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Abstract 

This paper proposes non dominated sorting genetic algorithm (NSGA-II) with a feature of 

adaptive crowding distance for obtaining optimal location and sizing of Static Var 

Compensators (SVC) to minimize real power losses (RPL) and load bus voltage deviation 

(VD) considering critical contingencies. The voltage security of the power system is also 

analyzed for all placements of SVCs at respective location computed. Finally, after 

compression of optimal power loss, load bus voltage deviation along with voltage security 

following by simulation of critical contingency the most appropriate location and sizing of 

SVC is determined.  While obtaining the optimal location and sizing of SVC, single line 

outages are considered as contingencies and voltage limits for the load buses are considered 

as security constraints. The effectiveness of proposed approach has been demonstrated on 

IEEE 30-bus test system. The results obtained for proposed algorithm are optimistic and 

reveal the capability of the NSGA-II to generate well-distributed non-dominated Pareto front. 
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1. Introduction 

One of the foremost problems in the emerging power system operation and control is 

to maintain the voltage security with optimal operating and the security of the system 

while minimizing system power losses and voltage deviation. Application of FACTS 

devices may lead to maintaining suitable voltage profile while minimizing power losses 

and load voltage deviation. Owing to huge investment of FACTS devices researchers 

have reported numerous approaches with intensive exploration at planning stage to 

acquire maximum benefit of these devices. 

The different methodologies, approaches, and algorithms have been suggested in the 

literature to solve the problems of dispatch. This reported work can broadly be 

classified under following headings: classic methodologies such as the the weights 

method [1], non linear programming technique [2], and the ϵ-constraints method [3]. 

The classic methods reported in the literature presents some inconveniences like the 

extensive execution time, the uncertainty of convergence, the intricacy of algorithmic 

and the creation of a weak number of non dominated solutions. Owing to these 

limitations of classical methods, the evolutionary algorithms have gained more 

popularity recently because of their capability to exploit huge spaces of search and ease 

of requirement for pre identification of the problem. The evolutionary techniques [4] as 

NSGA (Non Dominated Sorting Genetic Algorithm) [5], NPGA method (Niched Pareto 

Genetic Algorithm) [6-7], SPEA (Strength Pareto Evolutionary Algorithm) [8], ISPEA-

II (Improving Strength Pareto Evolutionary Algorithm) [9], Ant Colony Optimizat ion 

Method [10], an Improved Hybrid Evolutionary Programming Technique [11]. The 
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SVC is a shunt connected static Var generator or consumer whose output can be 

adjusted to exchange inductive or capacitive to maintain or control specific parameters 

of electrical power system, such as bus voltage etc. [12]. The SVC is basically 

combination of a series capacitor bank shunted by thyristor controlled reactor. In [13] 

mathematical modeling of FACTS has been discussed. Srinivas and Deb introduced 

NSGA [14]. NSGA has shown its limitation for complexity in computational, lack of 

elitism and for choosing the optimal parameter value for sharing parameter. Therefore, 

a modified version, NSGA-II was developed. 

In this paper, the problem of obtaining optimal sizing and location is formulated as 

multi-objective optimization, mixed continuous-discreet problem by combining two 

objective functions. A new methodology has been implemented to solve multi -objective 

optimization which basically consists of two parts. In first part severe lines are 

identified using voltage power index (VPI) whereas in second part NSGA-II have been 

implemented following by outage of these critical lines to obtain optimal location and 

sizing of SVC for minimizing real power loss and voltage deviation. 

 

2. Problem Formulation 

In this paper, outage of single line in a power system is considered as contingencies 

for optimal location and sizing of SVC. The severity of a single line outage contingency 

is estimated using Voltage Power Index (VPI) [15] as: 

 

VPI = ∑            
  
     

     2m         
                                             (1) 

 

where,      
 
is absolute difference between the voltage magnitude under line outage 

and base case condition;     
   | is bus voltage magnitude chosen by the utility 

engineers to indicate acceptable limit for an outage case. In this paper, the value of the 

exponent m has been taken as 2 and     
   | has been considered as 0.2 p.u. the no. of 

buses are 30. 

 

2.1 Minimization of Real Power Loss 

The real power loss (RPL) as first objective function         is defined as: 

 

      ∑       
    

     
   
                                                  (2) 

 

where,     and    are the number of transmission lines and conductance of k
th

 line 

respectively. The bus voltages at the both ends of k
th

 line are represented by       
                        . 

 

2.2 Minimization of Voltage Deviations 

The load bus voltage deviation (VD) as second objective function         is defined 

as: 

 

     ∑         
   

      
                                                 (3) 
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where, NL represents number of buses. In this paper,   
   

 is considered as 1.0 p.u. In 

a power system it is accustomed to maintain the load bus voltage within ±5% of its 

nominal value. 

In both objective functions F1(u,v) and F2(u,v), u is the vector of dependent variable 

consisting of load voltages (   
      . . .     

     ), generators’ reactive powers (      
         

     ) and 

transmission lines’ loadings (   
     

 . . .      

      ), and v is the vector of independent variables 

consisting of generators’ voltages (   
            

     ), transformers’ tap settings (T1 . . .TNT) and 

reactive power injections (   
                   

      ).Therefore u and v can be expressed as: 

 

u = [   
     . . .     

          
     . .      

          
      . . .      

     ]                                (4) 

 

v = [   
     . .  .     

     ; T1 . . .   TNT        
      . . .     

     ]                                (5) 

 

2.3 Multi- Objective Fnction 

The objective function for the optimization problem can be obtained by combining 

all objectives mentioned above as:  

 

                                                                      (6) 

 

Now, the optimization will be carried out for minimizing the objective 

function        , subject to equality and inequality constraints. 

 

2.4 Constraints 

1) Equality Constraints 

The equality constraints represent the typical load flow equations as follows:  

 

           ∑         
  
                                      (7) 

 

for i = 1,……., NB 

 

             ∑         
  
                                                             (8) 

 

for i = 1,……., NB 

where, NB represents number of total buses. PGi,, QGi are the generator real and 

reactive powers and PDi, QDi   are the active and reactive power load at bus i 

respectively; Gij and Bij are the transfer conductance and susceptance of the line 

between bus i and bus j, respectively. 

2) Inequality Constraints  

Inequality constraints are the upper and lower limits of reactive power of a generator. The 

reactive power of i
th
 generator must lie within its minimum      

       and maximum      
       

limits as: 
 

     
                 

                                                    (9) 
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3. Implementation OF NSGA-II 
 

3.1. Initial Population 

Initially in first step of algorithm an initial population P is generated randomly. The size of 

initial population is N’ n’, where N’, n’ represents the number of individuals (chromosomes) 

and the number of continuous and discrete variables respectively. At the start, a gene of each 

individual is determined by assigning its value randomly between the upper and lower limits. 

 

3.2. Non-dominated Sort 

After generation of the initial population P’, a non-dominated sorting of the population is 

done into different fronts [16]. For clarity, description of a naive and slow sorting procedure 

of a population into different non-domination levels is presented here. Thereafter, a fast 

approach is addopted [16]. In a naive approach, identification of solutions for the first non-

dominated front in a population is done by comparing each solution with every other solution 

in the population to find its dominance. This requires comparisons for each solution for all 

objectives. At this stage, all individuals in the first nondominated front are found. In order to 

find the individuals of the next nondominated front, the solutions of the first front are 

discounted temporarily and the above procedure is repeated. 

 

3.3 Density Estimation 

To attain an estimate of the density of solutions in surrounding of a particular solution in 

the population, the average distance of two points of either side of the point under 

consideration is calculated for each of the objectives. A cuboid is so created by considering 

the nearest solutions on either side. The magnitude idistance provides as an estimate of the 

perimeter of the cuboid and is called the crowding distance [16]. 

 

3.4 Selection Algorithm 

The Non-dominated sorting based selection approach as given in [17] has been used for 

selecting the population of the next generation.  In this selection process, as a first step, a 

combined population Rt = Pt  Qt is created, where Pt represents the parent population while 

Qt stands for the new population formed after implementation of genetic operators. The size 

of population Rt is as 2N. The population Rt is sorted in accordance of non-domination. 

Thereafter, crowding distance is calculated for each individual. As the only N chromosomes 

are selected for next generation Pt+1 from 2N chromosomes of population Rt, an ensured 

elitism is predicted. Now, solutions of the non-dominated set F1 are considered as the best 

solutions of the combined population and they must be given higher precedence than any 

other solution during the process of selection. During the process of selection of N solutions 

from non-dominated set i.e., from F1 starting fronts the following cases are considered for 

selecting a front: 

a) There should be attest more than one chromosome having zero crowding distance and/or  

b) The different solutions that have a crowding distance which is less than ∈ the threshold 

value. 

The Case 1 is a suggestion of duplicate chromosomes and in case 2 where chromosomes 

are having a crowding distance less than ∈ is an indication of close proximity of solutions i.e., 

threshold value which, if accepted, may result into cluster of solutions which are not desired. 
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The algorithm selects only one solution in case of duplicate chromosomes and rejects all that 

chromosomes which have crowding distance less than ∈. If the number of solutions so 

selected from front F1 is less than N, the remaining (y) members of the population Pt+1 are 

chosen from next succeeding non-dominated fronts in the order of their ranking. As a result, 

solutions from the set F2 are chosen next to F1, followed by solutions from the set F3 and so on 

till N number of solutions is selected. During the selection, the solutions are received from 

best to worst front (F1, F2, ….. ), but due to non acceptance of all solutions of any particular 

front, there may be a chance for not getting all N chromosomes even from all the fronts 

(having 2N chromosomes). In all these cases, population will be filled up by duplicating the 

acceptable solutions. The new population size N of Pt+1 will now used for genetic operator 

like selection, crossover, and mutation to create a new population Qt+1 of size N. 

 

3.5 Adaptable Threshold for Crowding Distance 

The threshold value for crowding distance is adapted as proposed in [17] for creating 

prospective solutions like creating diverse solutions, avoiding too proximate solutions etc. If, 

for a particular value of ∈, all N solutions are selected from F1 only, it may happen that all N 

accepted solutions are clustered in a particular region. In that case the algorithm adapts the 

value of ∈ to a greater value so that, to have a total of N solutions, the algorithm is bound to 

go to at least F2, if not to F3. Going to F2 guarantees that all solutions of F1 are accepted, 

which are spread over the Pareto Front. However, if N solutions are not obtained even after 

accepting non-violated chromosomes from all the fronts, ∈ value will be decreased to enable 

the algorithm to have more solutions from F1, F2 etc. 

 

3.6 Creation of Offspring 

In this paper, real-coded GA (SBX- Simulated Binary Crossover) has been used for 

crossover and Polynomial mutation is used for mutation [19]. 

 

3.7 Stopping Rule 

The iterative procedure for generating new trials by selecting those having minimum 

function values from the set of competing pool is terminated when there is no considerable 

improvement in the solution. The procedure can also be terminated when a given maximum 

number of generations are reached. In this paper, the maximum number of generations has 

been considered as the stopping criterion. 

Implementation Summary of NSGA-I1 

1: Formulate NSGA-I1 (N, G, fi(xi)))  N members evolve G generations to solve 

fi(xi)) 

2: Initialize Population 

3: Generate random population 

4: Compute Objective Values 

5: Assign rank (level) based on Pareto dominance 

- sort 
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6: Apply Binary Tournament Selection 

7: Performore recombination and mutation 

8: Generate child population 

10: for each Parent and Child in Population do 

11: Assign Rank (level) based on Pareto - sort 

12: Generate sets of non dominated vectors along PF 

known 

13:Loop (inside) by adding solutions to next generation starting from the first front 

until N individuals found determine crowding distance between points on each front 

14: end for 

15: Select points (elitist) on the lower front (with lower rank) and are outside a 

crowding distance 

16: Create next generation 

17: Binary Tournament Selection 

18: Recombination and Mutation 

19: end for 

20: end formulation 

 

4. Simulations Results 

NSGA-II has been applied for obtaining optimal location and sizing of SVC in IEEE 30-

test bus system [20] in order to minimize real power losses and load bus voltage deviation. 

The test bus system has one slack bus, 5 PV buses, 24 PQ buses and 41 transmission lines. 

For optimal placement of SVC, single line outages contingencies are created in the test power 

system and to determine the severity of a contingency, VPI is calculated for all possible line 

outage contingencies. It has been found that developed NR load flow program converges only 

for 37 single line outages out of 41 single line outages. The objective function is formulated 

as a multi objective optimization problem. The placement of SVC is considered as a discreet 

decision variable, where any of 24 PQ buses may be the possible optimal location for SVC 

placement. 

For some of the single line outage contingencies, the voltage magnitude of some buses 

violated the permissible voltage limit in viewpoint of voltage security, which is indicated by 

VPI in this paper. On the basis of VPI, the ranking of critical contingencies is done as shown 

in Table 1. As can be seen from Table 1, severity of line outages on the basis of VPI are as 36, 
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5, 15, 37, 38, and 25 and so on. In this paper, only first three severe contingencies i.e., outage 

of line nos. 36, 5, and 15 have been considered for SVC placement.  

Table 1. VPI Values for Outage of Line Outage 

Sr. No. LO VPI Ranking 

1.  36 0.1541 I 

2.  5 0.0063 II  

3.  15 0.0023 III  

4.  37 0.0018 IIII  

5.  38 0.0015 IIV  

6.  25 0.0011 IV  

7.  18 0.0004 IVI  

8.  4 0.0004 IVII  

9.  14 0.0003 IVIII  

10.  26 0.0002 IIX  

11.  24 0.0002 IX  

12.  30 0.0001 IXI  

 

4.1.  Outage of Line no. 36 

The highest value of VPI is computed for outage of line no. 36 as 0.1541, therefore, from 

the viewpoint of voltage security it is the most severe line outage. NSGA-II is implemented 

for five trials following outage of line no. 36. The population size and number of generations 

are chosen as 10 and 180 to determine the optimal location and sizing of SVC. The simulation 

results of five trials are shown in Table 2. It offers several solutions to multi objective 

optimization problem and permits the operator to select adequate one. These results provide 

two optimal locations i.e. bus no. 27 for three times and bus no. 30 for two times. The power 

loss and voltage deviations are found 0.1930 p.u. and 0.6562 p.u., when SVC was placed at 

bus no. 27 whereas power loss and voltage deviations are computed 0.1943 p.u., and 0.6207 

p.u, when SVC is placed at bus no. 30. The best optimal location for SVC may be considered 

as bus no. 27 due repeatedly computing with minimum value of power loss and voltage 

deviation. Figure 1 shows the Pareto optimal front for outage of line no. 36. The best 

compromising solution for optimal values of power loss and voltage deviation are compiled 

in Table 5. Figure 2 illustrates the voltage profile of the test system without and with SVC at 

bus no. 27. It can be observed from Figure 2 that with outage of line no. 36, the voltage 

magnitude at bus nos. 25, 26, 27, 29 and 30 was below 0.95 p.u., which after placement of 

SVC at bus no. 27 significantly increased. 

Table 2. SVC Placement Results for LO 36 

Trials Optimal 

Location 

Optimal Size 

(p.u) 

Real Power Loss 

(p.u) 

Voltage Deviation in 

(p.u.) 

T1 27 0.1180 0.1930 0.6562 

T2 30 0.1093 0.1943 0.6207 

T3 27 0.1180 0.1929 0.6562 

T4 27 0.1180 0.1929 0.6562 

T 5 30 0.1093 0.1943 0.6207 
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Figure 1. Pareto Front for LO 36 

Figure 2. Voltage Profile for Outage of Line no. 36 without and with SVC at Bus 
No. 27 

4.2.  Outage of Line No. 5 

The value of VPI is 0.0063 for second most severe contingency which is outage of line no. 

5. NSGA-II has been implemented to find the optimal location and sizing of SVC following 

the outage of line no. 5 for five trials keeping the same fixed number of generations and 

population size i.e., 180 and 10 respectively. The simulation results obtained are compiled in 

Table 3. It is observed from Table 3 that bus no. 6 is repeatedly obtained optimal location for 

four trials of SVC placement. The Pareto optimal front obtained as simulation result of 

NSGA-II is shown in Figure 3 which provides several solutions for power loss and voltage 

deviation for multi-objective function (6). The best compromising solution for optimal values 

of power loss and voltage deviation are summarized in Table 5. The voltage profile before 

and after placement of SVC at bus no. 6 is shown in Figure 4. 
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Table 3. SVC Placement Results for LO 5 

 

Trials 

Optimal 

Location 

Optimal Size (p.u) Real Power Loss 

(p.u) 

Voltage Deviation 

(p.u) 

T1 6 0.4269 0.3192 0.6013 

T2 6 0.4269 0.3192 0.6013 

T3 6 0.4269 0.3192 0.6013 

T4 6 0.4269 0.3192 0.6013 

T 5 6 0.4269 0.3192 0.6013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pareto Front for LO 5. 

Figure 4. Voltage Profile for Outage of Line no. 5 without and with SVC at Bus 
no. 6 
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4.3. Outage of Line no. 15 

The developed NSGA-II has been applied maintaining the same population size and 

generations i.e., 10 and 180 respectively for third most severe contingency i.e., outage of line 

no. 15 having VPI value as 0.0023. The simulation results for five trials are summarized in 

Table 4. The optimal location for SVC placement is found to be bus no. 24 with rating of - 

0.2033 p.u. for three trials. Figure 5 shows the Pareto optimal front obtained as a result of 

NGSA-II implementation when line number 5 is out. The best compromising solution for 

optimal values of power loss and voltage deviation are given in Table 5. The voltage 

magnitude of all the buses with and without SVC is illustrated in Figure 6. 

Table 4. SVC Placement Results for LO 15 

Trials Optimal 

Location 

Optimal Size 

(p.u) 

Real Power Loss 

(p.u) 

Voltage Deviation(p.u) 

T1 24 -0.2033 0.2933 0.2935 

T2 24 -0.2033 0.2933 0.2935 

T3 10 -0.7805 0.1640 0.2556 

T4 10 -0.7805 0.1640 0.2556 

T 5 24 -0.2033 0.2933 0.2935 

 

Figure 5. Pareto Front for LO 15 when SVC Placed at Bus no 24 
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Figure 6. Voltage Profile for Outage of Line no. 15 without and with SVC at Bus 
no. 24 

Table 5. BEST Compromising Results of NSGA-II 

LO Optimal 

Location 

Optimal Size in p.u Real Power Loss in p.u 

Base case - - 0.1803 

LO 36 27 0.1180 0.1930 

LO 5 6 0.4269 0.3192 

LO 15 24 -0.2033 0.2933 

 

The optimal location and sizing of SVC computed for outage of line no. 36 is found to be 

self-sufficient for maintaining voltage security of the test power system when outage of the 

first three most critical lines occur one at a time. Table 6 presents voltage scenario of test 

power system without placement of SVC. It is observed from Table 6, there is no need of 

SVC placement for base case condition. Table 7 presents voltage profile of the test system 

when SVC of 0.1180 p.u. is placed at bus no. 27 and outage of the tree most critical lines i.e., 

outage of line no. 36, 5, and 15 are simulated considering one at a time. 

Table 6. VOLTAGE Profile without SVC 

Bus 

No. 

Base Case LO 36 LO 5 LO 15 

1.  1.06 1.06 1.06 1.06 

2.  1.043 1.043 1.043 1.043 

3.  1.0215 1.0201 1.0111 1.0274 

4.  1.0129 1.0112 1.0012 1.0199 

5.  1.01 1.01 0.9323 1.01 

6.  1.0121 1.0115 0.9993 1.0112 

7.  1.0034 1.0031 0.9601 1.0029 

8.  1.01 1.01 1.01 1.01 
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9.  1.051 1.0461 1.0437 1.0454 

10.  1.0444 1.0354 1.036 1.0362 

11.  1.082 1.082 1.082 1.082 

12.  1.0574 1.053 1.0524 1.0097 

13.  1.071 1.071 1.071 1.0419 

14.  1.0424 1.0353 1.0371 0.997 

15.  1.0378 1.027 1.0317 1.0002 

16.  1.0447 1.0382 1.0381 1.014 

17.  1.0391 1.0309 1.0312 1.0242 

18.  1.0279 1.0177 1.021 1.0001 

19.  1.0253 1.0154 1.0178 1.0035 

20.  1.0293 1.0196 1.0215 1.0109 

21.  1.0321 1.0182 1.0237 1.0225 

22.  1.0327 1.0173 1.0243 1.0227 

23.  1.0272 1.0045 1.0202 0.9984 

24.  1.0216 0.9835 1.0133 1.0052 

25.  1.0189 0.9246 1.0093 1.0124 

26.  1.0012 0.9051 0.9915 0.9946 

27.  1.0257 0.8999 1.0155 1.0254 

28.  1.0107 1.0153 1.0009 1.0088 

29.  1.0059 0.877 0.9955 1.0056 

30.  0.9945 0.8637 0.9839 0.9942 

Table 7. VOLTAGE Profile with SVC at Bus no. 27 

Bus No. LO 36 LO 5 LO 15 

1.  1.0600 1.0600 1.0600 

2.  1.0430 1.0430 1.0430 

3.  1.0213 1.0124 1.0285 

4.  1.0126 1.0027 1.0212 

5.  1.0100 0.9344 1.0100 

6.  1.0127 1.0011 1.0131 

7.  1.0038 0.9621 1.0041 

8.  1.0100 1.0100 1.0100 

9.  1.0520 1.0463 1.0495 

10.  1.0467 1.0405 1.0433 

11.  1.0820 1.0820 1.0820 

12.  1.0586 1.0548 1.0195 

13.  1.0710 1.0710 1.0515 

14.  1.0435 1.0403 1.0072 

15.  1.0373 1.0358 1.0107 

16.  1.0463 1.0413 1.0228 

17.  1.0413 1.0353 1.0319 

18.  1.0285 1.0252 1.0096 

19.  1.0264 1.0221 1.0123 

20.  1.0307 1.0259 1.0193 

21.  1.0333 1.0295 1.0312 

22.  1.0335 1.0305 1.0318 
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23.  1.0238 1.0275 1.0109 

24.  1.0147 1.0249 1.0203 

25.  0.9985 1.0356 1.0408 

26.  0.9805 1.0183 1.0235 

27.  1.0009 1.0508 1.0618 

28.  1.0162 1.0058 1.0139 

29.  0.9806 1.0315 1.0428 

30.  0.9688 1.0204 1.0317 

 

5. Conclusion 

In this paper, non dominated sorting genetic algorithm has been successfully 

implemented for obtaining optimal location and sizing of SVC to minimize real power 

loss and load bus voltage deviation. The voltage security of the system is also ensured 

with placement of SVC. It is concluded that optimal placement of SVC can enhance 

voltage security significantly in a power system. Implementation performed on IEEE 

30-bus test system indicates that proposed NGSA-II is capable to provide optimal 

location and sizing of FACTS devices. Though, the proposed approach has been 

implemented on IEEE 30-bus test system, the same can be implemented on practical 

power system as well. 
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