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Abstract 

Traffic system, in general, like ruralized/urbanized area expansion traffic or pedestrian 

signals, and footslogging crowds consist of many autonomous, intelligent entities, which are 

distributed over a large area and interact with each other to achieve certain goals. However, 

these entities many represent completely different things, like traffic lights, trucks or even 

road users. According to these entities, we aim at giving insight into the concept of adaptive 

vehicular agents. Additionally, different applications of multi-agent system to the traffic 

domain are presented. Furthermore, we propose to traffic flow models which describe 

driver’s behavior not only on a reactive but also on a cognitive level. 
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1. Introduction 

In recent years, the concept of an agent has become popular in many research areas, 

like information communication engineering, computer science, sociology, biology or 

even mechanical engineering and so on [1]. Depending on the application area the term 

agent can have many different meanings [2]. Although they are different with occasion 

to situation, environment or application domain, an agent define five self-* as the 

bellows; (1) self-Situation. Every agent is situated in an environment. It perceives 

information via sensors and acts on the environment via effectors. The definition of the 

environment depends on the application. (2) self-Reaction. Changes in the environment 

are recognized by the agent and the behavior is modified in time. Therefore, their 

behavior is flexible, dependable; the actions are not predefined but depending on the 

situation. (3) self-Autonomy. This means that the agent is self-determining and decides 

about their actions only with regard to its perceptions and internal/external knowledge. 

(4) self-Socialization. The agent interacts and communities with other agents. The 

social contact is essential in order to coordinate behavior, achieve common plans or 

solve problems cooperatively. (5) self-Rationalization. Every agent is committed to its 

goals. This is very important since the behavior should be more than clear reaction to 

the environment. The agent should even be able to show an initiative because of an 

internal/external motivation. Basically, two conceptual kinds of agents can be identified: 

reactive and cognitive agents [3]. A reactive agent only maps possible perceptions to 

the available reactions, that it means stimulus-response systems [4]. Such simple 

behavior is often used in car-following models [5]. The cognitive or deliberate agent is 

endowed with reasoning capabilities. In order to model complicated behavior, it’s 

helpful to distinguish different types of behavior. In the context of cognitive classes are 

shown; (1) Skill-based, (2) Rule-based, (3) Knowledge-based. Like this, this could be 
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information gathered by previous experience and describe all goals of an agent, whereas 

the intentions are generated from reasoning about the current beliefs and goals [6]. In 

order words, our newly idea is to what we make well-defined specific model to five 

self-* by AVA. 

 

2. Agent Scheduling Problems 
 

2.1. Problem Definition 

The traffic domain is full of complex systems, where the solution process can be 

based on agents since the objects can be naturally identified as agents, e.g., 

transportation planning and scheduling or road traffic control. In many of these 

applications the question arises, how different autonomous entities can work together 

effectively to achieve a common goal. However, Vehicular Network-based has 

gradually developed and implemented an intelligent transportation system, which is the 

Ministry of Science and Technology, Ministry of Land, e.g., in Korea. The 

characteristic of this vehicular service is as follows; 

 

 A modern ITS system and a Vehicular Network infrastructure with about AP operators 

receiving orders concurrently. 

 Each with a GPS navigation system and CCTV. 

 A large variety of vehicles, including some with special equipment (Smart Platform, e.g.) 

for drivers. 

 Unpredictability of the traffic congestion in various parts of Korea. 

 Deriver experience; place where drivers live and status. 

 

Scheduling of vehicles and drivers under such conditions represents an exceedingly 

complex process, which is not feasible to achieve with any known methodology. 

Especially, in urban areas where the road network is dense the dynamics are basically 

governed by the traffic lights. However, it has been found that in urban traffic the 

patterns, rush-hours, are quite recurrent. Therefore, a lot of traffic signal control 

methods are based on feedback algorithms (Genetic algorithm, Ant algorithm, Machine 

Learning, e.g.,) using historical traffic demand data [7]. But the effectiveness of traffic 

control system should work in real-time, and should be autonomous, self-adaptive and 

proactive [8]. Additionally, there is an inherent distribution of functionality over the 

components.  

 

2.2. Adaptive Scheduling Approach for AVA Model 

In order to improve this problem describe in a new approach to scheduling was 

developed, present problem-solving framework that explores job decomposition, 

optimal task allocation, and solution formulation. In addition, examples from various 

problem domains are used to illustrate each of these techniques.  
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2.2.1. Problem Solving Framework 

The process of AVA planning and problem solving can be modeled by a 4-phase 

closed-loop command and control architecture [9], shown in Figure 1 as bellows. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Problem Solving Framework is Represented by a Closed-loop 
Command and Control Architecture 

This architecture contains the following sub-functions; Plan (P), Execute (E), Monitor (M) 

and Diagnose (D). The relation represents the flow of data between each of these functions, 

which forms a continuous feedback mechanism. Each of the functions in Figure 1 can be 

further decomposed to address the more specific problem of adaptive vehicular network 

planning and scheduling, as shown Figure 2. In this figure, the specific tasks of job 

decomposition, job/agent mapping, optimal schedule computation, task allocation, and 

solution formulation are represented within this higher level architecture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Agent Planning and Scheduling Process 

As shown in Figure 2, these steps consist of ; 

 

 Formulating or receiving from another source a global objective to be achieved. 

 Structuring this objective in a form where it can be easily decomposed into a partially-

ordered set of sub-problems or jobs. 
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 Surveying the environment for available agents and services that are capable of 

completing them. 

 Determining the allocation of jobs to agents, such that the resulting schedule is optimized 

according to driver-oriented parameters. 

 Formulating the solution based on results from all participating agents, and forwarding 

this solution to the appropriate agents. 

 

2.2.2. Problem Solving Framework  

In the AVA framework that we are considering, there is a set of heterogeneous ‘avagent’, 

so called ‘agent’ generally, in the vehicular network (V-network), each with a different set of 

available and services. A single agent is given an objective to complete, possibly from 

another agent, and it wants to take advantage of the resources provided by these other agent in 

the V-network to complete the objective more efficiently. Agent planning’s first step is to 

decompose their objectives into a set of jobs, that is managed to task for planning on V-

network, that could be allocated to other agents in the V-network and complete in parallel 

[10]. However there are often many possible problem formulations for a given objective and 

choosing the best method to decompose the objective may depend on the structure of the 

agent organization the number of different service types provided by these agents. In that case, 

our main goal is to choose the job precedence graph that produces the schedules with the most 

of interesting algorithm in which is famous ‘Dijkstra’s shortest path’ and Genetic Algorithm 

in Figure 3 as bellows. 

 

 

 

 

 

 

 

 

Figure 3-A. ITS System Model based Genetic Algorithm 

It is shown that is going destination from urban. (From Strathfield to Burwood in 

Australia). This shows a figure consisting of same red color of different each line, but we just 

consider 4-th location in order to example. 

 

 

 

 

 

 

 

Figure 3-B. This Case is shown that Phenotypes are Modified through 2 Ways; 
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Firstly, it is mutation that it consists in moving one parameter through a random 

modification (upper). Secondly, it is crossing over from the 2 randomly selected genotypes 

(lower). 
 
2.2.3. Functional Decomposition 

Large-scale problems from many different domains can be decomposed by defining them 

using generalized functions of the form {S(x), C(y), A(z)…} (S is Sensors, C is Control, and 

A is Actuators). A computer program or systems engineering problem may be describe this 

way where each function corresponds to an atomic operation or set of operations. These 

operations may be ordered relative to each other or may iterate through other operations 

recursively. As we mentioned above, we consider the following control system in the 

vehicular network (V-network). 

 

2.2.4. Schedule Optimization and Task Allocation 

After choosing an acceptable job composition and gathering all relevant information about 

the agent v-network, a problem-solving agent must determine which other agents to allocate 

tasks to. When computing an optimal schedule, an agent may be trying to achieve one or 

more of the following objectives; 

 

 Minimize the weighed completion time of each job 

 Minimize the total number of agents used to solve the problem 

 Minimize the amount of communication bandwidth used 

 Maximize the aggregate value 

 Minimize the aggregate cost 

 

3. V-Network based Adaptive Schedule with Algorithms 

The distributed paradigm enables complex situations to be represented in the form most 

natural for users. It also enables software to be partitioned into relatively self-contained parts. 

It is compatible with the basic trend in modern optimization techniques, most of which are 

based now on a family of simultaneously competing and/or cooperating optimization 

algorithms. We newly approach the idea of Dijkstra’s algorithm; 

 

Step 1. Maintain an estimate d[v] of the length δ(s, v) of the shortest path for each vertex v. 

  

Step 2. Always d[v] ≥ δ(s, v) and d[v] equals the length of a known path (d[v] = ∞ if we have 

no paths so far). 

 

Step 3. Initially d[s] = 0 and all the other d[v] values are set to ∞. The algorithm will then 

process the vertices one by one in some order.  

 

Step 4. The processed vertex’s estimate will be validated as being real shortest distance, i.e. 

d[v] = ∞(s,v). 
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Step 5. Here “processing a vertex u” means finding new path updating d[v] for all v ∈ Adj[u] 

if necessary. The process by which an estimate is updated is called relaxation. 

 

Step 6. When all vertices have been processed, d[v] = δ(s,v) for all v. 

 

We consider an edge from a vertex u to v whose weights w(u,v). Suppose that we have 

already processed u so that we know d[u] = δ(s, u) and also computed a current estimate for 

d[v].  Then, 

 

 There is a path from s to u with length d[u]. 

 There is a path from s to v with length d[v]. 

 

Combing this path from s to u with the edge (u,v), we obtain another path from s to v with 

length d[u] + w(u,v). If d[u]+w(u,v) < d[v], then we replace the old path <s,…,w,v> with the 

new shorter path <s,…, u,v>. Hence we update in Figure 4. 

 

 d[v] = d[u] + w[u,v] 

 pred[v] = u (originally, pred[u] == w) 

 

 

 

 

 

Figure 4. Shorter Path in V-network 

We now prove that d[y] = δ(s,y). We have done relaxation when processing x, so  

 

d[y] ≤ d[x] + w(x,y)                                                        (1) 

 

Since x is added to S earlier, by hypothesis,  

 

d[x] = δ(s,x)                                                                       (2) 

Since <s,…,x,y> is subpath of a shortest path, by (2) 

 

δ(s,y) = δ(s,x) + w(x,y) = d[x] + w(x,y)                               (3) 

 

By (1) and (3), d[y] ≤ δ (s,y). 

 

So y ≠ u (because we suppose d[u] > δ(s,y)). Now observe that since y appears midway on 

the path from s to u, and all subsequent edges are non-negative, we have δ(s,y) ≤ δ(s,u), and 

thus d[y] = δ(s,y) ≤ δ(s,u) < d[u]. 
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Thus d[y] < d[u], which means y would have been added to S before u, in contradiction to our 

assumption that u is the next vertex to be added to S. 

 

After all, all of the priority queue operations require O(log|Q|) = O(log n) time we have that 

the algorithms uses nO(1+log n)+O(e)+O(elong n) = O((n+e)log n) time. 

 

4. Adaptive Vehicular Agent Discovery 

In order to optimally solve a AVA scheduling problem using the algorithm presented 

in this research, it’s necessary to first have full information about the agent 

environment and the resources that are available to solve the problem. Therefore, a 

planning must discovery the structure of the physical network, including all services 

offered by various policy, their execution times, and communication delays before 

determining how to allocate jobs to AVA. Considerable research has been done on 

inter-AVA communication and discovery techniques that can help an agent to formulate 

a scheduling problem, we already had above, A pseudo-code representation of 

Dijkstra’s algorithm is shown bellows. 

 

 
Initialize_single (Graph g, Node s) { 

for each node n in Nodes (g) 

g.distance [n] = infinity 

g.pi[n] = nil 

g.distance [s] = 0; 

} 

 

Relax (Node u, Node v, cost [ ][ ]) { 

   if distance [v] > distance [u] + cost [u][v] then 

        distance [v] = distance [u] + cost[u][v] 

        pi[v] = u 

} 

 

Dijkstra (Graph g, Node s) { 

   Initialize_single_source (g,s) 

  S = {0} 

  Q = Vertices (g) // priority queue 

  While Q is not empty 

     U = ExtractCheapest (Q); 

     Add node u to S; 

For each vertex v adjacent to u relax (u,v,cost[u][v]) }  
 

5. Conclusions 

The goal of this research has been to explore AVA scheduling complexity and to develop a 

technique for solving the most difficult classes of these problems. A high level, closed-loop 

framework is used to model the various stages of AVA problem-solving, including problem 

formulation and decomposition, schedule computation, and task allocation. Extension to the 

work done in this research may include exploring a dynamic programming approach to the 

same problem that is capable of taking into account uncertainty levels or a limited view of the 

AVA environment, and can adapt to unexpected changes in the environment or problem 

domain during execution of the actual schedule. Other future areas of research related to this 
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research may also include dynamically re-organizing of AVA that response to changing 

objectives and environments.  
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