
International Journal of Control and Automation

Vol.7, No.7 (2014), pp.415-422

http://dx.doi.org/10.14257/ijca.2014.7.7.34

ISSN: 2005-4297 IJCA

Copyright ⓒ 2014 SERSC

Design of Adaptive Vehicular Agents Model

Jin-Hong Kim
1
, Hoon Jin

2
 and Seung-Cheon Kim

1
†

1
Department of Computer Engineering, Hansung University

2
Department of Computer Engineering, SungKyunKwan University

1
Department of Information Communication Engineering, Hansung University

1
jinhkm@hansung.ac.kr,

2
bioagent@gmail.com,

1
kimsc@hansung.ac.kr

Abstract

Traffic system, in general, like ruralized/urbanized area expansion traffic or pedestrian

signals, and footslogging crowds consist of many autonomous, intelligent entities, which are

distributed over a large area and interact with each other to achieve certain goals. However,

these entities many represent completely different things, like traffic lights, trucks or even

road users. According to these entities, we aim at giving insight into the concept of adaptive

vehicular agents. Additionally, different applications of multi-agent system to the traffic

domain are presented. Furthermore, we propose to traffic flow models which describe

driver’s behavior not only on a reactive but also on a cognitive level.

Keywords: Adaptive Vehicular Agents (AVA), Traffic Domain, Driver’s Behavior

1. Introduction

In recent years, the concept of an agent has become popular in many research areas,

like information communication engineering, computer science, sociology, biology or

even mechanical engineering and so on [1]. Depending on the application area the term

agent can have many different meanings [2]. Although they are different with occasion

to situation, environment or application domain, an agent define five self-* as the

bellows; (1) self-Situation. Every agent is situated in an environment. It perceives

information via sensors and acts on the environment via effectors. The definition of the

environment depends on the application. (2) self-Reaction. Changes in the environment

are recognized by the agent and the behavior is modified in time. Therefore, their

behavior is flexible, dependable; the actions are not predefined but depending on the

situation. (3) self-Autonomy. This means that the agent is self-determining and decides

about their actions only with regard to its perceptions and internal/external knowledge.

(4) self-Socialization. The agent interacts and communities with other agents. The

social contact is essential in order to coordinate behavior, achieve common plans or

solve problems cooperatively. (5) self-Rationalization. Every agent is committed to its

goals. This is very important since the behavior should be more than clear reaction to

the environment. The agent should even be able to show an initiative because of an

internal/external motivation. Basically, two conceptual kinds of agents can be identified:

reactive and cognitive agents [3]. A reactive agent only maps possible perceptions to

the available reactions, that it means stimulus-response systems [4]. Such simple

behavior is often used in car-following models [5]. The cognitive or deliberate agent is

endowed with reasoning capabilities. In order to model complicated behavior, it’s

helpful to distinguish different types of behavior. In the context of cognitive classes are

shown; (1) Skill-based, (2) Rule-based, (3) Knowledge-based. Like this, this could be

mailto:1jinhkm@hansung.ac.kr
mailto:2bioagent@gmail.com

International Journal of Control and Automation

Vol.7, No.7 (2014)

416 Copyright ⓒ 2014 SERSC

information gathered by previous experience and describe all goals of an agent, whereas

the intentions are generated from reasoning about the current beliefs and goals [6]. In

order words, our newly idea is to what we make well-defined specific model to five

self-* by AVA.

2. Agent Scheduling Problems

2.1. Problem Definition

The traffic domain is full of complex systems, where the solution process can be

based on agents since the objects can be naturally identified as agents, e.g.,

transportation planning and scheduling or road traffic control. In many of these

applications the question arises, how different autonomous entities can work together

effectively to achieve a common goal. However, Vehicular Network-based has

gradually developed and implemented an intelligent transportation system, which is the

Ministry of Science and Technology, Ministry of Land, e.g., in Korea. The

characteristic of this vehicular service is as follows;

 A modern ITS system and a Vehicular Network infrastructure with about AP operators

receiving orders concurrently.

 Each with a GPS navigation system and CCTV.

 A large variety of vehicles, including some with special equipment (Smart Platform, e.g.)

for drivers.

 Unpredictability of the traffic congestion in various parts of Korea.

 Deriver experience; place where drivers live and status.

Scheduling of vehicles and drivers under such conditions represents an exceedingly

complex process, which is not feasible to achieve with any known methodology.

Especially, in urban areas where the road network is dense the dynamics are basically

governed by the traffic lights. However, it has been found that in urban traffic the

patterns, rush-hours, are quite recurrent. Therefore, a lot of traffic signal control

methods are based on feedback algorithms (Genetic algorithm, Ant algorithm, Machine

Learning, e.g.,) using historical traffic demand data [7]. But the effectiveness of traffic

control system should work in real-time, and should be autonomous, self-adaptive and

proactive [8]. Additionally, there is an inherent distribution of functionality over the

components.

2.2. Adaptive Scheduling Approach for AVA Model

In order to improve this problem describe in a new approach to scheduling was

developed, present problem-solving framework that explores job decomposition,

optimal task allocation, and solution formulation. In addition, examples from various

problem domains are used to illustrate each of these techniques.

International Journal of Control and Automation

Vol.7, No.7 (2014)

Copyright ⓒ 2014 SERSC 417

2.2.1. Problem Solving Framework

The process of AVA planning and problem solving can be modeled by a 4-phase

closed-loop command and control architecture [9], shown in Figure 1 as bellows.

Figure 1. Problem Solving Framework is Represented by a Closed-loop
Command and Control Architecture

This architecture contains the following sub-functions; Plan (P), Execute (E), Monitor (M)

and Diagnose (D). The relation represents the flow of data between each of these functions,

which forms a continuous feedback mechanism. Each of the functions in Figure 1 can be

further decomposed to address the more specific problem of adaptive vehicular network

planning and scheduling, as shown Figure 2. In this figure, the specific tasks of job

decomposition, job/agent mapping, optimal schedule computation, task allocation, and

solution formulation are represented within this higher level architecture.

Figure 2. Agent Planning and Scheduling Process

As shown in Figure 2, these steps consist of ;

 Formulating or receiving from another source a global objective to be achieved.

 Structuring this objective in a form where it can be easily decomposed into a partially-

ordered set of sub-problems or jobs.

International Journal of Control and Automation

Vol.7, No.7 (2014)

418 Copyright ⓒ 2014 SERSC

 Surveying the environment for available agents and services that are capable of

completing them.

 Determining the allocation of jobs to agents, such that the resulting schedule is optimized

according to driver-oriented parameters.

 Formulating the solution based on results from all participating agents, and forwarding

this solution to the appropriate agents.

2.2.2. Problem Solving Framework

In the AVA framework that we are considering, there is a set of heterogeneous ‘avagent’,

so called ‘agent’ generally, in the vehicular network (V-network), each with a different set of

available and services. A single agent is given an objective to complete, possibly from

another agent, and it wants to take advantage of the resources provided by these other agent in

the V-network to complete the objective more efficiently. Agent planning’s first step is to

decompose their objectives into a set of jobs, that is managed to task for planning on V-

network, that could be allocated to other agents in the V-network and complete in parallel

[10]. However there are often many possible problem formulations for a given objective and

choosing the best method to decompose the objective may depend on the structure of the

agent organization the number of different service types provided by these agents. In that case,

our main goal is to choose the job precedence graph that produces the schedules with the most

of interesting algorithm in which is famous ‘Dijkstra’s shortest path’ and Genetic Algorithm

in Figure 3 as bellows.

Figure 3-A. ITS System Model based Genetic Algorithm

It is shown that is going destination from urban. (From Strathfield to Burwood in

Australia). This shows a figure consisting of same red color of different each line, but we just

consider 4-th location in order to example.

Figure 3-B. This Case is shown that Phenotypes are Modified through 2 Ways;

International Journal of Control and Automation

Vol.7, No.7 (2014)

Copyright ⓒ 2014 SERSC 419

Firstly, it is mutation that it consists in moving one parameter through a random

modification (upper). Secondly, it is crossing over from the 2 randomly selected genotypes

(lower).

2.2.3. Functional Decomposition

Large-scale problems from many different domains can be decomposed by defining them

using generalized functions of the form {S(x), C(y), A(z)…} (S is Sensors, C is Control, and

A is Actuators). A computer program or systems engineering problem may be describe this

way where each function corresponds to an atomic operation or set of operations. These

operations may be ordered relative to each other or may iterate through other operations

recursively. As we mentioned above, we consider the following control system in the

vehicular network (V-network).

2.2.4. Schedule Optimization and Task Allocation

After choosing an acceptable job composition and gathering all relevant information about

the agent v-network, a problem-solving agent must determine which other agents to allocate

tasks to. When computing an optimal schedule, an agent may be trying to achieve one or

more of the following objectives;

 Minimize the weighed completion time of each job

 Minimize the total number of agents used to solve the problem

 Minimize the amount of communication bandwidth used

 Maximize the aggregate value

 Minimize the aggregate cost

3. V-Network based Adaptive Schedule with Algorithms

The distributed paradigm enables complex situations to be represented in the form most

natural for users. It also enables software to be partitioned into relatively self-contained parts.

It is compatible with the basic trend in modern optimization techniques, most of which are

based now on a family of simultaneously competing and/or cooperating optimization

algorithms. We newly approach the idea of Dijkstra’s algorithm;

Step 1. Maintain an estimate d[v] of the length δ(s, v) of the shortest path for each vertex v.

Step 2. Always d[v] ≥ δ(s, v) and d[v] equals the length of a known path (d[v] = ∞ if we have

no paths so far).

Step 3. Initially d[s] = 0 and all the other d[v] values are set to ∞. The algorithm will then

process the vertices one by one in some order.

Step 4. The processed vertex’s estimate will be validated as being real shortest distance, i.e.

d[v] = ∞(s,v).

International Journal of Control and Automation

Vol.7, No.7 (2014)

420 Copyright ⓒ 2014 SERSC

Step 5. Here “processing a vertex u” means finding new path updating d[v] for all v ∈ Adj[u]

if necessary. The process by which an estimate is updated is called relaxation.

Step 6. When all vertices have been processed, d[v] = δ(s,v) for all v.

We consider an edge from a vertex u to v whose weights w(u,v). Suppose that we have

already processed u so that we know d[u] = δ(s, u) and also computed a current estimate for

d[v]. Then,

 There is a path from s to u with length d[u].

 There is a path from s to v with length d[v].

Combing this path from s to u with the edge (u,v), we obtain another path from s to v with

length d[u] + w(u,v). If d[u]+w(u,v) < d[v], then we replace the old path <s,…,w,v> with the

new shorter path <s,…, u,v>. Hence we update in Figure 4.

 d[v] = d[u] + w[u,v]

 pred[v] = u (originally, pred[u] == w)

Figure 4. Shorter Path in V-network

We now prove that d[y] = δ(s,y). We have done relaxation when processing x, so

d[y] ≤ d[x] + w(x,y) (1)

Since x is added to S earlier, by hypothesis,

d[x] = δ(s,x) (2)

Since <s,…,x,y> is subpath of a shortest path, by (2)

δ(s,y) = δ(s,x) + w(x,y) = d[x] + w(x,y) (3)

By (1) and (3), d[y] ≤ δ (s,y).

So y ≠ u (because we suppose d[u] > δ(s,y)). Now observe that since y appears midway on

the path from s to u, and all subsequent edges are non-negative, we have δ(s,y) ≤ δ(s,u), and

thus d[y] = δ(s,y) ≤ δ(s,u) < d[u].

International Journal of Control and Automation

Vol.7, No.7 (2014)

Copyright ⓒ 2014 SERSC 421

Thus d[y] < d[u], which means y would have been added to S before u, in contradiction to our

assumption that u is the next vertex to be added to S.

After all, all of the priority queue operations require O(log|Q|) = O(log n) time we have that

the algorithms uses nO(1+log n)+O(e)+O(elong n) = O((n+e)log n) time.

4. Adaptive Vehicular Agent Discovery

In order to optimally solve a AVA scheduling problem using the algorithm presented

in this research, it’s necessary to first have full information about the agent

environment and the resources that are available to solve the problem. Therefore, a

planning must discovery the structure of the physical network, including all services

offered by various policy, their execution times, and communication delays before

determining how to allocate jobs to AVA. Considerable research has been done on

inter-AVA communication and discovery techniques that can help an agent to formulate

a scheduling problem, we already had above, A pseudo-code representation of

Dijkstra’s algorithm is shown bellows.

Initialize_single (Graph g, Node s) {

for each node n in Nodes (g)

g.distance [n] = infinity

g.pi[n] = nil

g.distance [s] = 0;

}

Relax (Node u, Node v, cost [][]) {

 if distance [v] > distance [u] + cost [u][v] then

 distance [v] = distance [u] + cost[u][v]

 pi[v] = u

}

Dijkstra (Graph g, Node s) {

 Initialize_single_source (g,s)

 S = {0}

 Q = Vertices (g) // priority queue

 While Q is not empty

 U = ExtractCheapest (Q);

 Add node u to S;

For each vertex v adjacent to u relax (u,v,cost[u][v]) }

5. Conclusions

The goal of this research has been to explore AVA scheduling complexity and to develop a

technique for solving the most difficult classes of these problems. A high level, closed-loop

framework is used to model the various stages of AVA problem-solving, including problem

formulation and decomposition, schedule computation, and task allocation. Extension to the

work done in this research may include exploring a dynamic programming approach to the

same problem that is capable of taking into account uncertainty levels or a limited view of the

AVA environment, and can adapt to unexpected changes in the environment or problem

domain during execution of the actual schedule. Other future areas of research related to this

International Journal of Control and Automation

Vol.7, No.7 (2014)

422 Copyright ⓒ 2014 SERSC

research may also include dynamically re-organizing of AVA that response to changing

objectives and environments.

Acknowledgement

This research was financially supported by Hansung University.

References

[1] M. Molina, J. Hernandez, J. Cuena, “A Structure of Problem-solving Methods for Real-time Decision

Support in Traffic Control”, International Journal of Human and Computer Studies (Academic Press) N.49,

577-600, (1998).

[2] J.-H. Kim, S.-C. Kim, “Design of Architectural Smart Vehicle Middleware” Information: An International

Interdisciplinary Journal, Volume 16, Number 4, April, (2013).

[3] Kohler, Walter H. “A Preliminary Evalution of the Critical Path Method for Scheduling Tasks on

Multiprocessor Systems”, IEEE Trans. On Computers, vol. 24, no. 12, pp. 1235-1238, (1975).

[4] Kwok, Yu-Kwong and Ishfaq, Ahmad. “Dynamic Critical-Path Scheduling: An Effectuve Technique for

Allocating Task graphs to Multiprocessors”. IEEE Trans. On Parallel and Distributed Systems, Vol. 7, p. 506,

196.

[5] J. Jeong, S. Guo, Y. Gu, T. He, and D. Du, “TBD: Trajectory-Based Data forwarding for Light-Traffic

Vehicular Network,” Tech. Rep. 08-040, (2008).

[6] Jin-Hong Kim, Seung-Cheon Kim, “Toward Hybrid Model for Architecture-oriented Semantic Schema of

Self-adaptive System” International Conference on Green and Human Information Technology (ICGHIT),

LNCS 7861, (2013).

[7] Spears, W. and DeJong, K. “An Analysis of Multi-Point Crossover. Foundations of Genetic Algorithms”, G.

Rawlins, ed. Morgan-Kaufmann,. (1991)

[8] T. Starkweather, D Whitley and K. Mathias, “Optimization using Distributed Genetic Algorithms. Parallel

Problem Solving from Nature, Springer-Verlag. (1991)

[9] M. Salehie and L.Tahvildari, “Software Technologies Applied Research (STAR) Group, University of

Waterloo”, Waterloo, Canada, ACM Transactions on Autonomous and Adaptive Systems,

[10] J. H. Kim, E.-S. Lee, KSVTs: Towards Knowledge-based Self-Adaptive VehiculeTrajectory Service,

Information Technolgy Convergence, Lecture Notes in Electrical Engineering vol. 253, (2013), pp.387-393.

Author

Jinhong Kim, he is Associate Professor of Department of

Computer Engineering at the Hansung University, Seoul, and

Republic of Korea. He respectively received his Ph.D. degrees in

Computer Engineering from Sungkyunkwan University (SKKU),

Korea, in 2006. Dr. Kim was a post doctorate research associate of

the Software Engineering at the SKKU, as well as of the Information

System Research Center at the University of New South Wales in

Australia. Moreover, He acted as an Engineer expert on behalf of

Vodafone Company. He has served on a Co-chair of the IEIE

Computer Society. He also served or currently serving as a reviewer

and Technical Program Committee for many important Journals,

Conferences, Symposiums, Workshop in Computer Communications

Networks area. His research interests include smart vehicular

network, smart platform, software engineering, wireless sensor

networks, scalable reliable communication protocols, mobile

computing, network security protocols, proxy caching systems, and

formal verification of communication protocols.

