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Abstract 

In this paper, we present a vision based robust pose estimation system in different 

observed situations for a quadrotor in outdoor environments. This system could provide us 

with approximate ground truth of pose estimation for an outdoor quadrotor, while most of 

existing vision based systems perform indoors. We only use the own features of the quadrotor, 

while most existing systems modify the architecture of the quadrotor or put additional 

components such as colored markers on it. We propose the novel robust pose estimation 

algorithms for different observed situations. With good observed results, we get all of the four 

rotors and calculate the pose. But when fewer than four rotors are observed, all of existing 

external vision based systems for the quadrotor do not mention this and could not get right 

results. By combining inertial measurement unit (IMU) data, our robust pose estimation 

system has solved these problems and obtained accurate results of pose estimation. We 

demonstrate in real experiments that our pose estimation system for the quadrotor could 

perform accurately and robustly in real time. 

Keywords: Pose estimation, Quadrotor, Vision, IMU data, Outdoor 

 

1. Introduction 

Recent years, micro aerial vehicles (MAVs) have gained much attention, because of 

the quite wide range of applications like exploration, search-and-rescue. The quadrotor 

used in this paper is a kind of micro aerial vehicle with four rotary wings (see Figure 1). 

A quadrotor has distinct advantages in agility and maneuverability. The quadrotor has 

wonderful property of vertical take-off and landing, omni-directional flying and 

hovering. For quadrotor application, it is necessary to set up the external pose 

estimation system for the quadrotor. The pose estimation system is significant in 

evaluating experimental results and improving algorithms. It could also be employed 

for autonomous landing or take-off of the quadrotor. 

Nowadays, most of external vision based systems worked in indoor environments. 

These systems were usually complex and expensive. They generally modified the 

architecture of the quadrotor or put some additional components such as  colored blobs 

and LEDs on it. Colored blobs and LEDs are difficult to be observed in outdoor 

environments. Besides, these methods need to detect all the blobs or LEDs rightly. 

When one or more blobs are lost, these approaches do not mention these cases and are 

not able to get right results of pose estimation. 
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The motivation of our work is to present an external vision based robust pose 

estimation system which could deal with different observed situations for a quadrotor in 

outdoor environments (see Figure 1). This system could provide us with approximate 

ground-truth pose estimation of a quadrotor. Also we intend to detect and track a 

quadrotor well without modifying architecture or adding additional components such as 

colored blobs. When all of rotors or not all of rotors are observed, we give robust pose 

estimation algorithms to get accurate results in these different observed situations. 
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Figure 1. Our Robust Pose Estimation      Figure 2. Relative Pose in our 

Relationship System for a                            System 
        Quadrotor                

 
1.1. Related Work 

Altug et al. [2] placed some colored blobs on the bottom of a quadrotor. Then they 

used a ground camera to estimate the pose of a quadrotor. Later, Altug et al., [3] 

presented a novel two-camera method. One camera was located on-board the quadrotor, 

and the other camera was located on the ground. 

Park et al., [4] placed red and green LED markers at the bottom of a quadrotor to 

form a special landmark. By analyzing the color distribution of the markers, they got 

the position and orientation of a quadrotor. Achtelik et al., [5] also made use of colored 

LEDs for pose estimation. The LEDs were inside some table-tennis balls and were 

observed by a stereo camera. Breitenmoser et al., [10] presented a monocular vision-

based system for 6D relative robot localization. It made a target module with four non -

coplanar colored LED markers on a robot and placed one camera on the wall. 

These systems were primarily designed for indoor environments. They usually made 

use of a few cameras which were located on the walls, ground or the ceilings. Besides, 

colored blobs and LEDs were difficult to be observed in outdoor environments. 

How et al., [6] presented a real-time indoor autonomous vehicle test environment 

which was named RAVEN. Ahrens et al., [7] and Abeywardena et al., [8] used the 

VICON(motion capture system) for observing the quadrotor indoors. These systems 

were mainly designed for multi-vehicle missions using both ground and air vehicles in 

indoor environments. Also they were complex and expensive. 

Klose et al., [9] put an additional rotor guard and casing around the quadrotor. Then 

they used CAD model of their quadrotor to match with the data calculated from current 

images. The computational cost of this pose estimation algorithm was high. And it 

might cause tracking loss under fast quadrotor movements. 
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Systems designed for outdoor environments were quite rare. Ha and Lee [1] used a 

team of a MAV and an unmanned ground vehicle (UGV). The UGV tracked the MAV 

and calculated its pose. Approaches [25, 26] employed results of offline SFM (Structure 

from Motion) to get pose estimation and could not perform in real-time. These 

approaches had quite large computation complexity. 

In a word, most of external vision based pose estimation systems were designed for 

indoor environments and not suitable for outdoor environments. For pose estimation, 

Park et al., [4] designed a special landmark both using points and regions information. 

Klose et al., [9] compared the original CAD model of a quadrotor with the current data. 

Most systems used direct geometry algorithms. Approaches [2, 3, 5, 10] detected 

colored blobs or LEDs and analyzed their geometry relationship to get pose estimation. 

These approaches [2, 3, 5, 10] also need to observe all of the blobs or LEDs rightly. 

When one or more blobs were lost, these approaches did not mention these cases and 

were not able to get right results of pose estimation. 

In this paper, we only use the quadrotor’s own features to estimate the pose. The 

rotors of a quadrotor are seen as the reference points. We present the robust pose 

estimation algorithms for the different observed situations. Here our algorithms refer to 

the Perspective-n-Point (PnP) problem, which is an important problem in computer 

vision, robotics, and augmented reality. 

The PnP problem is to get the position and orientation of a camera given its intrinsic 

parameters and a set of n correspondences between 3D points and their 2D projections. 

The minimal number of correspondences to solve PnP problem is three. Some 

researches [11, 12] had found that P3P problem with non-collinear points would result 

in as many as four solutions. Fischler [13] found that P4P problem with non-coplanar 

points had several solutions. P4P problem with coplanar points had unique solution. Hu 

and Wu [14] gave a result that non-coplanar P4P problem could have at most four 

solutions. For P5P problem there were as many as two solutions. For more than 6 

correspondences, it became classics Direct Linear Transformation (DLT) problem [23]. 

PnP approaches could be classified into two types: non-iterative and iterative 

solutions. Non-iterative approaches are generally linear algorithms or some ingenious 

transformations. Iterative approaches usually minimize an error function. They are 

generally slower but have higher accuracy than non-iterative ones. Iterative approaches 

may fall into local minimum and result in pose ambiguity. 

Approaches [16, 17] presented linear non-iterative algorithms for PnP problems. But 

they had low accuracy. Lepetit et al. [20] proposed a non-iterative solution EPnP to the 

PnP problem for more than four 3D-to-2D point correspondences. It had better accuracy 

and lower computational complexity than other non-iterative approaches. Among 

iterative approaches, Dementhon et al. [15] presented POSIT algorithm to solve PnP 

problem for more than four non-coplanar correspondences. Lu et al. [18] introduced a 

very accurate iterative algorithm. It minimized a 3D space error and was faster than  

other iterative ones. But it often fell into local minimum and resulted in pose ambiguity. 

Schweighofer and Pinz [19] proposed a robust pose estimation algorithm from a planar 

target. It took full advantage of properties of four coplanar points and solved  the pose 

ambiguity. Comparing with other iterative approaches, it could get right unique solution 

for four coplanar points. 

Recently, some significant work has been done for PnP problem with some other 

equipment such as inertial measurement units (IMUs). IMU often consists of three-axis 

gyroscopes and three-axis acceleration sensors. It could provide accurate roll and pitch 

angle, i.e., the vertical direction. The angular accuracy of roll and pitch angle in low 
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cost IMU is about 0.5 degree, and in high accuracy IMU is less than 0.02 degree. 

Fraundorfer et al. [21] presented a novel minimal case solution to the calibrated relative 

pose estimation problem using at least 3 point correspondences with known roll and 

pitch angles from IMU. It could cope with planes and even collinear points. Similar to 

the idea, Kukelova et al. [22] provided new closed-form solutions to the absolute pose 

estimation of a calibrated camera from two 2D-3D correspondences and a given vertical 

direction. They could also estimate the pose together with unknown focal length from 

three 2D-3D correspondences and a given vertical direction. 

 

1.2. Overview of our Work 

In this paper, the contributions of our work are mainly as follows. We propose an external 

vision based robust pose estimation system in different observed situations for a quadrotor in 

outdoor environments (see Figure 1). Our system could work well in outdoor environments, 

while most existing systems worked in indoor environments. Only the own features of the 

quadrotors are made use of, while most existing systems placed additional components such 

as LEDs or modified the architecture of a quadrotor. Also we present the robust pose 

estimation algorithms for different observed situations. When all of four rotors are observed, 

our pose estimation algorithm could obtain accurate results. When there are occlusions or 

poor tracking results, only two or three rotors may be observed. All of existing pose 

estimation systems do not mention these cases and are not able to get right results. By 

combining IMU data, our robust pose estimation system can solve these problems and 

get accurate results of pose estimation. 

This paper is organized as follows: In Section I, we introduction our work and the 

related work. In Section II, the hardware structure and features selection of the 

quadrotor are shown. The preliminary position of the quadrotor is calculated in Section 

III. In Section IV, we describe our robust and accurate pose estimation algorithms in 

detail. The simulation experiments and real experiments were performed in Section V 

and Section VI. In the end, we give the conclusions. 

 

2. Hardware and Features Selection of the Quadrotor 

2.1. Hardware 

The quadrotor used here is named X600D produced by XAircraft corporation. It has 

flight control system combining GPS and on-board inertial measurement unit (IMU) 

which consists of three-axis gyroscopes and three-axis acceleration sensors. We also 

equip our quadrotor with electronic compass, sonar or air pressure sensor. For 

transferring the selected sensor data to ground computer, we use ZigBee wireless 

transmission modules. 

The camera fixed on the ground is an industrial camera (AVT Stingray F125B) made 

by allied vision technologies. The image data is transferred to our ground computer by 

1394b connecting line. 

 

2.2. Why Only Use the Quadrotor’s Own Features 

One main character of our work is that we only use the quadrotor’s own features. We 

wish that this system is simple, effective and more general for quadrotor applications. 

For detection and tracking, we see a quadrotor as a dark blob and get its preliminary 

position. For getting accurate pose estimation, we only observe the rotors of a 

quadrotor. In outdoor environments, it is difficult to observe the colored markers or 
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appearance modification. The rotors of a quadrotors are good features. These rotors 

could also provide us with enough information for pose estimation and might be more 

reliable than colored markers. 

 

3. Preliminary Position 

3.1. Relative Pose Relationship Between the Quadrotor and the Camera 

The industrial camera is fixed on the ground, and the quadrotor is flying in the sky. 

The quadrotor coordinate system is shown in Figure 2. Here Roll denotes the rotation 

about    axis, Pitch denotes the rotation about    axis, and Yaw denotes the rotation 

about    axis. A simple illustration of the relative pose relationship between the camera 

and the quadrotor could be seen in Figure 2. 

 

3.2. Detection and Tracking of a Quadrotor 

The color of our quadrotor is black. The wingspan of the quadrotor is about 75 cm. In 

our work, we only use the quadrotor’s own features. When our quadrotor is flying in the 

air, we can see it as a dark blob in the center and four wings around it. What we face is 

a detection and tracking problem under static background. This problem could be 

divided into two main sections: detection and tracking. 

For detecting a quadrotor, we use the background difference method. In our work, we 

placed the ground camera upward with vertical direction. When a quadrotor is flying in 

the air, a moving dark blob is obtained from a sequence of images using background 

difference method. The four rotors of a quadrotor could also be detected. When a 

quadrotor is detected rightly, an accurate region of the quadrotor is also obtained. 

For tracking a quadrotor, we employ the modified mean-shift tracking approach. 

Tracking windows with variable sizes would be employed. The original size of tracking 

window is decided by the detection results. When tracking steps going on, the size of 

the tracking window would be adjusted. The tracking of four rotors would also be 

performed to get positions of the rotors. A brief introduction of detection and tracking 

steps could be seen in Figure 3. 

At first, the detection section is performed. It provides the tracking section with the 

initial results. And then the tracking section goes on. When tracking section fails, the 

detection section would carry out again. When a quadrotor flies for a long time, 

background updating is needed. In our work, background updating is performed 

according to different situations. When a quadrotor is observed rightly, the accurate 

window region which covers the quadrotor could be acquired. The background updating 

would update the region which is in image but outside the quadrotor region. This 

background updating performs every a few frames. When the quadrotor flies out the 

field of view, the background updating process would update the entire image region. 

 

3.3. Preliminary Position of a Quadrotor 

Here, the calculation of the pose of a quadrotor is divided into two steps. Firstly, the 

preliminary position of a quadrotor in the world coordinate system is obtained. 

Secondly, the accurate pose (position and orientation) of a quadrotor is calculated by 

our novel robust algorithms. 
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(a)                                             (b)                                             (c) 

Figure 3. Detection and Tracking Steps for the Quadrotor 

A quadrotor could be seen as a moving dark blob in images. The center of the dark 

blob denotes the position of the quadrotor (see Figure 3(c)). The center of an image is 

seen as the origin of the image coordinate system. The right direction of the origin is 

positive direction of x, and the upward direction of the origin is positive direction of y. 

Then the pixel positions of a quadrotor are: 
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where (     ) denotes the pixel coordinate position of a quadrotor. The C is the region 

of the quadrotor calculated from the detection step or tracking window. And         is 

the pixel position of a point which is considered as image of the quadrotor and in the 

region C. Here    is the weight of the point        .    is given two different values 

which rely on the distance between the point and the center of region C. Here    is the 

region near the center of C in region C. And    is the region farther with the center of C 

in region C. 

In this paper, the camera coordinate system is set to be equal to the world coordinate 

system. The center of camera’s CCD sensor is regarded as the origin of the world 

coordinate system. The   -axis points downward to the ground, the   -axis and   -

axis are the same with the image coordinate system (see Figure 2). Then the real 

position of a quadrotor could be obtained: 
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where f is the focal length of the camera and          are real preliminary position of a 

quadrotor in world coordinate system.  ̃  and  ̃  are undistorted pixel coordinates. D is 

the real wingspan of the quadrotor, and d is undistorted pixel distance of the wingspan 

in image. From Equation 5 and Equation 6, we could get some results: 

q q q q
X k Y o r x k y      ,                                                                                                    (7) 

where k is scaling factor of    and   . And the scaling factor of    and    is equal to 

the scaling factor of  ̃  and  ̃ . When the intrinsic parameters of the camera are 

measured accurately, the scaling factor k could have a quite high accuracy. 

 

4. Robust Pose Estimation Algorithms 

4.1. Different Observed Situations of a Quadrotor 

When a quadrotor flies at different positions, it could be seen as a fixed landmark. 

The pose estimation problems of a quadrotor could be divided into four different  

observed situations (see Figure 4). 

(1): all of the four rotors are observed rightly (see Figure 4 a b c).  

(2): three rotors of a quadrotor are observed (see Figure 4 d e f). 

(3): only two rotors of a quadrotor are observed (see Figure 4 g h i). 

(4): Fewer than two rotors are observed. 

For these different observed situations, the last situation could not be solved up to 

now. In this paper, we mainly solve the former three situations. Most of current external 

vision based pose estimation systems of the quadrotor solve the first situation. For the 

second and third situations, all of other vision-based pose estimation systems don’t 

mention these cases and could not get right results of pose estimation. In this paper, the 

second and third situations are also solved by making use of the IMU data. 
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Figure 4. The Different Observed Results of a Quadrotor. Here we Show three 
Kinds of Results for Four, Three, or Two Rotors Observed. 

4.2. Problem Formulation 

The quadrotor is the object coordinate system. In this object coordinate system, the 

3D coordinates of four rotors’ centers are   
     

    
    

              . The centers of 

four rotors could be seen as coplanar points, and then   
     

    
                . The 

real values of   
    

  are the half of wingspan and could be measured accurately in 

advance. Their corresponding coordinates in camera coordinate system are   
  

   
    

    
              . They have the relationship: 

c o

i i
M R M T        ,                                                                                                    (8) 

where            and             
  are the rotation matrix and the translation 

vector. The centers of rotors are expressed in the normalized image coordinate system as 

            
            , which are the projection of   

     
    

    
             . 

Then we could have: 

( )
c o

i i i
m M R M T            ,                                                                                                 (9) 

In this paper, the intrinsic parameters of the camera are known and have been 

measured in advance. 

 

4.3. EMRPP Algorithm for Four Rotors Observed 

When all of four rotors of a quadrotor are observed, the quadrotor could be seen as a 

landmark. Different from common non-coplanar landmarks, this landmark is made up 

of four coplanar points. The coplanar P4P problem has unique solution. 
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In order to get accurate pose estimation results, iterative approaches are good 

choices. But many iterative approaches often fall into local minimums and result in 

pose ambiguity. Schweighofer and Pinz [19] proposed a robust pose estimation 

algorithm for four coplanar points. It solved the pose ambiguity problem and got unique 

solution. Their algorithm was faster and has higher accuracy than some other iterative 

approaches. We name this algorithm as RPP. 

RPP made use of object-space error function. It considered that the orthogonal 

projection of   
  on    should be equal to   

  itself: 

( )
c o

i i i
m M R M T      ,                                                                                         (10) 

i i

i

i i

m m
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m m
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where    is a projection operator,      
  and      

  . And the object-space error 

function [18] was: 
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By taking full advantage of the coplanar properties, RPP transformed the Equations 9 

and 12. Then  ̃   only depends on a rotation about the y-axis  ̃   ̃  and  ̃: 
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where symbol     above the variables denotes the transformations of these variables.  

Here we give a modified RPP algorithm. In former section, we get the preliminary 

position of the quadrotor. From Equation 7, we could get extra constraint:  

x y
t k t       ,                                                                                                              (16) 

When the intrinsic parameters of the camera are measured accurately and the pixel 

coordinates of the quadrotor are calculated rightly, the accuracy of scaling factor k is 

quite high. Then we put Equation 16 into Equations 9 and 12: 
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o
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m R R M T          ,                                                                               (17) 
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y y z

T k t t t        ,                                                                                                   (19) 

where  ̂ is the transformation of k and could be calculated from k. By using the scaling 

factor k, there are only two degrees of freedom in  ̂ here. Then  ̃   only depends on a 

rotation about the y-axis  ̃   ̃  and  ̂ ,  ̂ . We refer to our modified RPP algorithm as 

MRPP algorithm. 
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As iterative algorithms, RPP and MRPP both need the initial pose guess which would 

affect the computation time and the accuracy of results.  Lepetit et al. [20] proposed a 

non-iterative solution EPnP for more than four 3D-to-2D point correspondences. It had 

better accuracy and lower computational complexity than other non-iterative 

approaches. EPnP was faster than RPP, but had lower accuracy than RPP algorithm.  

In order to get robust and accurate pose estimation results, we present a new 

algorithm EMRPP combined by EPnP and our MRPP algorithms. We first perform 

EPnP to get the initial pose estimation. Then we make use of this initial value as the 

input of MRPP. We name this algorithm as EMRPP. The first step of EMRPP could get 

quite accurate initial estimation of pose. A good initial estimation would speed up the 

following iterative section of EMRPP and get robust and accurate results of pose 

estimation. Because the EPnP is a fast non-iterative algorithm and the good initial 

estimation speeds up the MRPP algorithm. So the computation time of EMRPP is less 

than RPP, and the accuracy of EMRPP is higher than RPP. 

 

4.4. Three/Two Rotors Observed 

When only three or two rotors of a quadrotor are observed, we could not get unique 

pose estimation by pure vision approaches. Here we make use of the IMU data to get 

the accurate results. The IMU on the quadrotor could provide us with Roll and Pitch 

angles of the quadrotor. The angular accuracy of Roll and Pitch angles is about     . 

This accuracy meets our requirements. We employ IMU data to get accurate results 

when no more than three rotors are observed. 

In this paper, the image data and IMU data could not arrive in our computer at the 

same time. Besides, the current data of image and IMU in the computer may be 

observed at different time. Obviously, the image data and IMU data should be at the 

same time to get accurate results. The IMU data is sent by flight control system every 

10ms. Then ZigBee modules take about 15ms to transfer it to ground computer. The 

total delay of IMU data is about 15~25ms and we assume that the average delay is 

20ms. The industrial camera works at 30fps. Image data is transferred to ground 

computer by 1394b connector, which would take about 10ms. So the total delay of 

image data is about 10~40ms and we assume that the average delay is 25ms. In general, 

the image data we get currently is later than the IMU data we get currently. Strictly 

speaking, the image data is later from -5ms to 15ms than IMU data. The image data 

with the IMU data which arrived at the computer 10ms before would be used to get 

pose estimation. 

Here our approach is improved from Kukelova et al. [22]. Kukelova et al. provided 

closed-form solutions to the absolute pose estimation of a calibrated camera from at 

least two 2D-3D correspondences and IMU data. They assumed that they got the 2D-3D 

correspondences and IMU data at the same time. They declared that they got Roll and 

Yaw angles from IMU data. In their paper, the rotation matrix R performed the Pitch 

first, then the Roll, and finally the Yaw. In fact, the angles we could get from IMU data 

are Roll and Pitch. For quadrotors, the rotation matrix R should be expressed by another 

order. In our work, the rotation matrix R is: 

z y x
R R R R    ,                                                                                                            (20) 

where    is the rotation matrix for the Yaw axis,    is the rotation matrix for the Pitch 

axis and    is the rotation matrix for the Roll axis. And they could be shown as follows: 
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Utilizing the data returned by the IMU, we can get the values of    and    . So the 

only one unknown parameter of the rotation matrix R is the rotation angle   around the 

Yaw axis. Then equation 9 is: 

( ) |
i z y x i

m R R R T M  
 

        ,                                                                                (24) 

where   is the scaling factor.    are normalized image coordinates and    are 

homogeneous coordinates. To simplify the former equation, we use the         ⁄  . 

We could get: 

2

2 2

2

1 2 0

(1 ) ( ) 2 1 0

0 0 1

z

q q

q R q q q

q

  

 
  

 

 
 

      ,                                                                      (25) 

So the equation 24 could be written as: 

  ( ) | 0
i z y x i

m R q R R T M

  
 

        ,                                                                            (26) 

where [  ]  is the skew symmetric matrix of    and the rank of [  ]  is two. The 

equation 26 produces three polynomial equations and only two are linearly independent. 

From Equation 7, we could have extra constraint of T: 

x y
t k t         ,                                                                                                            (27) 

Make use of this constraint in equation 26 and we get: 

  ( ) | ( , , ) 0
i z y x y y z i

m R q R R T k t t t M

  
 

     ,                                                                       (28) 

In this case there are only three unknown variables   ,   , q. From equation 28, we 

know that one 2D-3D point correspondence provides us with two independent 

polynomial equations. But there is variable q of degree two in independent polynomial 

equations. So the minimal number of point correspondences we need to get unique pose 

estimation is two. By eliminate the variable q of degree two in equations, we could get 

unique solution of q. And then we get the final results. 
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When three rotors are observed, we would have six independent polynomial 

equations. By using least squares method, we get the optimal results of pose estimation. 

We name this algorithm as IMU+3P. If only two rotors are observed, there would be 

just four independent polynomial equations. So we get unique solution of pose 

estimation in the end. This algorithm is named as IMU+2P. 

 

5. Simulation Experiments 

We have performed our algorithms in simulation and real experiments. In simulation 

and real experiments, we compared our algorithms with some state-of-the-art and 

classics algorithms, such as GAO algorithm [12], LHM approach [18], RPP algorithm 

[19], and EPnP algorithm [20]. 

Here we use a virtual calibrated camera to generate a set of 3D-to-2D point 

correspondences. We use the intrinsic parameters of real camera as the intrinsic 

parameters of the virtual camera. We generate different Gaussian random noise to 

simulate different image noise and IMU noise. For each experiment, we set the ground-

truth translation and rotation values of the quadrotor in advance. The translation e rror is 

the angle between the estimated translation direction and the ground-truth direction. 

The rotation error is the smallest angle of rotation to bring the estimated rotation to the 

ground-truth rotation. 

 

5.1. Four Rotors Observed 

5.1.1. Pose Error with Different Image Noise  

The pose error involves the translation error and the rotation error. Here we set the 

tilt angle as 30 degrees and change the image noise. Figure 5a and Figure 5b show the 

translation error and rotation error of these algorithms. When image noise increases, the 

translation error and the rotation error would also increase. Here the results of LHM, 

RPP and EMRPP are better than GAO, EPnP. When image noise is larger than four 

pixels, the rotation accuracy of EPnP falls quickly. The accuracy of EMRPP is slightly 

higher than RPP, LHM. 

 

5.1.2. Pose Error with Different Tilt Angles 

For different tilt angles, we set the image noise as 1.0 pixel and test these algorithms. 

Figure 5c and 5d show the translation error and rotation error separately with different 

tilt angles. GAO algorithm has the worst results. When tilt angle is smaller than 10 

degrees, EPnP is better than LHM, RPP and EMRPP. When tilt angle of the planar 

points is larger than 10 degrees, EMRPP, LHM and RPP have better results than EPnP. 

Meanwhile, EMRPP has slightly better results than RPP and LHM. When tilt angle is 

more than 40 degrees, the rotation error of EPnP increases rapidly. In order to show the 

details of rotation error better, the rotation errors are shown when tilt angles are smaller 

than 40 degrees. 
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(a)                                                                (b) 

 
(c)                                                                 (d) 

Figure 5. Translation Error and Rotation Error with Different Image Noise are 
Shown in (a) and (b). Translation Error and Rotation Error with Different Tilt 

Angles are Shown in (c) and (d) 

5.2. Discussion 

The computation time is also important. In this paper, algorithms were written in 

C/C++ and tested in a notebook which had two i3 CPUs and 4G memory. The 

computation time of these algorithms could be seen in Table 1. GAO and EPnP 

algorithms perform fast, but they have low accuracy. LHM has higher accuracy and less 

computation time, but it suffers from pose ambiguity. EMRPP and RPP have quite good 

accuracy of pose estimation. Both computation time of EMRPP and RPP are below 2ms 

and certainly meet the requirements of real-time applications. In fact, our EMRPP 

usually has higher accuracy than RPP and performs 10% faster than RPP. 

Here LHM, RPP and EMRPP are iterative algorithms, so they have higher accuracy 

than non-iterative ones. RPP is in fact the modified algorithm of LHM in plane 

situation. So RPP and LHM have similar accuracy when they both obtain the correct 

results. Our EMRPP is combined by EPnP and MRPP. EPnP is quite fast and could 

provide good initial pose estimation. The good initial estimation would speed up the 

following iterative section of EMRPP and get more robust and accurate pose results. So 

EMRPP is faster and has higher accuracy than RPP. 
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Table 1. Computation Time in Microsecond 

 LHM GAO EPnP RPP EMRPP 

Mean (  ) 544 30 109 1739 1592 

Median (  ) 508 28 99 1613 1484 

 

5.3. Three/Two rotors Observed 

When there are only two or three rotors observed, pose could not be calculated by 

pure vision algorithm. IMU data would be used to calculate the pose. We test these 

algorithms with different image noise and IMU noise separately. We compare IMU+2P 

and IMU+3P with GAO, LHM and EPnP. Here GAO, LHM and EPnP are performed 

with all of the four rotors. Especially, they are all pure vision algorithms and don’t use 

the IMU data. They are shown here only for comparision. 

 

5.3.1. Pose Error with Different Image Noise 

Figure 6a shows the translation error with different image noise. IMU+2P algorithm 

is figured in cyan square and IMU+3P is figured in blue triangles. Here 0.5 degree IMU 

noise is only for IMU+2P and IMU+3P. It could be seen in Figure 6a that IMU+2P has 

the largest translation error in these algorithms. The translation error of IMU+3P is 

between EPnP and GAO. LHM and RPP have good translation accuracy. Figure 6b 

shows the rotation error with different image noise. Here IMU+2P and IMU+3P have 

higher rotation accuracy than GAO, LHM and EPnP algorithms. IMU+2P have slightly 

smaller rotation error than IMU+3P. 

 

5.3.2. Pose Error with Different IMU Noise 

Figure 6c shows the translation error with different IMU noise. The image noise is 

set as 1.0 pixel here. IMU+2P has worst translation accuracy than other algorithms. 

When IMU noise is small, IMU+3P has good accuracy. But when IMU noise is more 

than 1.0 degree, translation error of IMU+3P increases to a high level. Figure 6d shows 

the rotation error with different IMU noise. When IMU noise is not large, IMU+2P and 

IMU+3P have quite good rotation accuracy. Besides, IMU+2P has higher rotation 

accuracy than IMU+3P. 

 

5.4 Discussion 

From Figure 6, we could see that IMU+2P has the lowest translation accuracy. The 

translation accuracy of IMU+3P is higher than IMU+2P and similar to GAO, EPnP. But 

they are all lower than translation accuracy of LHM and RPP. However, IMU+2P and 

IMU+3P have higher rotation accuracy than GAO, LHM, EPnP and RPP. Usually 

IMU+2P has higher rotation accuracy than IMU+3P. This could be explained. The 

number of point correspondences is related to translation estimation. When number of 

points is in a certain range, the more points we use, the higher translation accuracy we 

will have. Here the quadrotor has only four rotors, and each observed rotor is important. 

When only two rotors are observed, the translation accuracy would be lowest. When 

three rotors are observed, IMU+3P has higher accuracy. But the translation error of 

IMU+2P and IMU+3P is usually higher than EPnP, LHM and RPP. Because EPnP, 

LHM and RPP usually use four point correspondences to get translation results. As for 

the rotation error, roll and pitch degrees could be had by IMU. Usually IMU has a quite 

high accuracy, so IMU+2P and IMU+3P have higher rotation accuracy than GAO, 
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LHM, EPnP and RPP. When the number of point correspondences is small and not 

large, the more point correspondences may disturb the accuracy of rotation calculating 

especially that there are high accuracy IMU data. From Figure 6b and Figure 6d we 

could see IMU+3P have lower rotation accuracy than IMU+2P, when IMU+3P uses 

three point correspondences. LHM, GAO, EPnP and RPP all have lower accuracy than 

IMU+2P and IMU+3P, even though they have used all of the four point 

correspondences. 

 

 
(a)                                                                (b) 

 
(c)                                                                 (d) 

Figure 6. Translation Error and Rotation Error with Different Image Noise 
are Shown in (a) and (b). Translation Error and Rotation Error with Different 

IMU Noise are Shown in (c) and (d). 
 

6. Real Experiments 

We have performed our algorithms in real outdoor environments. An industrial 

camera is fixed on the ground and connected to a desktop computer by 1394b 

connecter. In order to compare the accuracy, we need to get the ground-truth here. Here 

we select the translation results of RPP as true height   . Then this value    is used in 

equation 5 and equation 6 to get the true    and   . The real rotation angles are 

obtained from IMU data and electronic compass. From IMU data, we have the true roll 

angle and pitch angle. By electronic compass, the true yaw angle is obtained. The 

translation error is the angle between the estimated translation direction and the ground -
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truth direction. The rotation error is the smallest angle of rotation to bring the es timated 

rotation to the ground-truth rotation. 

 

6.1. Results of Real Experiments 

The results of real experiments are shown in Figure 7. When all of the four rotors are 

observed, EMRPP is performed. IMU+3P and IMU+2P are also performed by using 

three or two point correspondences randomly to compare with other algorithms. When 

only two or three rotors are observed, only IMU+2P or IMU+3P is performed. Here we 

only figure the results of position, the results of orientation are not figured. The ground-

truth is figured in yellow. Figure 7a shows the entire experiment results. In real 

experiment, GAO and EPnP have higher pose error than other algorithms. EMRPP, RPP 

and IMU+3P have good results of pose estimation in our real experiments. The results 

of EMRPP are slightly better than RPP. And the results of IMU+2P are slightly worse 

than IMU+3P. In order to show the details of results clearly, results of  20 sequential 

frames are shown in Figure 7b. 

 

 
(a)                                                                (b) 

Figure. 7. The Results of Real Experiments. The Entire Result of the 
Experiment is Shown in Figure 7a. In Order to show the Details Clearly, a 

Small Part of the Experiment Results is shown in Figure 7b. 

6.2. Pose Error in Real Experiments 

Figure 8a shows the translation error in real experiments. The X axis indicates the 

sequential frames. Here the total quantity of sequential is 270. It should be enough to 

show the error of algorithms. From Figure 8a we could see that EMRPP, RPP, IMU+3P 

and LHM have low translation error. The results of EPnP are a little unstable. EMRPP 

and RPP have better translation results. Besides, the translation errors of EMRPP are 

slightly lower than those of RPP. Figure 8b shows the rotation error of these algorithms 

in real experiments. The results of EPnP and GAO are bad. EMRPP, LHM, IMU+2P 

and IMU+3P have good rotation accuracy. The rotation results of EMRPP and IMU+2P 

are better than other algorithms. 

6.3. Discussion 

For real applications of quadrotors in outdoor environments, we need the 

combination of EMRPP, IMU+3P and IMU+2P algorithms. When we have observed all 

of the four rotors, we employ the EMRPP algorithm to get the robust pose estimation. 
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EMRPP is a pure vision algorithm which has quite good accuracy and don’t need extra 

IMU data. When there is no IMU device or IMU data has error, EMRPP could have 

good results independently.  

Sometimes, there may be only three or two rotors observed. In our real experiments, 

this situation seldom happens. But we also need pay much attention to it. Some person 

may say that they could track or forecast the pose. Attitude tracking algorithm was 

proposed for a quadrotor when faults occurred in [24]. But for quadrotors, some sudden 

situations may occur at this moment. So calculated results which using current real data 

are necessary, especially when three or two rotors are observed. 

When three rotors are observed, we could use IMU+3P algorithm. IMU+3P has both 

quite good accuracy of translation and rotation. It has the balance between translation 

and rotation, its accuracy is close to RPP and EMRPP. So IMU+3P can meet the 

requirement of our real applications. When two rotors are observed, we can perform the 

IMU+2P algorithm. Because the rotation accuracy of IMU+2P is quite high, we could 

trust the rotation results of IMU+2P. Usually, the translation error of IMU+2P is a little 

big. So we can combine the results of IMU+2P and former other results to have the 

better translation estimation. 

 

 
(a)                                                                 (b) 

Figure 8. The Translation Error and the Rotation Error in Real Experiments 

7. Conclusion 

In this paper, we present an external vision based robust pose estimation system in 

different observed situations for a quadrotor in outdoor environments. This system 

could provide us with approximate ground truth of a flying quadrotor. 

We don’t need to modify the architecture of a quadrotor or put some additional 

components such as colored markers on it. The flying quadrotor is seen as a fixed 

landmark. Only using the quadrotor’s own features, we propose robust and accurate 

algorithms to deal with the different observed situations. Before pose estimation 

algorithms perform, a pure vision-based approach is implemented to get preliminary 

position results. When four rotors are observed, we present the EMRPP algorithm 

which has higher accuracy and less computation time than RPP algorithm. When 

dealing with occlusion or poor tracking results, there may be only three or two rotors 

observed. This moment, most of other vision-based pose estimation systems for the 

quadrotor don’t mention these cases and could not get right pose results. Here we 
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present IMU+3P and IMU+2P algorithms combining IMU data to have right results of 

pose estimation for these cases. 

We have performed our system in real experiments. The results demonstrate that our 

real-time pose estimation system for the quadrotor could perform accurately and 

robustly in different observed situations. 
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