
International Journal of Control and Automation 

Vol.7, No.9 (2014), pp.257-270 

http://dx.doi.org/10.14257/ijca.2014.7.9.22 

 

 

ISSN: 2005-4297 IJCA 

Copyright ⓒ 2014 SERSC 

Construction of the Kalman Filter Algorithm on the Model 

Reduction 
 

 

Didik Khusnul Arif 
*,a

, Widodo
b
, Salmah and Erna Apriliani

a 

* Post Graduate Student in Department of Mathematics, 

Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia. 
a
 Department of Mathematics, Institut Teknologi Sepuluh Nopember (ITS),  

Surabaya, Indonesia. 
b
Department of Mathematics, Universitas Gadjah Mada (UGM), 

Yogyakarta, Indonesia. 

didik@matematika.its.ac.id, widodo_mathugm@yahoo.com, 

syalmah@yahoo.com, april@matematika.its.ac.id 

Abstract 

In this paper we derive a state variable estimation method of discrete stochastic dynamical 

systems. It aims to obtain accurate estimation with short computing time. Therefore, the point 

of this paper is to discuss a construction of Kalman filter algorithm on the reduced model. 

First, we construct a reduced model by using balanced truncation method. Further, we apply 

state variable estimation steps of discrete stochastic dynamical systems by using Kalman 

filter on the reduced model. Thus, Kalman filter algorithm will be constructed on the reduced 

model. 

Keywords: estimation, Kalman filter, balanced system, reduced model 

 

1. Introduction 

Estimation of state variable in a system is quite important. One method for estimating the 

state variable in a system is Kalman filter [1]. Kalman filter is a recursive algorithm for 

estimating a state variable in stochastic dynamical systems. Kalman filter estimation is 

applied by assessing a state variable based on the dynamical systems. Further, based on 

measured data, the result will be improved [2]. 

Kalman filter was applied in many problems, such as estimation of sea level [3], estimation 

of heat distribution [4, 5], on the hydrodynamical model problem [6], and many others. On 

the application of Kalman filter, there are some weaknesses due to numerical stability 

problems or due to inaccurate modeling system [7]. 

In 1979, R. Anderson [8], developed the square root covariance filter algorithm to avoid 

instability numerical problem. The algorithm of square root covariance filter successfully 

overcame numerical stability problems, but the order of square root matrix become larger. 

Furthermore, reduce rank is applied on the square root covariance matrix to reduce the order 

of matrix so that the computing time become faster [9]. 

In generally, the construction of estimation method aims to obtain accurate result with 

short computing time. The computing time is influenced by order of the system. To reduce 

the computing time can be done by reduce model [10, 11]. 

Based on the above description, so it is important to construct a modified Kalman filter to 

obtain an accurate estimation with less computational time. In this paper, we combine the 

Kalman filter and reduction model method to construct Kalman filter algorithm on the model 
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reduction as the extended of our results [5, 12]. Kalman filter algorithm aims to estimate a 

state variable in the system, whereas the model reduction aims to construct a simple model 

which has smaller order. In other words, we will construct Kalman filter algorithm on the 

reduced model. The first step, we discuss about the construction of Kalman filter algorithm in 

discrete stochastic dynamical systems. It aims to analyze the steps of estimation process. 

Second, we construct the reduced model from discrete system by using balanced truncation 

method. It aims to analyze the construction and characteristic of reduced model. Finally, we 

construct Kalman filter algorithm on the reduced model from discrete stochastic dynamical 

system. 

 

2. The Algorithm of Kalman Filter on the Discrete System 

A Before constructing Kalman filter algorithm for reduced system, firstly we analyze an 

estimation process of state variable in discrete system. Here, we analyze estimation process 

and construct the best estimator for a discrete system based on the Kalman filter algorithm by 

F. L. Lewis [2]. Further, we use this process to apply Kalman filter on reduce model. 

Let be given a dynamic system  

             , 

           ,         (1) 

where     
  is a state vector at the time  ,     

  is an input vector at the time   and  

    
  is a measurement vector or output vector at the time  . While  ,  ,   and   are 

appropriately dimensioned real constant matrices. Furthermore, we build a dynamic 

stochastic system  

                 ,  

              ,        (2) 

where    is system noise and    is measurement noise.    and    are stochastic scale and 

assumed by    (   ) and    (   ). 
Estimation of state variables in the system (2) can be doing by using Kalman filter. First, 

we estimate the state variables based on a dynamic system and then we corrected based on the 

measurement data to improve the estimations results. Estimation process of state variables 

based on the dynamics system are called the prediction step, while the correction process that 

involving the measurement data is called correction step. Kalman filter algorithm for discrete 

stochastic dynamic system can be written as follows [2]. 

a. Initialization 

       ;   ̂   ̅  ,    (   )       (   ).     

b. Prediction step describes the effect of the dynamical systems  

Error covariance :     
      

       . 
Estimation  :  ̂   

    ̂      . 
c. Correction step describes the effect of measurement  

Error covariance :          
      

   (     
     )       

  . 
Estimation   :  ̂     ̂   

       
    (       ̂   

 ) . 
If we use Kalman gain          

   (     
     )  , then we rewrite 

Error covariance :      (       )    
  . 

Estimation   :  ̂     ̂   
      (       ̂   

 ) . 
d. To estimate the state at time    , we are back again in step b and so on. 

Prediction step and correction step are processed repeatedly until the time   is given or 

until we find a best estimation   ̂  that minimizes error. 
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3. Reduced Model Construction on the Discrete Systems 

In this section, we describe the formation of the model reduction by balanced truncation 

[10, 13, 14]. Suppose the state space representation (1). We define two matrices, 

controllability gramian,   and observability gramian,  . The controllability gramian 

associated with the system (1) is matrix 

  ∑      (  )  
   , 

and the observability gramian associated with the system (1) is matrix 

  ∑ (  )       
   . 

The gramian   and   are each symmetric positive definite matrix and is the unique solution 

of the Lyapunov equation 

            , 

            . 

Furthermore, the system (1) is called balanced if controllability and observability gramian 

are equal and diagonal, i.e., if 

        (          )                       ,   (3) 

with    is a positive real number which is ordered Hankel singular values of the system (1) 

and   is called balanced gramian. Based on its Hankel singular value, then the balanced 

gramian   can be partitioned into 

  [
   
   

] ,         (4) 

where         (          ) and         (              ) with        .  

Next, we can construct the balanced system  

 ̃     ̃ ̃   ̃   ,  

     ̃   ̃ ̃      ,         (5) 

with  ̃   
  is a state variable in a balanced system at time  ,     

  is the input vector in 

a balanced system at time   and  ̃   
  is the output vector in a balanced system at time  . 

While the  ̃ ,  ̃ ,  ̃  and   are appropriately dimensioned matrices of a balanced system, 

respectively. Based on (4), then the system (5) can be partitioned into 

  (

 ̃   ̃  
 ̃   ̃  
     
 ̃  ̃ 

|

 ̃ 
 ̃ 
  
 

) .        (6) 

with  

 ̃  (
 ̃  
 ̃  
)          (7) 

and 

 ̃  (
 ̃   ̃  
 ̃   ̃  

),  ̃  (
 ̃ 
 ̃ 
),  ̃  ( ̃  ̃ ) .     (8) 

 ̃   is a state variable that corresponds to the large Hankel singular value and  ̃   is a state 

variable that corresponds to the small Hankel singular value. If we assume  ̃   has dimension 

  with     then  ̃    
   ,  ̃   

   ,  ̃   
   , and       . 

Furthermore the reduced models of the system (1) can be obtained by discarding the state 

variables in a balanced system (5) corresponding to small Hankel singular values. So 

generally reduced system formed order with respect to   with     and can be modeled in 

the form of [14] 

 ̃      ̃   ̃    ̃    , 
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 ̃    ̃  ̃       .         (9) 

 

4. The Algorithm of Kalman Filter on the Reduced Model 

In this section, we analyze about the construction of Kalman filter algorithm on the 

reduced model. As explained in Section 3 that the construction of reduced model is begun 

with constructing the balanced system. This balanced system is transformation result of 

original system with sorted state variable position based on Hankel singular value. Further, 

we can get reduced model by discarding the state variable on the balanced system that 

corresponding to small Hankel singular values. The algorithm of the state variables estimation 

on the reduced model, can be initiated by applying Kalman filter on the balanced system. 

Suppose there is a dynamic stochastic balanced system 

  ̃     ̃ ̃   ̃       

      ̃   ̃ ̃         ,         (10) 

where    (   )  and    (   )  are system noise and measurement noise, respectively. 

Furthermore, we given the initial state  ̃  and initial estimation  [ ̃ ]   ̃̂  with error 

covariance  [( ̃   ̃̂ )( ̃   ̃̂ )
 
]   ̃  and we denote  ̃ 

  and  ̃  as error covariance on 

the prediction step and on the correction step at the time  , respectively.  

Next, we estimate state variables on the balanced system based on the dynamic system, as 

called the prediction step. Estimation for the state variable  ̃  on the balanced system (10) 

based on the dynamic system can be described as follows: 

  ̃̂   
   ( ̃   ) 

     ( ̃ ̃   ̃      ) 

     ̃ ̂̃   ̃  .          (11) 

Based on the partition which occurs in balanced system in equation (6), (7), (8), then we 

can write the prediction step as follow 

 (
 ̃̂    
 

 ̃̂    
 )   ((

 ̃   ̃  
 ̃   ̃  

)(
 ̃  
 ̃  
)  (

 ̃ 
 ̃ 
)      ) 

           (
 ̃   [ ̃  ]   ̃   [ ̃  ]   ̃   

 ̃   [ ̃  ]   ̃   [ ̃  ]   ̃   
) ,     (12) 

where  ̃̂    
  and  ̃̂    

  are the estimation for state variable corresponding to the large Hankel 

singular value and the small Hankel singular value, respectively. 

Based on the minimum realization lemma for continuous system [10], then can be derived 

a minimum realization lemma for discrete system as following: 

Lemma 1: Minimum Realization for the Discrete System 

Given the dynamic system (1) and consider (
 
  
 
|
 
  
 
) as state space realization of transfer 

function  .  Assume there is a symmetry matrices      (
   
  

), where    nonsingular, 

such that             . Then, partition a realization  (       ) corresponding to 

 , i.e. (

      
      
     
    

|

  
  
  
 

), such that (
   
  
  

|
  
  
 
) is also a realization of  . 
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Proof. Based on the assumption that the matrix   can be partitioned into   (
   
  

), then 

we can write the dynamic system (1) becomes 

     (
   
   
),    (

      
      

),    (
  
  
),    (    ). 

Furthermore, the Lyapunov equation              based on partition of   and 
(       ) becomes 

(
        

      
            

      
 

        
      

         
      

 )   .      (13) 

Equation (13) satisfies 

        
      

      ,         (14) 

        
      

   ,         (15) 

        
      

   ,         (16) 

        
      

   .        (17) 

Equation (14) is a Lyapunov equation for   , then  

   definite positive (or     ).       (18) 

While from equation (17), we get 

        
       

  .        (19) 

Multiplying (19) from the left by    and from the right by  , yield  

          
           

       (20) 

where   is any vector that is not zero. 

We can write equation (20) in the form of quadratic norm applicable to any non-zero 

vector   

‖  
      

  ‖
 
  ‖   

  ‖
 
    (21) 

and for     , then equation (21) is valid only if 

      and      .         (22) 

If       and     , then equation (15) and (16) is also satisfied. 

By equation (22), then partition of the realization (       ) is (

      
    

     
    

|

  
 
  
 

) and 

the transfer function of (1) becomes: 

  ( )   (    )      

 (    ) (   (
      
    

))

  

(
  
 
)    

   (      )
       .       

Hence, we have ( )  (
   
  
  

|
  
  
 
) .    

Now, we consider the balanced system (10) having an equilibrium gramian as in equation 

(4). Furthermore, if we assume        is very small (      ), then the balanced gramian   

can be written as   [
   
  

], where         (          ). Because    definite positive 

and satisfy Lyapunov equation  ̃  ̃   ̃ ̃     , then we can apply Lemma 1 on the 

balanced system (10), so the balanced system (10) applies 

 ̃    ,   ̃   .         (23) 
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By Lemma 1, we can see that the state variable  ̃   does not affect the system so that it can 

be ignored. Therefore, we can assume that the expectations of the state variable  ̃   close to 

zero, i.e. 

 [ ̃  ]   .           (24) 

Furthermore, by substituting equation (23) and (24) into the equation (12) is obtained 

 ̃̂    
   ̃   ̂̃    ̃    , 

 ̃̂    
    .          (25) 

Based on the equation (25), we can estimate the state variables of the balanced system at the 

time      based on the dynamics of the system by the formula 

 ̃̂   
   ̃   ̃̂    ̃           (26) 

Next, we will determine error covariance at the time     for the state variable on a 

balanced system based on its dynamic system, i.e. 

 ̃   
   [( ̃     ̃̂   

 )( ̃     ̃̂   
 )

 
] 

           [ ̃( ̃   ̃̂ )( ̃   ̃̂ )
 
 ̃ ]       

      [(
 ̃   ̃  
 ̃   ̃  

)((
 ̃  
 ̃  

)  (
 ̃̂  
 ̃̂  
))((

 ̃  
 ̃  

)  (
 ̃̂  
 ̃̂  
))

 

(
 ̃   ̃  
 ̃   ̃  

)

 

]      .(27) 

Based on equations (24) and because  ̃   and  ̃   are independent, then we get 

 [ ̃̂  ]   , 

 [ ̃    ̃̂  ]   , 

 [( ̃    ̃̂  )
 
]   , 

 [( ̃    ̃̂  )( ̃    ̃̂  )
 
]   ,        (28) 

 [( ̃    ̃̂  )( ̃    ̃̂  )
 
]   ,  

 [( ̃    ̃̂  )( ̃    ̃̂  )
 
]   . 

Therefore we can write equation (27) becomes 

  ̃   
   ̃   [( ̃    ̃̂  )( ̃    ̃̂  )

 
]  ̃  

 
      

            ̃   ̃ ̃   ̃  
 
     .       (29) 

According to equation (29), we obtain that the result of error covariance in the balanced 

system based on the dynamical system is only affected by error covariance on the state 

variable  ̃  . 

Then we consider measurement factor in balanced system (10). Measurement estimation 

 ̃  of balanced system (10) is 

 ̂̃   [ ̃ ̃ ]   [  ] .         (30) 

By using partition the balanced system, then we obtain 

      ̂̃   [( ̃  ̃ ) (
 ̃  
 ̃  
)]   [  ] 

  ̃  [ ̃  ]   ̃  [ ̃  ]   [  ]       

  ̃  ̃̂   .          (31) 

Equation (31) shows that the result of estimating measurement in balanced system is only 

affected by the state variable  ̃  , while the state variable  ̃  can be ignored. 
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Furthermore, we determine error covariance of measurement factor  ̃  in the balanced 

system (10) is 

  ̃ ̃   [( ̃   ̂̃ )( ̃   ̂̃ )
 
] 

  [ ̃( ̃   ̃̂ )( ̃   ̃̂ )
 
 ̃ ]    

  [( ̃  ̃ ) (
 ̃    ̃̂  
 ̃    ̃̂  

)(
 ̃    ̃̂  
 ̃    ̃̂  

)

 

( ̃  ̃ )
 ]   .    (32) 

Based on equations (28), then we get 

 ̃ ̃   ̃  ̃ ̃  
  ̃ 

 
   .        (33) 

Equation (33) shows that error covariance of measurement on the balanced system is only 

affected by error covariance of the state variable  ̃  . 

Furthermore, based on the combined effect of the dynamical system and the measurement 

factor, then we can be determined a joint error covariance between  ̃  and  ̃  

  ̃ ̃  ̃   [( ̃   ̃̂ )( ̃   ̂̃ )
 
] 

  [( ̃   ̃̂ )( ̃   ̃̂ )
 
 ̃ ]   [( ̃   ̃̂ )] [  

 ] 

   [(
 ̃    ̃̂  
 ̃    ̃̂  

)(
 ̃    ̃̂  
 ̃    ̃̂  

)

 

( ̃  ̃ )
 ]      

   [( ̃    ̃̂  )( ̃    ̃̂  )
 
 ̃ 
 
] 

   ̃ ̃  
  ̃ 

 
.          (34) 

Equation (34) shows that the only state variable  ̃   that affect the result of joint error 

covariance between  ̃  and  ̃ . 

In the same way as in equation (34), then we can formulate 

 ̃ ̃  ̃   ̃  ̃ ̃  
  .         (35) 

Based on the result that has been obtained in equation (33), (34) and (35), then error 

covariance of balanced system (9) based on the effect of dynamical system involving the 

effect of measurement factor at the time   can be expressed as 

 ̃   ̃ ̃  ̃ ⁄  

  ̃ 
   ̃ ̃  ̃ ( ̃ ̃ )

  
 ̃ ̃  ̃  

  ̃ ̃  
   ̃ ̃  

  ̃ 
 
( ̃  ̃ ̃  

  ̃ 
 
  )

  
 ̃  ̃ ̃  

  .     (36) 

Thus, refers to equation (36), can be determined error covariance of balanced system (9) 

based on the effect of dynamical system involving the effect of measurement factor at the 

time     can be expressed as   

 ̃     ̃ ̃    
   ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  
 ̃  ̃ ̃    

 ,     (37) 

If we define Kalman gain as follows: 

      ̃    ̃ 
 
     ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  
, 

then equation (37) can be written as 

 ̃    (       ̃ ) ̃ ̃    
 .        (38) 

The estimation of state variable at time   which obtained based on  ̃ ̃  ̃ ,  ̃ ̃   and  ̂̃ , that 

is called the best linear estimator given by measurement  ̃ ,  ̃̂  and  ̃ , can be formulated as 

  ̃̂   [ ̃  ̃ ⁄ ] 
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  ̃̂ 
   ̃ ̃  ̃  ̃ ̃ 

  ( ̃   ̂̃ ) 

  ̃̂ 
   ̃ ̃  

  ̃ 
 
( ̃  ̃ ̃  

  ̃ 
 
  )

  
( ̃   ̃  ̂̃ 

 ) 

  ̃̂  
   ̃  ̃ 

 
   ( ̃   ̃  ̃̂  

 ) .       (39) 

Based on equation (39), the state variable estimation at the time     can be formulated into 

 ̃̂     ̃̂    
   ̃    ̃ 

 
   ( ̃     ̃  ̂̃    

 ),     (40) 

or 

 ̃̂     ̃̂    
      ( ̃     ̃  ̂̃    

 ) .       (41) 

Based on the above explanation, we can construct an algorithm for estimating the state 

variables in the reduced system by using Kalman filter. This algorithm is called the algorithm 

of Kalman filter on the reduced system. 

The Algorithm of Kalman Filter on the Reduced System is 

a. Give an original system in the form of discrete system as denoted in equation (1) 

b. Determine a balanced gramian of the system (1) as stated in equation (3). 

c. Construct a stochastic balanced system as expressed in equation (10), i.e. 

- the dynamical system model:  ̃     ̃ ̃   ̃      , 

- the measurement model:              ̃   ̃ ̃         . 

d. Based on the partition balanced gramian as stated in equation (4), we can partition 

balanced system (10), i.e. 

- partition of balanced gramian:   [
   
   

], 

- the partition of the system:  ̃  (
 ̃  
 ̃  
),  ̃  (

 ̃   ̃  
 ̃   ̃  

),  ̃  (
 ̃ 
 ̃ 
),  ̃  ( ̃  ̃ ) 

e. Determine the estimation of  the state variable on system (10) by this following steps : 

i. Initialization 

We give initial conditions on the stochastic system (9), i.e.  

- initial state:  ̃  (
 ̃  
 ̃  
), 

- initial estimation:  [ ̃ ]   ̃̂  (
 ̃̂  
 ̃̂  
), 

- initial the error covariance:  [( ̃   ̃̂ )( ̃   ̃̂ )
 
]   ̃  

ii. Prediction step 

We determine the estimation and the error covariance of state variable on the system 

(10) at the time      based on the dynamical system, i.e.  

- Error covariance:  ̃   
   ̃   ̃ ̃  

  ̃  
 
     , 

- Estimation:    ̃̂   
   ̃   ̂̃    ̃   , 

iii. Correction step 

By using the measurement data, we do a correction to the estimation and error 

covariance results that have been obtained in the prediction step. So that we get 

- Error covariance:  ̃     ̃ ̃    
   ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  
 ̃  ̃ ̃    

 , 

- Estimation:   ̃̂     ̃̂    
   ̃    ̃ 

 
   ( ̃     ̃  ̂̃    

 ) . 

And with Kalman gain       ̃    ̃ 
 
     ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  
then 
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- Error covariance:  ̃    (       ̃ ) ̃ ̃    
 , 

- Estimation:   ̃̂     ̃̂    
      ( ̃     ̃  ̂̃    

 ) . 

f. To estimate the state at time    , we are back again in step e (ii) and so on. 

Prediction step and correction step (in step e) are processed repeatedly until the time   is 

given or until we find a best estimation   ̂  that minimizes error. 

The steps in the above process can be images in a simple diagram as Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Algorithm of Kalman Filter on the Reduced System 

Discrete-time dynamical system 

A dynamic sistem:              , 

Measurement:                   . 

         (           )    

Determine balanced gramian   

where   and   are the controllability gramian 

and observability gramian, repectively. 

The stochastic dynamical balanced system 

A dynamic sistem:   ̃     ̃ ̃   ̃      , 

Measurement:            ̃   ̃ ̃        . 

where     (   )  and     (   )  are system 

noise and  measurement noise, respectively. 

 

Partition of the balanced system as follows 

- partition of balanced gramian:   [
   
   

], 

- partition of state variable system:  ̃  (
 ̃  
 ̃  
), 

- partition of the matrices:   ̃  (
 ̃   ̃  
 ̃   ̃  

),  ̃  (
 ̃ 
 ̃ 
),  ̃  ( ̃  ̃ ). 

Estimation state variables on the balanced system by using Kalman filter 

 

 

 

 

 

 

 

 

 

(
 ̃  
 ̃  
) ((

 ̅̃  
 ̅̃  
)  (

 ̃   

  ̃  
)) 

Initialization 

   (   ),    (   ) 

 ̃   
   ̃   ̃ ̃  

  ̃  
 
      

Prediction step 

Error covariance: 

Estimation:  

       ̂̃   
   ̃   ̂̃    ̃    

 ̃     ̃ ̃    
   ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  

 ̃  ̃ ̃    
  

      ̃    ̃ 
 
     ̃ ̃    

  ̃ 
 
( ̃  ̃ ̃    

  ̃ 
 
  )

  

 

Correction step 

Error covariance: 

Estimation: 

 ̂̃     ̂̃    
   ̃    ̃ 

 
   ( ̃     ̃  ̂̃    

 ). 

With Kalman gain 

Error covariance:  ̃    (       ̃ ) ̃ ̃    
 , 

Estimation:  ̂̃     ̂̃    
      ( ̃     ̃  ̂̃    

 ) 
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5. Case study 

In this section, we estimate the heat distribution of the wire by using Kalman filter that is 

applied to the original system and the reduced system. Next, we compare the accuracy of 

estimation and computational time between the original system with reduced system. 

First, given the problem of heat distribution on the wire. Suppose the length of the wire is   
and the heat conduction coefficient is  . We assume that the sides of the wire is insulated 

perfectly, it means that there is no heat which able to penetrate the wire. Besides that, heat 

flows along the wire just depends on the position and time. Furthermore, we denote the 

temperature as  , the position denoted as  , and time is denoted as  . So   is a function of   

and  , or can be written as  (   ). Further, at one of the end of wire insulated,   (   )   , 

while at the other end of temperature was kept on    constantly for all    , where   is the 

number of wire parts. The heat conduction equation can be expressed as 

          
with the boundary condition and initial condition as follows: 

  (   )   , 

 (   )    , 

 (   )   ( ), 
where  ( ) is a function of   and            . 

We discretize by forward different methods for time   and central difference approach 

for position  , then we get  

         (                    )      , 

where   
  

   
  . 

To keep the stability discretization explicitly, then we have to define      . While the 

boundary conditions and initial conditions are: 

  (   )  
         

  
  , 

 (   )        ̅, 

 (   )   ( )      . 

The system including noise, so we can write  

        (                   )                (42) 

where      is a system noise. 

Then we define the measurement equation as follows: 

                           (43) 

where      is a measurement noise. 

The system (42) and measurement (43) can be written in the form of state space systems: 

                ,       (44) 

               ,       (45) 

where    [            ] 
  is state vector,    [          ] 

 
 is measurement vector. 

   [          ] 
  is system noise and we assumed     (   ).    [          ] 

 
 

is measurement noise and we assumed     (   ) . While matrices  ,  ,   and   are 

appropriately dimensioned matrices. 

The system (45) has the order  , where   is the number of sections taken or the number of 

positions along the wire. So that, we have a large scale system, which depends on the amount 

of N that we take. So we need to modify Kalman filter for estimating state variables. In this 

paper, we reduce the order system before apply the Kalman filter algorithm. 
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In this simulation, we take the length of wire is      , the heat conduction 

coefficient is      , the boundary condition are     ,       . In this research, 

we divide the length of wire       to   ,   ,    grids and we do simulation during 50 

time step. The initial estimates  ̂    and initial estimation of error covariance 

        with   is the identity matrix. In this simulation, we compare the estimation result 

by Kalman filter algorithm for the original system (44) with the reduced system (9). 

 

 

Figure 2. Estimated Heat Distribution by using Kalman Filter 

Figure 2 describes the temperature at all positions at the 50
th
 time for the original system 

with     . It shows that the estimation of heat distribution on the original system, 

           , and the estimation of heat distribution on the reduced system,             , 
respectively has a performance that is not much different from the original heat distribution as 

          . The comparison of estimation error on the original system and the reduced 

system can be shown in Figure 3. 

 

 

Figure 3. MSE Estimation of Heat Distribution by using Kalman Filter 
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Figure 3 describes the comparison between average estimation error on the original system 

(    ) with on the reduced system (   ) at the 50
th
 time, while the calculation results of 

average error is listed in Table 1. Table 1 shows that the error estimation of heat distribution 

on the reduced system less than on the original system. It means that the results of state 

estimation by using the Kalman filter which is applied to the reduced system is more accurate 

than the results of state estimation on the original system. 

Table 1. MSE Estimation of Heat Distribution by using Kalman Filter  

Original Sistem Reduced System 

#State MSE #State MSE 

10 0.10259442 5 0.04569062 

20 0.010861 6 0.00424763 

50 0.01081432 7 0.006846894 

 

Furthermore, the computational time can be shown in Table 2. The the computational time 

is calculated based on the calculation of software MATLAB with Intel i5 2.50GHz, RAM 

4.00 GB, operating system win7 64-bit. The computational time is a total calculation time of 

the state estimation by using Kalman filter algorithm. Table 2 shows that the computational 

time on the reduced system is less than on the original system. 

Table 2. Computational Time to Estimate the Distribution of the Heat by 
Kalman Filter 

Original System Reduced System 

#State Time #State Time 

10 0.0154224 5 0.00914874 

20 0.048102 6 0.0317882 

50 1.25008 7 0.239162 

 

 

6. Conclusions 

Based on the above description, it can be concluded that Kalman filter algorithm on the 

reduced model can be constructed through the balanced system by applying the Kalman filter 

algorithm in discrete system. In the balanced system, we get  ̃   . By applying the 

Kalman filter algorithm in balanced system, we get  ̃̂    and  ̃   . Based on the 

calculation above, we can conclude that the state estimation  ̃̂    is only influenced by 

the estimation result of state variable which has a great effect to the system, i.e.  ̃̂    
 , and 

error covariance  ̃   , is only affected by the error covariance of the state variables that have 

a large effect on the system, i.e.  ̃ ̃    
 . 

Based on case study in the estimation of heat distribution on wire by using Kalman filter 

algorithm, we can conclude that the state estimation in the reduced system is more 

accurate and the computational time is less than the state estimation on the original 

system. 
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