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Abstract 

One of the key procedures in sugar production is the complex sugar crystallization 

process. Monitoring and controlling this process would pose great impact on the 

implantation of automatic sugar production. It has been well known that the mother liquor 

purity in the cane sugar crystallization determines the forming speed of sugar crystals and 

the mother liquor supersaturation. The lower mother liquor purity can enhance the 

formation of crystals. Generally, it needs to go through chemical laboratory analysis of 

mother liquor sample to obtain its purity because there is no instrument that can directly 

measure the purity. Aimed to tackle this issue, in this paper, a novel soft sensor approach 

based on extreme learning machine (ELM) is proposed to estimate the mother liquor purity 

parameter in sugar crystallization process. Also, the selection of the cost parameter and 

kernel parameter of ELM with Gaussian kernel is optimized by particle swarm 

optimization (PSO) method. Experimental results demonstrate that the proposed approach 

is feasible to predict the sugar mother liquor purity accurately in sugar crystallization 

process. Compared with other model building method like BP, RBF, SVM, LS-SVM and 

Primal ELM, the proposed model can perform higher prediction accuracy and faster 

building capacity. Implementation of soft-sensor model for cane sugar mother liquor purity 

makes it easier to adjust the sugar crystallization process in real conditions for higher 

productivity. 

 

Keywords: Cane sugar crystallization process, Mother liquor purity, Soft-sensor, 

Extreme learning machine, Particle swarm optimization 

 

1. Introduction 
 

From a sugar production field’s view, the sugar productivity greatly depends on the 

control techniques for cane sugar crystallization process [1-2]. However, it’s nearly 

impossible to build a precise model for sugar crystallization process due to its complex 

physical mechanism, nonlinearity, great inertia and strong coupling links, where lots of 

uncertain factors are involved [3-4]. In the sugar crystallization process monitoring field, 

the vast majority of researchers focus on the advanced control techniques [3-16] like 

nonlinear control, fuzzy predictive control, neural network with PID and robust control. 

However, the detection sensor devices for process parameters like supersaturation, 

concentration, purity, crystal content and crystal size uniformity etc., are hard to be 

measured in the real world, which makes the application of all those advanced control 

techniques stay at theoretical stage but not an actual one [17]. 

Crystallization process consists of A crystallization, B crystallization and C 

crystallization these three phases in the cane sugar production process [16-17]. In order to 
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extract the most sugar from the syrup, it needs to obtain the largest gap of molasses purity 

between the A and C crystallization phases. In other words, the lower the molasses purity 

in C crystallization becomes, the greater the absorption of sugar in the crystallization 

process is. In addition, mother liquor purity impacts the crystallization rate and 

supersaturation at a certain scale. 

As analyzed above, building the precise model for mother liquor purity is beyond 

consideration. Besides, the purity measurement in the traditional way is confined at the 

labs, which is not feasible to be applied in the industrial condition for its time-delaying and 

noise [1]. Aimed to solve these issues, this paper proposes a soft-sensor model for mother 

liquor purity to make the purity measurement online possible. 

In the past decades, soft-sensor has been the research hot spot in the academic and 

industrial fields for its capacity to utilize the historical data to predict the data trend [18-21]. 

The basic concept of soft-sensor is to establish a mathematical relation between the 

auxiliary variables and dominant variables. The dominant variables denote the 

difficult-to-measure variables while the auxiliary variables denote the easy-to-measure 

ones which are closely related to the dominant variables [22]. Soft-sensor implements the 

computer technologies into the industrial field, which has avoided the necessity of building 

the hardware system to realize the industrial measurement [23-24]. 

The soft-sensor modeling methods in general are classified into the following four 

categories. (1) Mechanism model. (2) State estimation model. (3) Statistical regression 

model. (4) Artificial intelligence model. Among them, mechanism model is only feasible in 

the simple industrial process. However, all the industrial processes that need to be analyzed 

are complex ones. Kalman filter or extended Kalman filter model process often utilized in 

state estimation model is highly depended on the precise process knowledge and prior 

estimation of measurement noise [26-28]. As to statistical regression model, its regular 

model pattern is to analyze the data by PCA or PLS method while the data must be linearly 

correlated [29-31]. Obviously, this method is not able to model the nonlinearly correlated 

data obtained from the industrial process. Recently, soft-sensor based on artificial 

intelligence has received much attention, along with the development of ANN and SVM 

[32-39]. 

As a classical regression and classification algorithm, Single-hidden Layer Feedforward 

Neural Network (SFFN) is widely used in many fields [40-41]. The traditional learning 

algorithm of SFFN, like BP, usually updates the weights and bias of the new network by 

gradient descent approach [42-44]. However, the development of SFFN is compromised by 

its own defects, which is shown as follows [45-46]. (1) The gradient descent approach 

would slower the training process by multiple iterations. (2) The performance of network is 

greatly affected by the variation of learning speed. The lower learning speed would result 

in the lower convergence speed of network, while the higher would lead to an unstable 

training process. (3) The global minimum point is hardly obtained because SFFN is easily 

stuck at the local minimum point. 

In 2004, Huang and other researchers proposed a different SFFN called ELM to 

overcome the issues discussed above [47-51]. ELM initializes the weights of input layer 

and hidden layer randomly, also the bias of hidden layer, which propels the development of 

Feedforward Neural Network (FNN). Compared with traditional SFFN, ELM is of better 

performance, like faster learning speed, better generalization and easy variable adjustment 

[52-53]. If you want the only optimal solution, all you need to do is set the number of 

hidden layers. With its excellent features, ELM draws huge attention among the academic 

field. In the past decade, the application of SVM has been rigorously exploited in the 

machine learning field. It is especially suitable for the regression and classification issues. 

In literature [54-55], Huang added kernel function to the ELM to improve its 

generalization and training speed. 
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This paper analyzes the easy-to-measure process variables that are closely related to the 

mother liquor purity. The next step is to build a soft-sensor model for the mother liquor 

purity. To do this, it needs to establish the nonlinear relationship between mother liquor 

purity and process variables first. Then it can propose the specific model based on ELM. In 

details, normalize the historical data sample to obtain the training set and testing set in the 

first place. The next step is to build the soft-sensor model through the newly training set. 

Meanwhile, optimize the cost parameter C  and kernel parameter   of the model 

iteratively by PSO. Once we have the optimal group ( C ,  ), the optimal soft-sensor model 

would come along. At last, verify the model outputs based on the testing set and compare 

them with other models outputs, aiming to prove that the performance of specific model 

discussed here is better. 

This paper is organized as follows. Section 2 introduces the methods applied in the 

soft-sensor model for mother liquor purity in sugar crystallization process. Section 3 details 

the steps of building the soft-sensor model based on ELM. Section 4 verifies the 

performance of the model by test and comparison with other models. Then the conclusion 

part is in Section 5. 

 

2. Soft-sensor Methods 

2.1. Extreme Learning Machine 

The network structure of traditional SFFN consists of input layer, hidden layer and 

output layer. Assume n  denote the number of input layer neurons, which indicates that we 

have n -th input variables. Similarly, we set the number of hidden layer neurons as l , 

while the number of output layer neurons is m . The sample set S={(xk,yk)}
N

k=1 is 

composed by N-th samples, where 1 2
[ , , .. . , ] R

T n

i k k kn
x x x x , 

1 2
[ , , .. . , ] R

T m

k k k km
y y y y . With respect to the principles of Feedforward Neural 

Network, the function relationship from input to output is described as: 

   
1

, 1, ,

l

k i i k i k

i

f G b k N



       x w x y  (1) 

where b is the connecting weight from i-th hidden layer node to the output layer node; G 

denotes the output matrix of hidden layer related to the i-th input variable; wi is the weight 

vector and bi is the bias. 

Eq. (1) can be further written as: 

H β y  (2) 

where H is the output matrix of hidden layer. 

The detailed forms of H, β , y  is presented in Eq. (2). 
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Huang et al., [47-53] proved that the network variables didn’t need to be adjusted in the 

whole. wi and bi can randomly be assigned, at the same time the training process can 

remain constant. In other words, the connecting weight β  can be obtained by Eq. (5). 

Minimize：
2

H β y  and β   (5) 

where the solution of it is: 




β H y   (6) 

where 
H  is the Moore-Penrose generalized inverse matrix of hidden output matrix H. 

There are plenty of methods available to calculate the Moore-Penrose generalized inverse 

matrix, like orthogonal projection method, orthogonalization method, iterative method and 

singular value decompositions (SVD). Here in ELM, we take orthogonal projection method 

to obtain the Moore-Penrose generalized inverse matrix. If T
H H  becomes a nonsingular 

matrix, then 
H  can be calculated by . In a similar way, once x is a nonsingular matrix, 

we have 
1

( )
T T 

H H H H . 

Detailed steps of primal ELM approach are shown as follows: 

Step1: Designate the specific neurons number and the activation function of hidden 

layer. Randomly assign the connecting weight w between input layer and hidden layer, also 

the bias bi of neurons of hidden layer. 

Step2: Calculate the input matrix H  of hidden layer. 

Step3: Then we can have β  by 



β H y . 

2.2. ELM with Kernels 

Similar to the principles of SVM, Huang et al. [54-55] add kernel function into the ELM 

approach to further optimize the primal ELM and improve its generalization and training 

speed. 

Learned from Eq. (1), the output of ELM can be described as: 

     
1

, ,

l

i i i

i

f G b



  x w x β h x  (7) 

where  h x  is regarded as a nonlinear mapping function, 

         1 1 1
, , , , , , , ,

l l l
h h G b G b       

h x x x w x w x , it maps the n-th 

dimensional input space into the l-th high-dimensional feature space nonlinearly, which 

converts the nonlinear issue to linear ones. 

The regression and classification of ELM can be converted to the optimization issues 

with constraints of equation, which is shown as follows. 

Minimize：  
2 2

1

1 1
,

2 2

N

i
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F e C e
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Subject to：  i i
y e  h x β   1, ,i N  

where e is the empirical error variance; C is the error penalty factor, which indicates the 

degree of emphasis of empirical error. According to the KKT conditions, construct the 

Lagrange function by Eq. (8), which is shown as follows. 
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  (9) 

Where i
  denotes the Lagrange Multiplier. Strive for the partial derivative of function 

 , ,L e β  with respect to , ,e β  respectively, then the necessary condition of the 

minimum  , ,L e β  is obtained as: 
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where  1
, ,

T

N
    α . 

In Eq. (10), substitute formula (a) and (b) into (c) to obtain the following condition: 

1 T

C

 
  

 

α H H y  (11) 

By using formula (a) and Eq. (11), β  is expressed as: 

1

1T T

C



 
  

 

β H H H y  (12) 

According to Eq. (7) and Eq. (11), the output of ELM is described as 

   

1

1T T
f

C



 
  

 

x h x H H H y  (13) 

Known from Mercer, the inner-product of vectors in high-dimensional space can be 

replaced by kernel function satisfied the Mercer conditions. In other words, all we need to 

do is calculate the kernel value of input variable in the original space, without concerning 

the specific form of  i
h x . 

Let’s assume the kernel matrix of ELM is 
T

E L M
K H H , then we have 

     ,
i j i j

K h hx x x x . The output of ELM in Eq. (13) is expressed as 
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2.3. Particle Swarm Optimization (PSO) 

PSO is originally attributed to Eberhart and Kennedy [56-57] and was first intended for 

simulating social behavior, as a stylized representation of the movement of organisms in a 

bird flock or fish school [58]. At present, PSO is widely applied in lots of optimization 

fields, like multi-objective optimization, pattern identification, neural network training and 

function optimization. 

A basic variant of the PSO algorithm works by having a population (called a swarm) of 

candidate solutions (called particles). These particles are moved around in the search-space 

according to a few simple formulas. The movements of the particles are guided by their 

own best known position in the search-space as well as the entire swarm’s best known 

position. When improved positions are being discovered these will then come to guide the 

movements of the swarm. The process is repeated and by doing so it is hoped, that a 

satisfactory solution will eventually be discovered [58-59]. 

Let a swarm consisted of N particle,  1 2
, , , ,

i N
      x x x x x , in a D-th dimensional 

searching space; the velocity of i-th particle is  1 2
, , ,

i i i iD
v v vv , its position is 

 1 2
, , ,

i i i iD
x x xx . In each swarm iteration optimization process, every particle would 

update its position by the measurement of two extreme values. The first extreme value is 

the optimal solution with regard to the i-th particle present position, which is called the 

individual extreme value Pg=(Pg1, Pg2,…, PgD). The second extreme value is the optimal 

solution for the whole swarm, called global extreme value . The movements of the particles 

are guided both by their Pi and Pg. Their velocities and positions are constantly updated by 

the following equations. 

1

1 1 2 2
( ) ( )

k k k k k k

id id id id g d id
v w v c r p x c r p x


      (15) 

1 1k k k

id id id
x x v

 
   

(16) 

where 1 i N  , 1 d D  ; k is the number of iteration; w is the inertia weighted 

factor (non-negative) which has great impact on the optimization process; c1 and c2 denote 

the acceleration coefficient, whose value is among (0-2); r1 and r2 are two independent 

random numbers which range from 0 to 1. 

The bigger w is conductive to the global search while the smaller would be in favor of 

local search. w demonstrates how proximate the present velocity is to the previous one. For 

the sake of balancing the global and local searching capacity, the inertia weight is selected 

by the following equation. 

    m axs ta r t s ta r t en d
w k w w w k k     (17) 

Where wstart is the initial weight; wend is the inertia weight with respect to the end of 

iteration; k denotes the iteration times at present while knax is the max iteration time. In 

general, we usually set the inertia weight as wstart=0.9, wend=0.4 because it is when the 

algorithm is on its best performance condition. Proceeded with the iteration, the w will be 

decreased from 0.9 to 0.4 linearly, which strengthens the global searching capacity in the 
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initial stage and ensures a more precise local searching capacity in the late of iteration. 

Algorithm steps of PSO are shown as follows: 

Step 1: Set the searching range for solutions space, the population size of swarm and 

the maximum times of iteration. 

Step 2: Initialize the position and velocity of swarm. 

Step 3: Calculate the fitness of every particle, fitness(x). 

Step 4: Update the individual and group to their optimal states using the following 

equations. 

1 1

1

1

( ) ( )

( ) ( )

k k k

k id id id

id k k k

id id id

x fi tn e s s x f i tn e s s p
p

p fi tn e s s x f i tn e s s p

 





 
 



 (18) 

 
1 1 1

1 2
m in , , ,

k k k

g N D
p p p p

  
     

(19) 

Step 5: Update the particle position and velocity with Eq. (15) and Eq. (16). 

Step 6: If the iteration’s requirement is meted, then the ouput Pg and its relevant fitness 

fitness(x) are determined. Otherwise jump to Step 2. 

3. Modeling of Soft-sensor Using ELM and PSO 

3.1. Auxiliary Variable Selection 

It’s fair to say that the auxiliary variable selection can be classified into the four 

following categories, selection based on variable selection principle, selection based on the 

industrial process, selection based on the technological process and selection based on 

expertise’s experience. In order to enhance the capacity of soft-sensor for better refection 

of the dynamic process and more flexible data processing, it needs to determine the amount 

of auxiliary variables in accordance with degree of freedom of system and features of the 

specific process. 

In fact, the sucrose process is too complicate to be modeled from the perspective of 

process mechanism, where a variety of modals of qualitative and quantitative and mutual 

interaction of them are involved. However, there exists a certain link between the mother 

liquor purity and the state of sucrose process, which sheds a light for us to dig into the 

purity. As we know, the process variables, vacuum degree, massecuite temperature, vapor 

pressure and temperature, vacuum level, material inflow rate and massecuite brix etc., are 

easy-to-measure and closely related to the mother liquor purity. Therefore, we define those 

process variables as the inputs of soft-sensor model, the purity as the output, which is 

detailed in Table 1. 

Table 1. The Inputs Variables of Soft-sensor Model 

No. Description Unit 

X1 Vacuum degree in crystallization process -MPa 

X2 Massecuite Temperature in crystallization process ℃ 

X3 Vapor pressure needed for heating the 

crystallization process 

MPa 

X4 Vapor temperature needed for heating the ℃ 
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crystallization 

X5 Vacuum level in crystallization process cm 

X6 Inflow rate of material in crystallization process m
3
/h 

X7 Massecuite brix in crystallization process Brix 

3.2. Modeling 

Here is the implementation of this soft-sensor model based on ELM for mother liquor 

purity. Gaussian kernel is selected as the kernel function of this model. Similar to SVM and 

LSSVM, the performance of ELM is sensitive to the cost parameter C and kernel 

parameter  , as shown in Figure 1. In order to achieve good generalization performance, 

the cost parameter C and kernel parameter   of ELM need to be chosen appropriately. 

Since parameters ( C， ) determined manually are not getting us the optimal model, it is 

necessary to optimize the key model parameters by algorithms. PSO may be an excellent 

choice to do this task. The essence of PSO is to go through user-defined times of iteration 

in a certain space for the optimal group of parameters. It proceeds in a continuous range of 

data. 

Steps of implanting the soft-sensor model are described as follow: 

Block1: To obtain the sample data set from sucrose crystallization process, including 

auxiliary data and dominant data. 

Block2: Randomly arrange the sample set and divide them into training sample set and 

testing sample set. 

Block3: Normalize the training sample set and testing sample set. 

Block4: Initialize the size of swarm, acceleration coefficient and, particles initial 

position, initial velocity, maximum times of iteration and inertia weight factor, which is 

called the initialization of PSO. Kernel function parameter and regularization parameter are 

indexes for the two dimensional space of particles. 

Block5: Set the searching range for parameters and select the MSE function of 

soft-sensor model as fitness function. 

Block6: According to the output of fitness function, set the optimal position in the light 

of comparison between individual optimal position and swarm optimal position. 

Block7: Update velocity and position for particles, the size of swarm and also the 

individual and swarm optimal position. 

Block8: If the maximum times of iteration are counted, output the optimal parameters 

and penalty factors of kernel function. In the other hand, if iteration is not over, jump to 

Block5 for a new searching till the maximum iteration times are met. 

Block9: Once we have the optimal parameters and penalty factors, rebuild the 

soft-sensor model based on the training set. 

Block10: Test the newly obtained model in Block9 with testing sample set. Analyze the 

results and make an assessment on the performance of this model. 
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Figure 1. The Effect of Tunable Parameters ( C ，  ) for Different Soft-sensors on 

the Generalization Performance. (a) LS-SVM, (b) ELM with Gaussian Kernel 
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3.3. Performance Criteria 

Generally, the following approaches are exploited to distinguish if a model is excellent, 

like RMSE, MRE and MAE. Here let’s see the formula definitions of those approaches in 

Table 2. In the table, yi denotes the actual value of i-th sample; ˆ
i

y  denotes the predicted 

value of i-th sample; y  represents the sample mean and n is the number of samples. 

Another performance index for soft-sensor is the decision coefficient R
2
, whose formula 

is shown at Table 2. R
2
 is defined as the square of two correlation coefficients. One is the 

coefficient of predicted output and the other is the coefficient of actual output of 

soft-sensor model. Decision coefficient R
2
 determines the feasibility of the model. In other 

words, a bigger R
2
 demonstrates that the model is capable to identify a more complex 

multivariable samples, which can get us a model of better regression performance and 

higher feasibility. 

Table 2. Basic Definitions of Performance Criteria of Different Soft-sensor 
Models 

Performance criteria Formula definition 

RMSE 
 

2

1

ˆ

n

i i

i

y y
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n


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1 0 0 %

n

i i
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M R E
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
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
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n
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M A E
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 

2

2 1
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n

i i

i

y y

R

y y







 




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4. Experiment Results and Discussion 
 

4.1. Dataset Acquisition 

As shown in Figure 2, it was a novel comprehensive experimental platform for cane 

sugar crystallization process, which covered all the data needed in this paper. This platform 

consisted of a small vacuum pan, peripheral components and a set of SCADA system. The 

main function of SCADA system was to acquire and control the data came from all 

monitoring equipment of this experimental platform. To a further extent, we could save all 

experimental data on the computer via SCADA system, for a more sophisticated research 

on intelligent control in the future. The acquisition of soft-sensor auxiliary variables was 
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implanted by SCADA, meanwhile the dominant variable was acquired a specific 

laboratory instrument. 

 

Figure 2. The Novel Comprehensive Experimental Platform for Cane Sugar 
Crystallization Process 

4.2. Model Validation 

The sample set of 210 samples was randomly arranged to training set and testing set, to 

ensure that the model had better generalization for new data. At this point, the training set 

of 130 was exploited to build the soft-sensor model and to select the model parameters 

while the testing set was used to evaluate the prediction performance of accuracy of this 

model. 

As discussed above, the key parameters ( C， ) of ELM model were optimized by PSO 

approach. The iteration time was set as 200, the optimization range of kernel function 

parameters and penalty factor was within the range of [2
-24

, 2
25

], MSE was chose to be the 

fitness function. After 200 times of iteration, the fitness curve in the optimization process 

was shown in Figure 3, from which we knew that the optimization process was fast enough 

to find all the optimal parameters, to a point that the soft-sensor model conducted was of 

the best performance. 

Soft-sensor model optimized by PSO was trained using training set, and a final model 

was obtained. The prediction outputs of training data were shown in Figure 4 and Figure 5 

showed the error between the predicted outputs and actual samples based on training data. 

The next step was to test the final model with testing set, whose prediction outputs were 

shown in Figure 6. Figure 7 showed the error between the predicted outputs and actual 

samples based on testing set. The testing results gave us a solid conclusion that soft-sensor 

model based on ELM and PSO was of excellent generalization performance. Also, the 

fluctuation of predicted outputs with respect to actual samples was rather small, which 

proved that the prediction accuracy of the model was very high. In addition, it was feasible 

to apply this model online since the total amount of time was less than 20s. 
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Figure 3 The Optimal Fitness Curve for the Soft-sensor Model Optimization 

 

Figure 4. The Results of Soft-sensor Model Trained by Training Set 
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Figure 5. Error between Predicted Outputs and Actual Samples based on 

Training Set 

 

Figure 6 The Prediction of Soft-sensor Model Regarding to Testing Set 
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Figure 7. Error between Predicted Outputs and Actual Samples based on 
Testing Set 

4.3. Comparison 

To validate the methods we proposed above, other model methods, like BP, RBF, SVM, 

LS-SVM and Original ELM were put into comparison. The details of model initialization 

were described as follows. ① BP neural work: Its network structure was of 7 3 1   

layers. The transfer function of hidden layers was defined by ‘tansig’, while ‘purelin’ 

represented the transfer function of output layers. Similarly, the BP network training 

function was ‘trainlm’, and ‘learngdm’ stood for the learning function of weight and bias. 

The learning rate and the mean squared error goal were set to 0.1 and 0.0001 respectively. 

② RBF network: An ordinary RBF network structure was chosen. The mean squared error 

goal was set as 0.0, while the spread of radial basis functions was 1.0. ③ SVM and 

LS-SVM: Gaussian kernel function; the cost parameter and kernel parameter were 

optimized by PSO. ④ Original ELM: To find out what the number of hidden layer 

neurons would result in an optimal ELM and exploit this ELM to test the samples involved 

in this paper. Fig.8 showed the comparisons between predicted output and actual samples 

of these models. Obviously, decision coefficient varied with each model method. The 

method proposed in this paper yielded the decision coefficient R
2
 as much as 0.9920, which 

demonstrated the soft-sensor model based on ELM and PSO had better fitting precision 

and higher prediction accuracy of all these models. Table 3 gave the RMSE, MAE and 

MRE of these models built on different methods. As you can see, the performance of the 

objective model in this paper was acceptable, where RMSE=0.3121，MAE=0.2167%，
MAPE=0.2843%. In the other hand, BP and RBF were the worst models among them, 

while PSO-SVM, PSO-LSSVM and PSO-ELM took a longer training time than BP and 

RBF due to their application of PSO. Even if model methods with PSO were 

time-consuming for model building, they also offer the better model performance. 

Compared with BP, RBF and methods with PSO, Original ELM exceled at model 

development time and model performance. To sum up, soft-sensor model based on ELM 

and PSO fused the advantages of ELM and PSO to make itself stand out among these 

model methods. 
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Figure 8. The decision coefficient values of different soft-sensor models. (a) 

BP，(b) RBF，(c) PSO-SVM，(d) PSO-LS-SVM，(e) Primal ELM，(f) ELM with 

Gaussian Kernel 
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Table 3. Performance of BP, RBF, PSO-SVM, PSO-LS-SVM, Primal ELM and 
ELM with Gaussian Kernel for Soft-Sensor Model 

Algorithms 
Training 

time(s) 

Training dataset  Testing dataset 

RMSE MRE(%) MAE  RMSE MRE(%) MAE 

BP 2.2112 0.4808 0.4719 0.3520  0.9274 0.7473 0.5712 

RBF 0.7534 0.5991 0.6299 0.4686  0.8446 0.8971 0.6770 

PSO-SVM 30.8739 0.2366 0.2295 0.1732  0.5347 0.4895 0.3760 

PSO-LS-SVM 18.3275 0.1787 0.1741 0.1311  0.3706 0.3524 0.2719 

Primal ELM 0.0146 0.2078 0.2235 0.1675  0.5066 0.4418 0.3407 

Proposed 14.5497 0.1489 0.1497 0.1122  0.3121 0.2843 0.2167 

 

5. Conclusion 

This paper proposed a new soft-sensor model based on ELM for mother liquor purity in 

the cane sugar crystallization process. The optimization process of ELM with Gaussian 

kernel is carried on by PSO for a purpose of optimal model. As usual, model is trained and 

tested with samples data acquire from a novel experimental plant. Also, comparison with 

other model methods like BP, RBF, SVM and LS-SVM is conducted to prove that the 

soft-sensor model based on ELM with Gaussian kernel is of higher prediction accuracy and 

better performance. The feasibility of purity measurement propels the development of 

controlling the sugar crystallization process, so as to improve the sugar productivity. The 

future work will focus on introducing mechanism knowledge of sugar crystallization 

process into model development, thereby to address the multi-phase and inter-coupling 

issues. Meanwhile, the whole sugar process would be categorized into several states, and 

models for each state are trained based on their respective state data, in a way to improve 

the liability and accuracy of models. 
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