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Abstract 

In this paper, an online receding robust predictive control scheme is proposed for input-

constrained semi-trailer system with delay and disturbance. The controller method meets the 

requirements of control constraint and, based on dual-mode control, the method is obtained 

by online optimization of performance index. The performance index is the cumulative sum of 

quadratic weighted value of minimal states. Controller output is calculated by means of 

linear matrix inequality (LMI), and the controller itself can ensure the asymptotic stability 

and disturbance attenuation of semi-trailer closed-loop system. Finally, simulation results 

confirm the effectiveness of the method. 

Keywords: semi-trailer system, time-delay and disturbance system, robust predictive 

control, dual-mode control, LMI 

 

1. Introduction 

With the development of transportation technology, driving safety and driving comfort 

have become an increasingly important indicator for vehicles [1]. A semi-trailer is an efficient 

means for long-distance transportation. Its fuel consumption per 100 ton kilometers is 40% 

lower than that of a bus, and its maintenance cost is lower, too. Therefore, vigorously 

developing semi-trailer transportation has become an important approach to improve 

transportation efficiency. Because of factors such as the large mass and high center of gravity 

of semi-trailer, its driving stability and safety are great concerns. There are frequent accidents 

as rollover, folding and shimmy, not only damaging vehicles and drivers, but causing 

significant harm to other vehicles on road as well. Therefore ride performance of semi-trailer 

has become one of the important issues that need to be addressed. Ride performance is the 

ability of the vehicle system to ease and attenuate road shock so as to keep a certain comfort 

for drivers in a vibration environment when the vehicle is on the road, and also the ability of 

trucks to maintain the intactness of goods. However, there are conditions of longitudinal and 

transverse ramps or uneven road surface, such as sandstone road, mountainous road, forest 

and plateau. Under such conditions, once a vibration problem occurs, the longitudinal and 

lateral adhesion performance of semi-trailer’s tires will be reduced. For loaded goods, 

vibration can cause a negative impact on the reliability of materials [1, 2]. Semi-trailer’s 

vibration comes mainly from the ground roughness, followed by change of force from the 

engine, transmission system, steering system, and brake system as well as the imbalance and 

deflection of wheels, etc. These are the major factors affecting semi-trailer’s ride 

performance. The vibrations caused by the impact can also reduce the life of the semi-trailer 

and its steering stability. Therefore, to improve the semi-trailer’s ride performance, vibration 

must be reduced and semi-trailer’s anti-vibration performance must be improved. 

app:ds:cumulative
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In the driving process, because of time-delay [3] of the semi-trailer as well as external 

disturbance and input constraint, conventional control methods such as LQG/LTR [4, 5] and 

PD [6] cannot obtain good effect. Some engineers have turned their eyes to modern control 

theory. Model predictive control (MPC), based on predictive model [7], is an efficient control 

method to deal with control and state constraints [8~12]. Compared with single-state 

feedback control, predictive control replaces global one-time optimization with receding 

optimization, which means that the optimization process is not an offline one-time process but 

rather repeated online optimizations and receding implementations, so that uncertainties 

caused by model mismatch, time-varying and interference can get a timely remedy. This 

receding optimization strategy has taken into account both the ideal optimization for a 

sufficient long period of time in the future and the impact of actual uncertainties. Therefore, 

the establishment of a receding optimization strategy in a finite time domain will be more 

effective.Literature [13] gives a detailed summary of research on robust predictive control. In 

view of bounded disturbances of linear time-invariant system, H


controller with receding 

horizon is designed in literature [14], which can guarantee the stability of a closed-loop 

system and can meet the H


index. Since 
H

  control directly designs controller in state 

space and it has strengths such as precise calculation and maximum optimization, it provides 

the uncertain MIMO system of model perturbation with a controller design method which can 

ensure robust stability of the control system and can optimize certain performance indicators 

[15]. Therefore, many scholars have combined the method with predictive control algorithm. 

In literature [16], an MPC algorithm is proposed for linear systems with input constraints and 

unknown time-delay. This algorithm is given under the assumption that the terminal matrix of 

time-delay is a constant matrix. Under this assumption, even though the optimal cost function 

should be transformed into a simple optimization problem of two equivalents, it can be 

relatively easy to obtain a controller with asymptotic stability. In literature [17], a new 

Lyapunov function is constructed for the same system to improve the rapidity of performance 

indexes. But the system has not taken into account disturbance factor. Literature [17-19] 

applies predictive control to network control, in which literature [18] considers a nonlinear 

system; literature [19] designs an output feedback predictive control method for a class of 

constrained linear systems; literature [20] designs a minimum-maximum predictive controller 

for a class of nonlinear network with delay and packet loss. 

It is known that as the calculation amount of predictive control algorithm is large, the 

implementation of predictive control algorithm usually requires the use of high-performance 

computing devices. However, with the development of field control devices and embedded 

system as well as the continued improvements in the frequency of related microcontrollers, 

predictive control algorithm has also begun to penetrate underlying control and has been 

applied in PLC, FPGA and other devices [21]. 

Based on the above analysis, a predictive controller design method is put forward for 

semi-trailer system’s input constraints, uncertain time-delay and vibration. In predictive 

control, the dual mode control is used, and appropriate Lyapunov function is chosen to 

improve the performance of the system. A H


controller with receding horizon is 

designed based on that, which can guarantee the stability of the system and disturbance 

attenuation. 
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2. Description of Problems 

Consider a semi-trailer system [21]: Consider as Figure 1: 
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Figure 1. Semi-trailer Structure Chart 

where 
1 2 3
( ), ( ), ( ), ( )x k x k x k u k respectively represent the angle difference between truck and 

trailer, trailer angle, vertical position of trailer tail and swinging angle of truck; truck length is

l , trailer length is L , reverse speed is v , [0 ,1)a  refers to lagged variable coefficient and T

refers to sampling period. The swinging angle of truck is bounded by the condition

( )u k  . When 
1
( )x k  and ( )u k change slightly, the mathematical model is as follows: 

   

 

 

1 1 1

2 1 2

3 1 2 3

( 1) ( ) ( ) ( )

( 1) ( ) ( )

( 1) s in 2 ( ) ( ) ( )

x k x k v T L x k v T L u k

x k v T L x k x k

x k v T v T L x k x k x k

    


  


     

      

              

(1) 

As it is a non-rigid chain link from the truck to the trailer, let [0 ,1)a   be a lag coefficient, 

and add formula (1) to lags: 

 

     

     

   
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( 1) ( ) ( )

1 ( ) ( )

( 1) ( ) 1

( ) ( )

( 1) s in 2 ( ) 1

2 ( ) ( ) ( )
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a v T L x k d v T L u k

x k a v T L x k a v T L

x k d x k

x k v T a v T L x k a

v T L x k d x k x k

    


  


   


 


   

   

       

                          

(2) 

In formula (2)，  3
( )x k

 is with a linear form. Let it be an approximation linear and 

consider vibration of truck and trailer in the process of driving, and then formula (2) can be 

converted into formula (3) which is shown below: 
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     
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                     (3) 

Convert formula (3) into a matrix form: 

1

1

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p

j j

j

x k A k x k A k x k d

B k u k B k w k



    



          

                                       

(4) 

where ( )
n

x k R , ( )
m

u k R and ( )
P

w k R respectively refer to the system state, input and 

disturbance signal. 0 ( 1, , )
j

d j p  is a unknown time-delay constant. Suppose 0
j j

d d  , 

where 
j

d is a known constant. Meanwhile, for the convenience of calculation, ( )
i j

d d i j 

is set. ( )A k , ( )
j

A k and 
1

( 1, , ), ( ), ( )j p B k B k refer to uncertain time-varying matrix with 

corresponding dimensionality: 
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System (4) also satisfies the assumed condition: persistent disturbance ( )w k has a known 

upper bound, i.e., ( ) , 0w k r r   

An evaluation signal is defined: 

1 1 2 2

1 / 2

( ) [ ( ) , ( ) , ( )

( ) , ( )]
T

p p

z k C x k C x k d C x k d

C x k d R u k
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
                     

 

(5) 
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where , ( 1, , )
q n

j
C C j p R


  respectively refer to weighting matrix for quantity of state and 

quantity of time-delay state; m m
R R


 refers to a positive definite symmetric weighting matrix 

for input quantity. 

Quadratic weighted accumulative value of minimized state is taken as the performance 

index. Meanwhile disturbance factor is introduced into the performance index. A controller is 

designed for system (4), so that the corresponding closed-loop system can meet the following 

performance: 

1) The controller can satisfy the constraint condition, namely, 

, m ax
| | ( ) || 0 , 1, 2

j j
u k U k j m                                                    (6) 

and the following performance index can reach the minimum value. 

1
[ ( ) ( ) ( ) ( ) ]

m in m ax ( )
j
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J k

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N

i

i N
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z k i k w k i k

z k i k w k i k













 

    

  





                                    (7) 

where 
1
( )J k represents the finite time domain, and 

2
( )J k represents the infinite time 

domain, which can be converted into terminal cost function. ( / )x k i k  indicates a state 

predictive value at k i  moment based on model (4) at k moment, and ( / )u k i k indicates 

the predictive control at the i
th
 step of k moment. 

2) When ( ) 0w k  , the system is asymptotically stable; when ( ) 0w k  , 
2

L norm from 

disturbing ( )w k signal to evaluation signal ( )z k  is no more than  , namely, 
2 2

z w  

 

3. Main Results 
 
3.1. Controller Design 

This controller is designed by the thinking of dual-mode control [22]. Assume that the 

parameters in system (4) are accurate, and it is a nominal model, i.e., the "closest" model to 

the actual system. When system constraints are not considered, closed-loop linear feedback 

form is used: 

( / ) ( / ) ( / )u k i k F k i k x k i k                                        (8) 

The above state feedback control law allows unconstrained nominal system to have a 

stable closed-loop and to be optimal in a certain sense. When system constraints are 

considered, a set of auxiliary variables ( / )e k i k are added to control law (8), and then (8) 

becomes: 

( / ) ( / ) ( / ) ( / )u k i k F k i k x k i k e k i k                                            (9) 

in which: 

( / ) ( / 1) , 1, 2 2F k i k F k i k i N       
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( 1 / ) ( 1)F k N k F k     

As ( / )e k i k  is a compensation term added to control law to meet the constraint 

condition, ( / ) 0e k i k   when the system constraints do not work. 

Let the prediction horizon be N . Combine formula (8) and (9) together: 

( / ) ( / ) ( / ) ( / )

( / 0 ) 0 , {0 ,1 1}

u k i k F k i k x k i k e k i k

F i N

     

   
                               (10) 

( / ) ( ) ( / )u k i k F k x k i k i N                                                   (11) 

Formula (10) and (11) are the dual-mode control strategy: in the prediction horizon, control 

law (10) with auxiliary variables is used to ensure that the system terminal state enters the 

robust invariant set structured by feedback control law and constraint; outside of the 

prediction horizon, control law (11) is used to ensure the stability of the closed-loop system. 

It should be noted that ( / )F k i k , ( )F k  in formula (10) and formula (11) are called 

feedback gain in conventional control theory. There are used here to reflect the gain 

scheduling thinking of predictive control. 

Theorem 1: Suppose 
0

( )F k YQ
 
in formula (10) and (11) for the system described in the 

equation (4). If there are variables 

0 1
, , , , ( / ) , ( / ) , , ( 0 ,1

p i
Y Q Q Q r F k i k e k i k r i   , 2 , . . . . , 1)N  , then the control law (10) 

and (11) is used to minimize performance index online under the condition of satisfying 

control constraints, in which these variables are the optimal solutions for the following LMI 

problems. 

 

0 1

1

, , , ,... , , ( / )
0

m in
i p

N

i
r r Q Q Q Y e k i k

i

r r






                                                      (12) 

1 1 0
, , 1

1
0

( / )N
l l l

m k N k  

 
 

  

                                               (13) 
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00
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H Q
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
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

  

 


 

  

 


 

  

         

                         

(14) 
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1 1 , 0

1 1 , 0

1 1 , 0

2 2

...

1

...

. . .

1

( / )

( / ) 0

( / ) ( / ) ( / ) 0

0

i

i

i

i

l l l

l l l

p p

l l l

r r

C x k i d k I

C x k i d k

F k i k x k i k e k i k

I

R











   


  





  


   

  


 



  









                  (15) 

2

, m a x

0

0
j

T

U

Y Q

 
 

 

                                                 (16) 

, m ax
( / ) ( / ) ( / )

j
F k i k x k i k e k i k U    

                            
(17) 

where 
2 1

0 1
{ ( , , , ) , }

p
d ia g Q Q Q r


  ， 

1 1 1

l l l l l

p p
H A Q B Y A Q A Q B  

 
， [1, 2 , ]l L  

0 1 1
{ , , , 0 , 0}

p p
N d ia g C Q C Q C Q ， 

{ , , , }d ia g r r r  ， 

0 1 1
{ , , , 0 , 0 , 0}

p
K d ia g Q Q Q


 ， 

1 1 1

1 1 2 1 2 1
{ ( , ( ) ( ) ), , , }

p p p
d ia g d Q d d Q d d Q I I I

  


   , 

1 1 0
, ,

( / ); 1 , 0 1N
l l l

j
m k N k l L j N       , 

includes all possible ( / )m k N k compact sets, and 

( / ) [ ( / ) , ( 1 / ) ,

( / ) ] , 1, 2 , ,

T T

T T

p

m k i k x k i k x k i k

x k i d k i N

    

  
 

1

2 1

1

1 1 1 1

0 1 1 1 1 1

1 1 1

2 1 2 2 1 2 2

1 1 1

1 1

[ , , ( 1) ,

( ) , ( 1) , ,

( ) , ( 1) ]

p p

d

d d

p p p P P p p

d d

d ia g Q d Q d Q Q

d d Q d d Q Q

d d Q d d Q Q





   

  



  

 



 

  

  

 

The symbol   indicates symmetric items in the symmetric matrix, and the following 

relationships exist: 

1 1 1 1

0 0 1 1 0
, , .... , ( )

p p
Q rP Q rP Q rP Y F k Q

   
     

See appendix for the proof of Theorem 1. 

Therefore, the following algorithm steps can be obtained by using Theorem 1: 
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Step 1 Let ( / ) ( )x k k x k at k moment. 

Step 2 By solving LMI (8) -(13), the expressions of ( ) , ( / ) ,F k F k i k ( / )e k i k  

( 0 ,1, 1)i N  can be obtained. 

Step 3 ( / ) ( / ) ( / ) ( / )u k k F k k x k k e k k  is applied to system (4), and ( 1)x k   is 

calculated. 

Step 4 Let 1k k  , and repeat from Step 1 to Step 3. 

 

3.2. Analysis of Stability and Disturbance Attenuation 

Theorem 2: If the algorithm obtained by Theorem 1 has a feasible solution at the initial 

moment 0k , the system is feasible for any 0k , and the closed-loop system is with 

asymptotical stability and H  disturbance attenuation. 

Proof: Assume that Theorem 1 has a feasible solution at the initial moment 0k

(expressed by the symbol *): ( ), ( / ), ( )F k e k i k k
  

 , at this point, the following solution 

is taken as a feasible solution at 1k  moment: 

( 1 / 1) ( 1 / ) ( 1 / )

( 1 / ) 0 ,1, .. . 2

( / 1) ( ) ( / ) ( 0 )

( 1) ( )

u k i k F k i k x k i k

e k i k i N

u k i N k F k x k i N k i

k k 

 



 



       

    

      

 

At this point, 

1
2 22

0

2 2
2

1

( 1)

[ ( 1 / 1) ( 1 / 1) ]

( 1 / 1) ( 1) ( 1 / 1)

[ ( / ) ( / ) ]
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N

i
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T
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z k i k w k i k

m k N k k m k N k













 



  

 

      

       

    

   





                  (18) 

Equation (A2) is set up in the appendix, so the following can be obtained: 

2 2

( ) ( )

2 2
2

( 1 / ) ( / )

( / ) ( / )

k k
m k N k m k N k

z k N k w k N k

 



 

 

   

   

                              (19) 

Add Equation (19) to equation (18): 

1
2 2

2

1

2 22

( 1) [ ( / ) ( / ) ]

( / ) ( ) ( / ) ( )

( 1) ( ) ( / ) ( / )

N

i

T
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2 22
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Herein ( 1)J k


  is obtained by optimizing Theorem 1 at moment 1k  . At this point, let

( )J k


serve as Lyapunov function in system (4). If ( ) 0w k  , the system is asymptotically 

stable; if ( ) 0w k  , the system has disturbance attenuation. 

 

4. Simulation Research 

Consider semi-trailer system (1). The parameters come from literature [22]. Take 2 .8l m

, 5 .5L m , 1 .0 /v m s  and 2 .0t  . [1,1 .5 9 1 5 ]  , 0 .7a  , 1.0T , and then the system 

parameters are: 

 

1 1

1

1 1

1

1 .0 5 0 9 0 0 0 .0 1

0 .0 5 0 9 1 0 0 .0 1

0 .0 5 0 9 0 .4 1 0 .0 1

0 .0 2 1 8 0 0 0 .1 4 2 9

0 .0 2 1 8 0 0 0

0 .0 2 1 8 0 0 0

A B

A B

   

   
  
   

      

   

   
  
   

      

 

 

In the simulation, the initial state is selected as (0 ) [0 .5 0 .7 5 5]
T

x    , where the 

mean value of disturbance is taken as 0, and the variance is 0.5 white noise signal. The 

weighting matrix in evaluation signal is selected as  2 2 2C  ,  1
1 1 1C   and 1R 

, time delay parameter 0 5d d   . Take 3d  in the simulation, 
2

L  gain 0 .8  . 

Several experiments show that the values of parameter C , 
1

C and
2

L gain   have no 

significant effect on the control result. 

The simulation results have shown the following: based on the robust predictive control 

algorithm proposed in the paper, Figure 2 indicates that the system is asymptotically stable 

and the system response speed is rather fast in situations without disturbance. Figure 3 shows 

that the control input switches back and forth largely at the beginning, and then tends to be 

stable gradually. Figure 4 shows that controller solved like this improves the performance 

index of the system, so that the upper bound value of performance index can quickly 

approach to the minimum value. When a disturbance occurs, Figure 5 shows the system can 

be rapidly stabilized. Figure 6 shows that control input fluctuates on a small scale and 

satisfies the constraint conditions. From the viewpoint of actual physical application, the 

controller suits well. Figure 7 shows that by using the method in this paper, there is no great 

change between disturbance performance index and non-disturbance performance index, and 

it can approach to the minimum value quickly. 
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Figure 2. State Curve of the System Without Disturbance 

 

Figure 3. Control Input Curve without Disturbance  

 

Figure 4. Upper Bound Value of Performance Index without Disturbance 
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Figure 5. State Curve with Disturbance 

 

Figure 6. Control Input Curve with Disturbance 

 

Figure 7. Upper Bound Value of Performance Index with Disturbance  

Compared with literature [22], algorithm in the paper does not require a complex fuzzy 

model of semi-trail system and the controller’s design is simple with better control 

effects. 
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5. Conclusions 

In this paper, uncertain time-delay and disturbance was considered and a robust predictive 

control method was proposed for the input-constrained semi-trailer system, which can 

represent a class of linear time-varying and uncertain time-delay system. Through the 

selection of dual mode control and Lyapunov function, it was ensured that the semi-trailer 

system has asymptotic stability and disturbance attenuation, and the disturbance is rapidly 

restrained by the quick online minimum performance index. These characteristics are very 

important for semi-trailer system traveling under different road conditions and with severe 

disturbance. Ultimately, the simulation verified the effectiveness of the method proposed. 

Furthermore, the robust predictive control method is also applicable for n-order system with 

time-varying uncertain and time-delay disturbance. 
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