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Abstract 

This paper designs a tour recommendation scheme for electric vehicles and analyzes its 

performance. Aiming at reducing the time waste brought by long charging time, the 

recommender not just decides a visiting and charging schedule for the given set of user-

selected tour spots but also integrate additional places, which have chargers and provide tour 

activities. Genetic operators, such as reproduction, selection, and mutation, are tailored to 

create a combinatory schedule of essential selected and optional recommended spots based 

on a hybrid orienteering model. Its encoding scheme represents a visiting order by a fixed-

length integer-valued vector, allowing the omission of recommendable spots. In addition, the 

fitness function estimates time waste by tracing the battery charge state based on the inter-

destination distance and stay time along a given route. The performance measurement result 

obtained from a prototype implementation discovers that our recommendation service can 

reduce the time waste by up to 12 % for the practical range of parameter setting, compared 

with the legacy tour scheduling method. 

Keywords: electric vehicle, tour schedule, hybrid orienteering model, genetic algorithm, 

waiting time 

 

1. Introduction 

From the vision of future smart transportation, electric vehicles, or EVs in short, are 

expected to gradually replace gasoline-powered vehicles for the sake of greenhouse gas 

reduction and better energy efficiency [1]. Even though EVs have many outstanding 

advantages in the environmental aspect, they are still too expensive for people to personally 

own and their charging time is too much long. Moreover, the charging infrastructure is 

usually under development in most smart grid cities, so the number of available charging 

stations will not be sufficient for the time being. In addition, even though the modern battery 

technology has much improved the energy storage capacity, the driving distance is quite 

short, leading to the range anxiety problem. Meanwhile, the information technology, 

developed in the computer science society, can alleviate this problem by intelligently 

selecting the time and place to charge an EV, considering a variety of information on 
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available charging stations, price signal changes, user preference, and generated tour plans [2, 

3]. 

The effect of long charging time gets more serious especially when the tour distance 

exceeds the driving range of a fully-charged vehicle, as an EV needs to be charged en-route 

once or more. For residential users, their daily trip distances hardly exceed this driving range, 

so overnight charging can usually cover the trip length. On the contrary, if an EV visits more 

than one destination as in rent-a-cars or delivery vehicles, the visiting order affects total 

driving distance and waiting time along the route [4]. Waiting time is the time interval in 

which drivers cannot do anything but wait for their EVs to be charged. How to decide the 

visiting order is a classic computer algorithm belonging to the category of the TSP (Traveling 

Salesman Problem). For EVs, waiting time is more critical than the driving distance, or tour 

length, as it takes about 6 7 hours to completely charge an EV with slow chargers, which are 

still the most commonly used charging method [5]. Thus, it is necessary to accurately 

estimate the waiting time for a multi-destination tour. Then, a tour schedule engine traverses 

the search space to find either an optimal or an acceptable schedule [6]. 

In EV-based tours, given the set of tour spots tourists want to visit, the tour planner creates 

a route plan according to the user requirement [7]. Basically, a backtracking-based search can 

find an optimal visit sequence for the given cost criteria [8]. However, it suffers from the 

extensive response time when the number of destinations gets larger. As contrast, suboptimal 

search techniques such as genetic algorithms and simulated annealing schemes investigate 

just a part of the whole search space to meet the time constraint [9]. Here, if some spots can 

be omitted not to violate the restriction posed on tour length and time, this scheduling is 

equivalent to the orienteering problem, or selective TSP [10]. For the cost function which 

calculates the waiting time, the availability of chargers at each tour place must be considered. 

If a charging facility is available at a tour place, the EV can be charged during the renters take 

a tour. Battery remaining increases in proportion to the stay time at the place. 

The long waiting time makes travelers feel so much inconvenient, if they cannot do 

anything while their EVs are being charged [11]. Instead, it will be much better to visit some 

places located near the expected path and have charging facilities, even though the places are 

not included in the initial user selection. The recommendable tourist places can be found 

through location-based query to the spatial database engine [12]. While all the places selected 

by tourists must be included in the final tour plan, the recommendable places don’t always 

have to be included. After all, the route planner for EV-based tours is a combination of the 

legacy TSP solver for the user-selected places and the orienteering problem solver for 

recommendable places. In tour and charging schedule generation, we assume only slow 

chargers. This assumption cannot only fully utilize the current charging infrastructure mainly 

consisting of slow chargers but also reduce the number of fast charging operations, which 

may shorten the battery life. 

In this regard, this paper designs a tour planner for EVs using computational intelligence 

and measures its performance. This service decides the visiting order, namely, tour schedule, 

taking into account stay time information and recommendable spots. It estimates the waiting 

time for a feasible schedule, represents the tour schedule by the combination of mandatory 

and optional places, and runs genetic algorithms in traversing the vast search space. It must be 

mentioned that genetic algorithms are essential to create a schedule within the reasonable 

time bound. Addition of recommendable places increases the number of destinations in 

deciding the visiting order, even though only a part of them are included in the final schedule. 

As they can be omitted from the schedule, the search space gets even larger. The primitive 

idea was designed in [13] as a short paper. This paper includes more detailed explanation on 
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the system development and experiment results. Our design can work client-server platforms 

running on ubiquitous wireless communication networks [14]. 

 

2. Related Work 

In [15], the authors present an intelligent routing system having steps of recommendation, 

route generation, and final customization. Its routing engine systematically takes into account 

both tourists’ preference and restrictions on available tour time or maximum budget to 

generate a personalized tour schedule. Particularly, combined with public transportation, the 

route generation follows the time dependent orienteering problem model [16]. Its main 

feature is that each distance calculation between two tour places becomes a time dependent 

shortest path problem, as the waiting time in taking a public bus is deeply dependent on the 

arrival time at a bus stop. A heuristic scheme is proposed to find a feasible route in real-time 

by iterative local search and perturbation phases. In this approach, the local search heuristic 

inserts new visits one by one to the route, while the perturbation phase removes consecutive 

visits from a route to avoid unnecessary waiting. Finally, a prototype is implemented for the 

city of San Sebastian, Spain, having about 50 POIs (Point of Interests) and 26 bus lines. 

Next, TSPs with profits are a generalization of the legacy TSP [6]. Each vertex is 

associated with a profit and it is not necessary to visit all vertices. Its tour scheduler pursues 

maximizing the profit while reducing the travel cost. Those two goals may conflict, so its 

object function is required to harmonize them. [6] surveys and classifies the solutions for the 

TSP with profit. Here, different classes of applications, modeling approaches, and exact or 

heuristic techniques are compared. Most of all, the classification depends on the way the two 

objectives are addressed. The first class defines an object function combining both of them, 

mainly adjusting their weights. Second, the object function takes into account only profit 

maximization while the travel cost works as a constraint, that is, the solutions violating the 

cost constraint is excluded from the search space. The third class oppositely takes the profit as 

a constraint and its object function takes into account only on the travel cost. 

For the classification described in the previous paragraph, the second class is called the 

orienteering problem, or interchangeably, the selective TSP. For this problem, [10] has 

developed a genetic algorithm where a chromosome is a sequence of visited vertices. Here, 

non-feasible solutions, which violate the cost constraint, are also accepted for better diversity, 

just with a penalty estimated by the distance from feasibility. In each chromosome, vertices 

are listed in the visiting order from the start and end points, while the order length is equal to 

the number of all given vertices, say, n. For initial population, a list of n points is generated in 

random order. A vertex will be removed with the omission probability, making the 

corresponding entry zero in the list. With this initialization, regular genetic operators such as 

crossovers and mutations are applied. Specifically, in each offspring, duplicated vertices will 

be replaced by disappearing ones. Its encoding scheme is comprehensive and robust, so our 

work partially employs it. 

In addition, SiREV is a recommender system for EVs, aiming at timely providing right 

information to a mobile device carried by a driver in EVs [7]. The intelligence in the 

information technology minimizes the problem of range anxiety by efficiently planning daily 

use of an EV. The planning procedure considers diverse information on current vehicle 

location, public transportation, energy market, and battery remaining. Particularly, SiREV 

implements a standard adapter module compatible with any battery system of any 

manufacturer that has been duly specified. By continuously monitoring the battery status, this 

system recommends when and where to charge an EV. Moreover, its interface makes it 

possible to issue orders to start, pause, and stop charging when the EV is connected to a 
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charger. The mobile user interface is provided on smart phones built upon the Android 

architecture. It also communicates with charging station operators to reserve a specific time 

slot. 

 

3. Tour Recommender Design 
 

3.1. Basic Idea 

For a tour spot having chargers, tour time can overlap EV charging, so the tourist can save 

much time. The charging gain is proportional to the stay time at the place and the average stay 

time is generally known in tourist information services and statistics. If the battery amount is 

large enough to reach the next place, no waiting time is involved. However, a tour route can 

possibly include a subroute which is too long for an EV to reach the next spot without 

additional charging. This situation is more likely to take place if battery remaining is small 

when the EV departs a spot. Besides, a tour spot having no charging facility extends the 

distance between two chargeable tour spots. The EV needs to be charged either somewhere 

on the path or at a spot even after the tour is over. In this case, the tourists must wait without 

taking any tour activity, uselessly wasting their time. Instead, the tourist can avoid this time 

waste by visiting another place having chargers, even though they are not included in the 

initial selection list. For more details, refer to [13]. 

There can be more than one spot we can recommend, while the recommender system is 

required to select their subset considering the remaining battery amount, arrival time 

estimation at a spot, battery amount needed to reach the next spot, and the like. Sometimes, 

any addition of recommended spots does not possibly lead to the reduction of waiting time. 

It’s a problem of tremendous time and space complexity. If there are n selected tour spots and 

m recommendable spots, 2
m
 recommendations exist. For each subset having the cardinality of 

k (0  k  m), we have (n + k)! visiting sequences. After all, this service essentially employs 

suboptimal search schemes, tolerating the accuracy loss. 

 

3.2. Encoding Scheme and Object Function 

Among various suboptimization techniques, genetic algorithms are known to be an 

efficient search strategy inspired by principles of natural selection and genetics [17]. To 

exploit this scheme, each schedule is first encoded into an integer-valued vector called a 

chromo-some. For our EV-based tour service, this vector, which represents a feasible tour 

schedule, consists of selected tour spots and recommended ones. The genetic scheduler begins 

with initial population having a predefined number of schedules. Without any restriction, 

many invalid schedules would appear in population in TSP style problems, as will be 

described in Subsection 3.3. Our scheduler accepts only valid schedules. Even though this 

limitation may narrow the search range and stick to a local minimum, it helps the genetic 

iteration to converge quickly. Otherwise, the search procedure may spend too much time in 

processing invalid chromosomes, failing in obtaining a reasonable quality solution. 
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Figure 1. Main Idea 

Figure 1 shows how to encode a schedule and how to build the initial population. In this 

figure, there are 8 selected spots and 5 recommendable spots, respectively, thus the final 

vector length is 13. The selected places numbered from 0 to 7 must appear in each vector, 

while the recommendable places numbered from 8 to 12 are included in a vector with the 

given probability. The omitted spots are denoted by -1, which is marked by in Figure 1. Then, 

the actual visiting sequence can be obtained by removing -1 in the schedule. Hence, (A,B,−,C) 

and (A,−,B,C) are equivalent and regarded as duplicated ones. Step 1 generates a random 

sequence for the selected set and appends recommendable spots according to the omission 

probability. Any subset of recommendable spots can be included in this vector, ranging from 

none of them to all of them. Then, numbers are exchanged in Step 2. This step continues until 

the completion of the initial population. Duplicated schedules will be removed. To check 

whether a new vector already exists in the population, the sequence generator removes -1 in 

the schedule first and compares with the others included in the population.  

For each feasible solution, it is necessary to evaluate its fitness. As this paper focuses on 

the waiting time for EV charging, we need to follow the sequence to find out where and how 

much charging is required. In our tour schedule model, an EV is fully charged when tourists 

start their trip, as it is charged overnight in most cases. Additionally, we assume that average 

stay time is known in priori. Then, the cost function is defined as in [8]. For waiting time 

formulation at a tour spot, Vi, let Bi
in denote the distance credit, when the EV arrives at Vi. B

i
av 

denotes currently available battery. Wi is the waiting time at Vi, and Bi
out is battery remaining 

on its departure. Then, 

 

Bi
av      =   min(Bmax, B

i
in + T(Vi)) 

Wi       =    min(0, Bi
av  D(Vi ,Vi+1)) Cr          (1) 

Bi
out    =   max(0,B i

av  D(Vi ,Vi+1)) 

 

,where Bmax is the maximum battery capacity, T(Vi) is the stay time at Vi, and D(Vi,Vi+1) 

denotes the road network distance between Vi and Vi+1. 

Here, Bi
in, B

i
out, B

i
av, and Bmax are converted to distance reachable with respective battery 

remaining. Wi will be either 0 or Bi
av − D(Vi ,Vi+1)) Cr, where Cr is the charging ratio, that is, 

the time amount needed for an EV to get power to drive the unit distance, namely, 1 km. Wi is 

positive only when Bi
av  D(Vi ,Vi+1) is larger than Bi

av. Additionally, for a charging station 

which has no tour activity, T(Vi) will be 0, so charging at this station makes Wi get longer. 
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For more details, refer to [8]. After all, the total waiting time or the final cost, W, is the sum 

of all Wi’s. Namely, 

 

W =Wi              (2) 

 

3.3. Genetic Search Scheme Design 

From the initial population, each evolutionary step creates a next-generation population 

consisting of better schedules, or visiting sequences. It mainly selects the best solution in a 

population by the predefined fitness function and mates them to form the next generation. Out 

of existing and newly created schedules, only the fittest survive in the population, so the 

fitness value of the population gets better generation by generation. The genetic loop iterates 

selection by fitness, reproduction of population, and mutation within a single chromosome. 

Selection is a method that picks parents by the fitness function. Our implementation employs 

the Roulette Wheel selection, which gives more chances to chromosomes having better 

fitness values for mating. The initial population is set randomly as described in Figure 1. Here, 

the fitness function estimates the waiting time for a schedule while the schedule having small 

waiting time has a higher fitness value. 

Reproduction, or crossover, is the process taking two parents and producing a child with 

the hope that the child will be a better solution. This operation randomly selects a pair of two 

crossover points and swaps the substrings from each parent. Reproduction may generate the 

same gene in a chromosome. It means that a single tour spot is visited more than once, so this 

schedule is not valid. To cope with such a problem, we implement a modified reproduction. 

After generating a new chromosome from two parents, the crossover procedure invalidates 

duplicated elements from the route, identifying the missed ones at the same time. In addition, 

for recommendable spots, a duplicated spot sometimes has no matched disappearing spot. 

Then, a new recommendable spot replaces the invalidated one. 

Finally, mutation randomly exchanges elements within a chromosome to prevent the 

search procedure to be trapped in a local minimum. The search procedure usually sets the 

mandatory rate of mutation. However, our implementation observes that not a few identical 

chromosomes are generated in a population, when the number of user-selected tour spots is 

less than 15. Hence, every time a sequence is generated, the procedure checks if it is already 

included in the population. If so, the procedure attempts to conduct mutation until finding a 

new chromosome completely different from the existing ones. Here again, just like the 

creation of the initial population, omitted points must be excluded in investigating if two 

sequences are equivalent. For mutation, there is no difference between selected and 

recommendable tour places. 

 

4. Performance Measurement 

A prototype of the proposed recommendation service is implemented using Visual C++ 6.0 

to assess its performance. The experiment makes it run on the platform stuffed with Intel 

Core2 Duo CPU, 3.0 GB memory, and Windows Vista operating system. In our 

implementation, the number of chromosomes in each population is set to 64, while the 

number of iterations is set to 1,000. Such a parameter selection is decided to generate a tour 

schedule within 1 second. However, the number of iterations can be increased if we integrate 

a kind of speed-up techniques like fast partition in the population. The distance between each 

spot distributes exponentially with a given average, which is tunable but fixed to 20.0 km. The 

stay time also distributes exponentially with the maximum of 3 hours for selected tour spots 
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and 1 hour for recommendable spots. In generating a new chromosome, the omission 

probability, namely, the probability that a recommendable spot will be included in the 

chromosome is set to 0.5. For each parameter setting, 20 sets are generated, and each waiting 

time is averaged. 

The first experiment measures the waiting time according to the number of selected points 

ranging from 5 to 15. Each selected spot has chargers with the probability of 0.8. Figure 3 

plots the waiting time for 4 cases of 0, 5, 10, and 15 recommended spots. In this experiment, 

we set the locations of recommendable spots randomly. Some of them can hardly contribute 

to the reduction of waiting time. Figure 2(1) shows that the waiting time inevitably increases 

according to the increase of the number of selected spots, as the total tour length also gets 

larger. The curve of no recommendation, represented by a solid line, is the reference waiting 

time. With more recommendable places, the waiting time is largely reduced. However, in 

some cases, the increased length of chromosomes leads to a worse schedule, as the genetic 

loop is more likely to fail to converge. Anyway, with 10 recommended places, the waiting 

time is reduced by 12 % for 8 selected places. Actually, small reduction of waiting time for 

the cases of less than 7 destinations leads to significant but just arithmetic improvement by 43 

%. This result is a little bit exaggerated. 

 

(a) number of selected spots                         (b) facility probability 

Figure 1. Waiting Time Analysis 

The next experiment measures the effect of charging facilities in the selected tour spots to 

the waiting time, changing it from 0.1 to 1.0. Here, the number of selected spots is set to 9. As 

shown in Figure 2(b), the waiting time decreases according to the increase of the facility 

probability. Here again, 4 curves of 0, 5, 10, and 15 recommendations are plotted. With no 

recommendation, namely, with no integration of additional tour places, the waiting time goes 

from 354 min for the facility probability of 0.2 down to 125 min for the facility probability of 

1.0. When tour spots have charging facilities with the probability of 0.7, the performance 

improvement reaches 29 %. When this probability gets higher, we can expect further 

reduction in the waiting time, fully benefitting from the efficiency in tour schedules. Such a 

long waiting time, coming from insufficient charging facilities, cannot be tolerated by tourists 

in practice. This parameter setting is chosen just for performance comparison. 

Additionally, this section investigates the tour length according to the number of selected 

places and the availability of chargers, their results being plotted in Figure 3. Parameters are 

set in the same way as in Figure 2. Addition of some spots inevitably leads to the increase in 

the total driving distance. However, this effect is usually absorbed by the reduction of the 

waiting time. As a result, the difference between two tour lengths, one for no 
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recommendation and the other for more than one recommendation is less than 10 %. 

Moreover, according to Figure 3(a), tour length is less affected by the availability of charging 

facilities in tour places. The difference largely remains less than 5 %. This overhead can be 

sufficiently rewarded by the reduction of the waiting time. In addition, it is also possible to set 

a maximum bound for the tour length and it will work as a constraint in tour schedule 

generation. 

 

(a) number of selected spots                                               (b) facility probability 

Figure 2. Tour Length Analysis 

Finally, the effect of omission probability is plotted in Figure 4. If it is 0, all of 

recommended spots will be included in the chromosome. As contrast, if it is 1.0, none of them 

will be included and each chromosome consists of only user-selected spots. Our experiment 

measures the waiting time, changing the omission probability from 0 to 0.9, while fixing the 

number of recommended spots to 10 for the cases of 5, 10, and 15 selected spots, respectively. 

Here, a spot has chargers with the probability of 0.8. How to select the omission probability 

will be case-sensitive, depending on the number of selected spots, the locations of 

recommended spots, and the like. Figure 6 indicates that the waiting time is smallest when the 

omission probability is 0.5. When it is less than or equal to 0.1, the waiting time gets 

abnormally larger, since every newly generated chromosome has too many elements, which 

hardly disappear from the population. Excluding those conditions, the omission probability of 

0.5 outperforms others by up to 38 %, 9.0 %, and 4.9 % for the cases of 5, 10, and 15 selected 

spots, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of the Omission Probability 
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5. Conclusions 

Smart transportation can achieve energy efficiency by widely deploying electric vehicles. 

Short driving range and long charging time are the two most critical hindrances for the 

penetration of EVs in our daily lives, but sophisticated computer algorithms can alleviate this 

problem. This paper has designed a tour scheduler which not just builds a visiting and 

charging schedule but also recommends additional tour places. This mechanism makes it 

possible to reduce time waste induced by battery charging in the EV-based tour. Genetic 

operations are tailored to create a final schedule combining legacy traveling salesman 

problem and orienteering problem solvers. Our encoding scheme represents a visiting order 

by a fixed-length integer-valued vector with some entries empty, while the fitness function 

estimates waiting time considering the overlap of touring and charging. The performance 

measurement result obtained from a prototype implementation discovers that our 

recommendation service can reduce the time waste by 12 % at maximum.  

As future work, we are planning to apply the proposed scheme to the real-life tour map in 

Jeju City, Republic of Korea, which has established a well-known test-bed site for diverse 

smart grid technologies including electric vehicles. Then, the tour scheduler will integrate a 

reservation scheme for the charging station belonging to the route plan, also systematically 

taking into account the availability of fast chargers and battery swap stations.  

 

References 

[1] Ipakchi and F. Albuyeh, “Grid of the Future,” IEEE Power & Energy Magazine, (2009), pp. 52–62. 

[2] E. Sortomme, M. Hindi, S. MacPherson, and S. Venkata, “Coordinated Charging of Plug-in Hybrid Electric 

Vehicles to Minimize Distribution System Losses,” IEEE Transactions on Smart Grid, (2011), pp. 198–205. 

[3] C. Goebel and D. Callaway, “Using ICT-controlled plug-in electric vehicles to supply grid regulation in 

California at different renewable integration levels,” IEEE Transactions on Smart Grid, vol. 4, no. 2, (2013), 

pp. 729–740. 

[4] S. Bessler and J. Grønbæk, “Routing EV Users towards an Optimal Charging Plan”, International Battery, 

Hybrid and Fuel Cell Electric Vehicle Symposium, (2012). 

[5] C. Botsford and A. Szczepanek, “Fast Charging vs. Slow Charging: Pros and cons for the New Age of 

Electric Vehicles,” International Battery Hybrid Fuel Cell Electric Vehicle Symposium”, (2009). 

[6] D. Feillet, P. Dejax, and M. Gendreau, “Traveling Salesman Problems with Profits”, Transportation Science, 

(2005). 

[7] J. Ferreira, P. Pereira, P. Filipe, and J. Afonso, “Recommender System for Drivers of Electric Vehicles”, 

Proc. International Conference on Electronic Computer Technology, (2011), pp. 244–248. 

[8] J. Lee, H. Kim, and G. Park, “Integration of Battery Charging to Tour Schedule Generation for an EV-based 

Rent-a-car Business”, Lecture Notes in Computer Science, vol. 7332, (2012), pp. 399–406. 

[9] G. Giardini and T. Kalmar-Nagy, “Genetic Algorithm for Combinational Path Planning: The Subtour 

Problem”, Mathematical Problems in Engineering, (2011). 

[10] M. Tasgetiren and A. Smith, “A Genetic Algorithm for the Orienteering Problem”, Proc. Congress on 

Evolutionary Computing, (2000), pp. 1190–1195. 

[11] H. Qin and W. Zhang, “Charging Scheduling with Minimal Waiting in a Network of Electric Vehicles and 

Charging Stations”, ACM International Workshop on Vehicular Internetworking, (2011), pp. 51–60. 

[12] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak, “Spatial Version in Search Engine Queries”, Proc. 

International Conference on World Wide Web, (2008), pp. 357–366. 

[13] J. Lee and G. Park, “A tour Recommendation Service for Electric Vehicles based on a Hybrid Orienteering 

Model”, ACM Symposium on Applied Computing, (2013), pp. 1562–1564. 

[14] S. Mehar and G. Remy, “EV-planning: Electric Vehicle Itinerary Planning”, International Conference on 

Smart Communications in Network Technologies, (2013). 

[15] P. Vansteenwegen, W. Souffriau, G. Berghe, and D. Oudheusden, “The City Trip Plan- ner: An Expert 

System for Tourists”, Expert Systems with Applications, vol. 38, (2011), pp. 6540–6546. 

[16] A. Albiach, J. Sanchis, and D. Soler, “An Asymmetric tsp with Time Windows and with Time-dependent 

Travel Times and Costs: An Exact Solution Through a Graph Transformation”, European Journal of 

Operational Research, vol. 183, (2008), pp. 789–802. 



International Journal of Control and Automation 

Vol.7, No.7 (2014) 

 

 

118   Copyright ⓒ 2014 SERSC 

[17] Y. Katsigiannis, P. Georgilakis, and E. Karapidakis, “Multiobjective Genetic Algorithm Solution to the 

Optimum Economic and Environmental Performance Problem of Small Autonomous Hybrid Power Systems 

with Renewables”, IET Renewable Power Generation, (2010), pp. 404–419. 


