that can comprehensively respond to this. As a way to prevent these risks, integrity checking

method on operation system is being researched. As most integrity checking algorithms are

classified by verification from the levels before booting the OS and at the time of passing on

the control to the OS, in which, there are minor differences in the definitions of integrity

checking or its methods. This paper researched the verification techniques for OS integrity

that can be more fatal than apps in case of security issues, and suggests the integrity

verification technique of OS using a boot loader and a physically independent storing device

in the terminal.

Keywords: Android, Integrity, Kernel, Bootloader

1. Introduction

In time, mobile terminals have changed in various ways, and the directions are changing

from closed structure for applications and contents from open types. Similarly, mobile OS

have changed from exclusive OS to universal OS. Recently, security risks for mobile

terminals have rapidly increased. Although research and efforts are put into responding to

these mobile security risks, complete protection against malicious risks that come from all

directions hasn’t been found. The kernel area of OS can be exposed to various risks by attacks

from hackers. This paper suggests integrity verification technique for OS using an

independent storing device in a terminal in order to assure safer mobile environment from

risks of mobile OS.

2. Related Research

Currently, different research is being progressed for integrity verification of mobile OS.

Recently, a mobile security solution by Samsung called KNOX was introduced. This solution

is a multi-directional security solution based on device hardware that can prevent falsification

through Linux kernel and Android OS. This is a wide-ranged mobile security platform that

includes app and information protection including integrity verification of Android OS, and

International Journal of Control and Automation

Vol.8, No.3 (2015)

110 Copyright ⓒ 2015 SERSC

responsive measures to risks through network infrastructure via VPN connection for each

app.

The integrity verification technique of KNOX suggests integrity verifications of OS and

block level. In particular, it is important to look closer at the integrity verification technique

for OS in the boot level that consists of Secure Boot and Trusted Boot. As for Trusted Boot,

all boot loaders and encrypted fingerprints of OS kernel are stored using ARM TrustZone

technology, and integrity verification is performed using this information.

3. Materials and Methods

The integrity verification technique suggested by this paper intends to secure independent

security memory area where verification data is loaded and produce the interface accessible to

relevant security memory area as the kernel module. This module shall be loaded to kernel

while booting the OS at the boot loader, and the relevant data can be accessed via the

integrity verification application that uses this module.

3.1. Securing Independent Security Memory Area

Security memory area refers to a new storage medium that doesn’t exist in previous mobile

devices and can be accessed from an OS only when device driver is present along with other

parts of the device. Likewise, the OS performs I/O to the actual device according to user

request via the I/O interface defined by the device driver. The independent security memory

area suggested in this paper is designed to control the access to the relevant area by directly

producing the device driver as in the illustration 1 below. The access to the relevant memory

area is designed to allow read access from both boot level and OS level. However, in case of

writing function, it is designed to only allow at the boot loader area. This is because in case of

falsification of OS by malicious user and extortion of the control of the OS, access to the

prepared security memory area is lost. For this reason, although reading function is provided,

in order to defend against falsification and counterfeit of data in the relevant area in advance,

writing function is removed. In addition, on the device driver, in order to secondarily manage

the access to the saved data from I/O, encrypting/decrypting functions are added. The relevant

driver is produced in advance as kernel module type and managed separately from the kernel

where the relevant driver is loaded to kernel after loading the kernel image at the boot level.

app
 integrity

verification
data

I/O Module
(Device Driver)

H/W

read XXX_read

resultresult

Figure 1. Access to the Data Associated with Integrity Verification

3.2. Integrity Verification Using the Bootloader

Booting to a falsified OS can happen by abusing the boot area. Actually, rooting, blamed

as the biggest security concern of mobile terminals, is frequently occurring not only by

abusing the weak point of an OS but also starting by editing the boot area. Accordingly,

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 111

mobile terminal manufacturers and other researchers are processing boot level in various

ways in order to upload only the selected safe OS by applying solutions such as the

aforementioned KNOX.

The boot loader in this paper is designed to allow developers to arbitrarily add additional

functions. This means, they can load external OS downloaded from network communication

to main memory or control specific devices. By doing this, they can attempt to verify integrity

of OS by accessing the security memory area. The series of processes is as illustrated below.

Boot loader

Android OS

OS verification
and selection

OS
Integrity
DATA &

I/O Module

Certification client

Certification server
②

①

③

④
⑤

⑥

Figure 2. Verify the Integrity of the Boot Level

- At the time of initial terminal production, it is distributed in the state of recording the

integrity verification data of the verified OS image in the relevant memory area. The

procedures are as follows.

• Stages (1)(2)(3) : When booting the terminal, booting process is progressed in

sequential order, and then the integrity verification data of OS in the security

memory area performs interface and processing in the OS falsification and

counterfeit testing stage to enable renewal of data by communication with terminal

manufacturer.

• Stage (4) : Perform verification function to check presence of OS falsification and

counterfeit

• Stage (5) : To verify falsification and counterfeit, determine whether data in the

security memory area and actual OS value are the same

• Stage (6) : If verification is complete, load relevant OS to the memory, progress

copying I/O module included in the security memory area to the file system to be

used by OS and deliver control to the OS.

International Journal of Control and Automation

Vol.8, No.3 (2015)

112 Copyright ⓒ 2015 SERSC

bootloader

Kernel Image

Root filesystem

User data

bootloader

Kernel Image

Root filesystem

system

cache

userdata

U-boot or grub

zImage

rootfs

U-boot

zImage

Ramdisk.img

system.img

cache

userdata.img

Embedded linux structure

Android structure

Figure 3. Embedded Linux and Android System Architecture

By the procedures above, the kernel I/O module to the security memory area managed by

boot loader is loaded to the OS and control is transferred.

3.3. Verify the Integrity of the Operating System Level

The relevant module is the device driver to the security storing device, and the functions of

I/O of the relevant driver exclude writing function. In other words, only open, read and close

functions are performed to allow only access to the relevant data on the OS and disable

additional editing. This is to defend against falsification and counterfeit of integrity

verification data of OS from malicious attacks.

H/W

Android OS

App App App App

General
Memory

Secure
Memory

Secure I / O
modules

Figure 4. Verifying the Integrity of the Operating System Operating Conditions

By using the device driver inserted to the OS in the module type, the verified integrity

testing application regularly checks the status of integrity of system area of the OS. When

doing this, the reliability of the integrity checking application is extremely crucial.

International Journal of Control and Automation

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 113

4. Conclusion

The suggested integrity verification method of mobile OS manages a separate storing

device to perform verification on the boot level before the OS level, utilizes the same

verification data even after the control is transferred to the OS and performs consistent

integrity verification.

The device driver in charge of the I/O to the relevant storing device is produced in advance

as the kernel module and separately managed from the kernel. The relevant storing device can

be safe from outflow of firmwares by loading when the boot loader loads the OS to the

memory from boot level instead of distributing as contained in the OS.

References

[1] Integrity Protection Solutions for Embedded Systems, FOSDEM 2014 Brussels, Belgium, February , (2014),

pp. 45-51.

[2] Survey of Security Threats and Countermeasures on Android Environment, Joonhyouk Jang, (2013), pp.

101-109.

[3] D. Sangorrin, S. Honda and H. Takada, “Dual operating system architecture for real-time embedded

systems”, In Proceedings of the 6th International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT), Brussels, Belgium, (2010), pp. 6-15.

[4] X. Zhang, O. Acıiçmez and J.-P. Seifert, “Building Efficient Integrity Measurement and Attestation for

Mobile Phone Platforms”, Security and Privacy in Mobile Information and Communication Systems Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol.

17, (2009), pp. 71-82.

[5] D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung and T. Jaeger, Measuring Integrity on Mobile Phone

Systems”, SACMAT '08 Proceedings of the 13th ACM symposium on Access control models and

technologies, (2008), pp. 155-164.

[6] H.-J. Choi, J.-H.Lee, and D. J. Kim, “The Implementation of Recording and Replaying System and Its Device

Driver Programming”, (2003), pp. 77-82.

Authors

Jae-Kyung Park, Ph.D.

Chief researcher at Cyber Security Research Center,

Korea Advanced Institute of Science and Technology,

Nonhyun-ro 28gil 25, Gangnam-gu, Seoul, Korea

E-mail : wildcur@kaist.ac.kr

Corresponding author: Sang-Young Choi, Ph.D.

Chief researcher at Cyber Security Research Center,

Korea Advanced Institute of Science and Technology,

N5 2321, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea

E-mail: csyong95@kaist.ac.kr

