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Abstract 

This paper addresses the bottom-following control problem of an underactuated 

autonomous underwater vehicle (AUV) in the presence of ocean currents and model 

parameters uncertainties. The Serret-Frenet frame is used to describe the bottom 

following of the AUV. An extra degree of freedom for controller design is introduced. The 

extra degree of freedom makes the virtual AUV can regulate its velocity along with the 

real AUV. Based on Lyapunov theory and backstepping techniques, a nonlinear adaptive 

control law is derived. The control law yields convergence of the AUV to the desired path 

asymptotically. Simulations results show the effectiveness and robustness of the derived 

controllers. 
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1. Introduction 

In recent years, autonomous underwater vehicles (AUVs) have great advantages in the 

area of oceanic research [1]. AUVs should have a bottom navigation ability to follow the 

bottom profile at a constant altitude as a basic feature for successful undersea search and 

survey, maritime reconnaissance, communication/navigation aids and tracking and 

trailing in uncharted shallow water [2]. This type of AUV considered in this work is 

equipped with two identical back thrusters mounted symmetrically with respect to its 

longitudinal axis. Especially, the AUV is underactuated since it lacks any vertical thruster. 

In addition, AUVs’ kinematic and dynamic models are highly nonlinear and coupled, 

making control design a hard task [3]. 

Path following control is important in the field of AUV control. It refers to the case 

where an AUV follows a predefined path without any temporal specifications. Some 

researchers have studied the problem in recent years by using different techniques. The 

problem of following straight lines by using input-output linearization and sliding mode 

control was addressed [4]. The experimental tracking results for a model ship using 

Lyapunov-based controllers were presented [5, 6]. Two tracking solutions for a surface 

vessel were proposed, based on Lyapunov’s direct method and passivity approach [7]. A 

path following controller to follow straight lines based on cascade approach and feedback 

linearization techniques was designed [8]. To follow both straight line and curve, the 

Serret-Frenet frame was used to study the path following control [9-11]. As a kind of 

special path following, the bottom-following of AUVs has been studied. A bottom-

following controller was designed for autonomous underwater vehicles (AUVs) that take 

explicitly into account the bathymetric characteristics ahead of the vehicle measured by 

two echo sounders [12]. An increment feedback control method based on nonlinear 

iterative sliding mode control was presented for bottom-following, and the problem of 

chattering by the hydroplane is circumvented [13]. The Takagi-Sugeno decision approach 

was applied to the bottom-following control that is discomposed into forward speed 

control and depth control [14]. 
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In practice, an AUV must ofen operate in the presence of ocean currents and the AUV 

model parameters are not known precisely. In this paper, the bottom following error 

coordinate is built on a Serret-Frenet frame. Controller design relies heavily on Lyapunov 

method and backstepping techniques. Parameter uncertainties are dealt with in an 

adaptive framework by augmenting Lyapunov candidate functions with terms that are 

quadratic in the parameter errors. This design procedure effectively creates an extra 

degree of freedom that can then be explored to avoid the singularities that occur when the 

distance to path is not well defined. The pitch velocity persistent excitation conditions are 

not required. The resulting control strategy yields global convergence of the actual path of 

the AUV to the desired path. 

The organization of the paper is as follows. Section 2 presents the AUV model and the 

formulation of the bottom following. Adaptive control laws for the AUV in the presence 

of ocean currents and parametric model uncertainties are derived in Section 3. Section 4 

presents the simulation and experimental studies, including the AUV that is to track a 

straight line and a curve. Finally, we make a brief conclusion on the paper in Section 5. 

 

2. Problem Formulation 

This section describes the kinematic and dynamic equations of motion of the AUV 

depicted in Figure 1 in the vertical plane in the presence of ocean currents and formulates 

the problem of steering it along a desired path. The desired path is identical with the path 

that is formed from the bottom profile and has equivalent altitude with the bottom profile 

path. The control inputs are the thruster surge force and the thruster pitch torque. The 

AUV has no verical thruster, so the AUV is underactuated. 
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Figure 1. The Underactuated AUV Model 

 

2.1. Vehicle Modeling 

Following standard practice, the general kinematic and dynamic equations of the AUV 

can be developed using a global coordinate frame  I  and a body-fixed coordinate 

frame B , as depicted in Figure 2. Let Q  denote the center of mass of the AUV and let 

 ,0,
T

m x z  be the position of Q  in  I . Let B  denote the yaw angle and 

 ,0,
T

tV u   be the velocity of Q  in  I  expressed in B , where u  and   are the 

surge and heave velocities, respectively.  
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Figure 2. The Schematic Diagram of Bottom Following of the AUV 

In the vertical plane, the kinematic equations of the AUV in the presence of ocean 

currents can be written as 

cos sin cos

sin cos sin

B B c C

B B c C

B

x u V
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q

   

   


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                                   (1) 

where q  is the angular velocity of the AUV, cV  and C  denote the velocity and the 

angle of ocean currents in  I , respectively. Assume u  never equal to zero, and define 

the side-slip angle  arctan u  . The above equation can be rewritten to yield 
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                                                 (2) 

where W B    , tV  is the total velocity and 
2 2

tV u   . 

Neglecting the equations in sway, roll and yaw, the simplified equations for surge, 

heave and pitch can be written as [15] 

0

u u

uq

q q

X m u d

m m uq d

M m q d

 

  

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                                                (3) 

where  

u um m X  , m m Z   , q y qm I M  , q qm m X    , uq uqm m Z  , 

2 2 2

u qq uu qd X q X u X m q      , 
2d Z Z 

    , 

2

q uq uq q u q
d M q q M uq M M u M u M q M    

            . 
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m and yI  denote the mass and moment of inertia of the AUV, respectively. 
 .

m  is 

mass and hydrodynamic added mass term. 
 .

X , 
 .

Z  and 
 .

M  are classical 

hydrodynamic derivatives, and 
 .

d  represents the hydrodynamic damping term. 

 ,
T

X M denotes the input vector of force and torque that is applied to the AUV. In the 

equations, and for clarity of presentation, it is assumed that the AUV is neutrally buoyant 

and that the centre of buoyancy coincides with the centre of gravity. 

 

2.2. Bottom-Following: Error Coordinates 

Consider Figure 2, where P  is an arbitrary point on the Path 2. Associated with P , 

consider the corresponding Serret-Frenet frame  F . The signed curvilinear abscissa of 

P  along the Path 2 is denoted s . Clearly, Q  can either be expressed as  , 0,
T

m x z  in 

 I  or as  , 0,
T

F Fd x z  in  F , d  is the vector from P  to Q .  Let 

cos 0 sin

0 1 0

sin 0 cos

F F

F F

R

 

 

 
 

  
 
 

 

be the rotation matrix from  I  to  F , parameterized locally by the angle F . 

Define F Fq  , then 

( )

( ) ( )

F F c

c c

q c s s
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  



                                      (4) 

where ( )cc s  and ( )cg s  denote the path curvature and its derivative, respectively.  

It is also straightforward to compute the velocity of Q  in  I  expressed in  F  as 

F
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Using the relations 
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and 

 ( ) , 0, ( )
T

F c F c Fq d c s sz c s sx    

Equation (5) can be rewritten as 

cos sin ( )

sin cos ( )

F F F c F
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z x z c s sx

 
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            (6) 

Replacing the top two equations of (2) in (6) and introducing the variables 

W F     and  CF C F    , the kinematic bottom-following error model of the 

AUV in the presence of ocean currents is given as 



International Journal of Control and Automation 

Vol.8, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC  293 

( ) cos cos
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                (7) 

With the above notations, the bottom-following problem of the AUV can be 

formulated as follows: 

Consider the AUV model given by (1) and (3). Given a desired path having identical 

altitude with the bottom profile path to be followed and a desired profile min 0du u   

for the surge velocity u , derive control laws for the force X , torque M , and rate of 

evolution s  of the curvilinear abscissa s  of the  virtual target point P  along the path so 

that Fx , Fz ,   and du u  tend to zero asymptotically in the presence of constant known 

ocean currents disturbance and parametric model uncertainties. 
 

3. Adaptive Bottom-Following Controller Design 

This section proposes a nonlinear adaptive control law to regulate the 

underactuated AUV along a desired bottom path in the presence of constant known 

ocean currents and parametric model uncertainties. The design of controller is 

implemented in three steps. The first step yields a kinematic controller by adopting 

q  as a “virtual” control input, and by assuming that the actual surge velocity equals 

with the desired velocity du . The second step addresses control laws for the “real” 

input X  and M . The third step applies adaptive control law to ensure robustness 

against uncertainties in the model parameters. 

 

3.1. Kinematic Controller 

This section derives a kinematic controller for the AUV. We let 

  0

2
arcsin F

F

F

k z
z

z




 
  

 
                                                  (8) 

be a desired approach angle, where 0 0k   and 0  . The approach angle is 

instrumental in shaping transient maneuvers during the path approach phase. 

Theorem 1. Let the approach angle  Fz  be defined as in (8). Suppose that the path 

to be followed is parameterized by its curvilinear abscissa s , and the velocity CV  and the 

orientation angle C  of the ocean currents are available for AUV sensors. Consider the 

kinematic model of the AUV described in (1) and the error model (7) with the control law 
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   (9) 

where 0ik    1, 2, 3i  . For any initial conditions, Fx , Fz  and   tend to zero 

asymptotically in the presence of constant known ocean current. 

Proof. Let the AUV move with a constant surge velocity 0du u  . Consider the 

candidate Lyapunov function 
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where 1k  is a positive constant, and compute its derivative, one gives 
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Let the ideal kinematic laws for s  and q  be defined as Equation (9), then (10) 

becomes 
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it can conclude that Fx , Fz ,   and du u  tend to zero asymptotically. 

 

3.2. Dynamic Controller 

The above control law is derived in the kinematic model of the AUV. This control law 

can be extended to the dynamic model using backstepping techniques. 

Theorem 2. Let the approach angle  Fz  be defined as in (8). Suppose that the path 

to be followed is parameterized by its curvilinear abscissa s , and the velocity CV  and the 

orientation angle C  of the ocean currents are available for AUV sensors. Consider the 

model of the AUV described in (1), (3) and the error model (7) with the control law 
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For any initial conditions, Fx , Fz ,   and du u  tend to zero asymptotically in the 

presence of constant known ocean currents. 

Proof. Introduce error variable 
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Let the laws for X  and M  be defined as Equation (11), then (13) becomes 

   
2

20 2 2 2

2 1 1 3 4 1 5 22

1

1
0F

t C F

F

k z
V V V k x k k k z k z

k z
 


        


 

so Fx , Fz ,  and du u  tend to zero asymptotically.  

An extra degree of freedom for controller design is introduced, i.e., the velocity of 

vertical AUV on the desired path. Actually, the virtual AUV can reduce 

the velocity of itself or even wait for the real AUV when the real AUV is behind to it. 

Naturally, the virtual AUV will increase its velocity to catch up with the real one till their 

velocities are identical. It can be seen that the virtual AUV can regulate its velocity along 

with the real AUV. 

 

3.3. Parameter Adaptation 

So far, it is assumed that the AUV model parameters are known precisely. This 

assumption is unrealistic. In this section, the control law is tackled to ensure robustness 

against uncertainties in the model parameters. Consider the set of parameters of the AUV 

model concatenated in the vector  
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and define the parameter estimation error   as ˆ   , where ̂  denotes a 

nominal value of  . Consider the augmented candidate Lyapunov function 
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where   is a diagonal matrix given by 
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u z z q z z z z

m V m V m V  
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
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 


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Choose the parameter adaptation law as 

̂                        (15) 

to yield  

   
2
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3 1 1 3 4 1 5 22
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1
0F

t C F

F

k z
V V V k x k k k z k z

k z
 


        


 

The above results play an important role in the proof of the following theorem that 

deals with the AUV model parameter uncertainty.  

Theorem 3. Consider the model of the AUV described in (1), (3) and the desired 

approach angle defined in (8), together with the control law (14) and the parameter 

adaptation law (15). Then Fx , Fz ,   and du u  tend to zero asymptotically in the 

presence of constant known ocean currents and bounded plant parameter uncertainties in  





, , , , , , , , ,

, , , , , ,

u q q u uqu q

T

uu qq q uq q qq q

m m m M M M M M M

M X X X m m m Z m Z

    

  

 
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4. Simulation Results 

This section illustrates the performance of the proposed bottom following control 

scheme in the presence of constant ocean current disturbance and parametric 

uncertainties. The desired path is characterized by its curvilinear abscissa s . In order to 

test the controller in a general case, we have chosen two types of paths in the following 

simulations. The desired path is set to keep a constant height h to the bottom profile. 

The desired velocity 
du  is set to 1 /m s . The velocity of ocean currents 

is 0.1 /CV m s , angle 4C rad  .The AUV parameters used in the simulations are: 

Table 1. The AUV Parameters Known Precisely 

Parameter m  Z  m  

Value 160 -251.6 411.6 

The initial AUV parameters are set as following: 
 

Table 2. The Initial AUV Parameters Estimated 

Param

eter 

Initial 

Value 

Param

eter 

Initial 

Value 

um  190.64 
q

M


 -12.87 

qm  100 
q q

M  -54.21 

qm  -216.35 
uuX  100 

uM   -2.3 X  120 

u
M


 -3.47 

qqX  100 

M  7.51 
uqm  60 

M


 -53.71 Z  -51.34 

uqM  -21.4 Z


 -123.3 

 

4.1. Slope Path 

In this section, we consider a polynomial parameterization of the form as  

   

   

   

   

   

, 35 0 20

, 45 0.5 20 60

, 15 60 100

, 15 0.3 100 150

, 45 150 200

x z

x z

x z

x z

x z

   

    

   

    

   
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

     
    

 

The initial condition for the AUV is  

   (0), (0), (0), (0), (0), (0) 0,40, 3,0.3,0,0
T T

x z u q    

The desired approach angle is defined in (8), where 0 50k  , 100  . The control 

gains are selected as following: 
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1 10k  ,
2 30k  , 3 1k  , 4 10k  , 5 1k  , 

and 

 25,5,5,3,1,10,5,10,1,2,2,2,2,2,10,10 10diag   . 
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Figure 3. Simulation Resulting Paths of the AUV 
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Figure 4. The Velocity and Angular Velocity of the AUV 
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Figure 5. The Force and Torque of the AUV 

 

4.2. Curve Path 

In this section, we consider the path parameterized as following 

 

   10sin 0.02

x

z

 

 






 

The initial conditions for the AUV is  

   (0), (0), (0), (0), (0), (0) 0, 15, 3,0.3,0,0
T T

x z u q     

 The desired approach angle is defined in (8), where 0 35k  , 100  . The control 

gains are selected as following: 

1 100k  , 2 50k  , 3 1k  , 4 6k  , 5 1k  , 

and 

 250,5,50,3,10,10,50,10,10,2,3,3,3,30,10,10 10diag   . 
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Figure 6. Simulation Resulting Paths of the AUV 
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Figure 7. The Velocity and Angular Velocity of the AUV 
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Figure 8. The Force and Torque of the AUV 

Figure 3 and Figure 6 show good system reactions, i.e. the AUV converges to the 

desired path whether it is a straight line or a curve in the presence of known ocean 

currents and parametric model uncertainties. Velocity stabilization is shown in Figure 4 

and Figure 7. It can be seen that the velocity u  tends to the desired velocity 1 /du m s . 

Figure 5 and Figure 8 show the control force X  and the control torque M  needed for the 

bottom following control. After the AUV converges to the desired path, the control torque 

tends to zero. The constraint conditions of pitch velocity persistent excitation are not 

required. 

 

5. Conclusions 

In this paper, we have proposed an adaptive bottom-following control laws for the 

underactuated AUV in the presence of constant ocean currents and parameter 

uncertainties. An extra degree of freedom for controller design has been introduced so 

that the “virtual AUV” could regulate its velocity along with the “real AUV”. Controller 

designs rely on backstepping techniques and Lyapunov theory. The proposed control laws 

can ensure robustness against uncertainties in the model parameters. Simulation results 

have demonstrated the validity of the designed bottom-following control scheme. 
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