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Abstract 

Knowledge of flow distributions from a stream of packets passing through a network link 

helps a network operator infer traffic demands, characterize source traffic, and detect traffic 

anomalies. Flow monitoring provides critical information for many network applications, and 

some approaches have been proposed to address flow monitoring. However, they either lack 

accuracy, or require intensive computing resources. In this paper, we propose a Resource-

Efficient System (called RES) for monitoring flow distribution, which consists of Double 

sampling module, Online streaming module, and Offline processing module. Using real 

network traffic traces, we show that the RES indeed produces the desired accuracy in 

monitoring flow distribution. 
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1. Introduction 

The Internet has become an essential part of the daily life for billions of users worldwide. 

People are using and relying on a large variety of services built on the top of the Internet, 

such as web browsing, online banking, shopping, entertainment, VoIP, Video on demand, 

auction, social networks, etc [1]. However, some network attacks including DDOS, 

information phishing and email spamming are pervasive in the Internet, and often cause great 

financial loss [2]. Detecting anomalies, attacks, and faults, and determining network traffic 

properties require online monitoring support. Accurate monitoring also aids network 

operators in optimizing network performance in a timely manner [3]. Flow statistics from 

monitoring systems remain useful for characterizing traffic. For example, the measured 

numbers of flows and the distribution of their lengths have been used to evaluate gains in 

deployment of web proxies [4], and to determine thresholds for setting up connections in 

flow-switched networks [5].  

In this paper, we propose a Resource-Efficient System (RES) for monitoring flow 

distributions. In RES we exploit a novel sampling method, double sampling, that combines 

packet sampling and flow sampling. Double Sampling consists of packet sampling and flow 

sampling: 

1) First, employ packet sampling to obtain a substream. 

2) Then, deploy flow sampling to select a small number of packets from the substream. 

The main contributions of our work are summarized as follows: 
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 Double sampling (DSampling) is used to collect traffic data. DSampling combines the 

advantages of both packet and flow sampling to achieve a tradeoff of sampling 

efficiency against computational cost. 

  RES is designed and an algorithm for estimating flow distributions from sampled data 

is given. This system is not only simple to implement but also scalable for high speed 

links. 

 Evaluation based on real traces collected from distinct networks shows that RES is 

remarkably accurate and efficient. 

The rest of this paper is organized as follows. In the next section, we review related 

work for monitoring flow. Some elementary concepts on flow and sampling are given in 

Section 3. In Section 4 we elaborate the RES with a detailed discussion. In Section 5 we 

make some experiments to observe estimation accuracy of the RES. We conclude in 

Section 6. 

 

2. Related Work 

Kumar et al proposed a novel SCBF that performs per-flow counting without maintaining 

per-flow state in [6] and an algorithm for estimation of flow size distribution in [7]. Their 

disadvantage is that all packets must be processed due to not using sampling. The Packet 

Sampling working group (PSAMP), which was founded by IETF in 2003, is chartered to 

define a standard set of capabilities for network elements to sample subsets of packets by 

statistical and other methods [8]. The method and application of Trajectory Sampling was 

considered in [9, 10]. The key idea of Trajectory Sampling is to sample packets based on a 

hash function computed over the packet content. Using the same hash function will yield the 

same sample set of packets in the entire domain, and enables us to reconstruct packet 

trajectories. Furthermore, sampling techniques have been employed in network products such 

as Cisco's Netflow [11] and NetranMet [12]. 

In [13], Duffield et al studied the statistical properties of packet-level sampling using real-

world Internet traffic traces. This is followed by [14] in which the flow distribution is inferred 

from the sampled statistics. After showing that the naive scaling of the flow distribution 

estimated from the sampled traffic is in general not accurate, the authors propose an EM 

algorithm to iteratively compute a more accurate estimation. Scaling method is simple, but it 

exploits the sampling properties of SYN flows to estimate TCP flow frequencies; EM 

algorithm does not rely on the properties of SYN flows and hence is not restricted to TCP 

traffic, but its versatility comes at the cost of computational complexity. Two novel sampling 

methods were proposed in [15, 16]. 

In fact, two different sampling rules are included in the above work: packet sampling, 

which acts directly on individual packets and is ignorant of flows, and flow sampling, where 

entire flows of packets are retained or discarded at once. Packet sampling without per-packet 

processing can be easily implemented. Hohn and Veitch in [17] discussed the inaccuracy of 

estimating flow distribution from sampled traffic, when the sampling is performed at the 

packet level. For flow sampling, its disadvantage is that all packets must be processed before 

deciding to be retained or discarded. This is a challenge on high speed links. 

 

3. Some Elementary Concepts 

This section considers packet sampling alone. Within the functional requirement of 

sampling packets at a given rate, a number of different implementations are possible. 

Implementations include independent sampling of packets with probability 
N

1 , and periodic 
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selection of every Nth packet from the full packet stream. In both cases we will call N the 

sampling period, i.e., the reciprocal of the average sampling rate. An IP flow is a set of 

packets, that are observed in the network within some time period, and that share some 

common property known as its key. The fundamental example is that of so-called raw flows: 

a set of packets observed at a given network element, whose key is the set of values of those 

IP header fields that are invariant along a packet's path. Examples are the raw flows observed 

at a router, where the flow key distinguishes individual source and destination IP address, and 

TCP/UDP port numbers. There are at least a few definitions for the term flow depending on 

the context of research. In this study, we employ the one adopted in [18] which stems from 

the packet train model by Jain and Routhier [19]. 

Definition 1. A flow is defined as a stream of packets subject to flow specification and 

timeout. 

In most cases, we call flow specification as flow identifier. When a packet arrives, the 

specific rules of flow specification determine which active flow this packet belongs to, or if 

no active flow is found that matches the description of this packet, a new flow is created. In 

this paper, the flow interpacket timeout is 64 seconds.  A general flow is a stream of packets 

subject to timeout and having the same source and destination IP addresses, same source and 

destination port numbers (not considering protocol). In this paper, we will use the term 

original flow to describe the above flow. A flow length is the number of packets in the flow. 

The frequency of flows with k packets is the number of flows that contain k packets. 

Definition 2. A sampled flow is defined as a stream of packets that are sampled at 

probability 
N

p
1

  from an original flow. 
Sampling entails an inherent loss of information. We expect use statistic inference to 

recover information as much as possible. However, more detailed characteristics of the 

original traffic are not so easily estimated. Quantities of interest include the number of 

packets in the flow--we shall refer to this as the flow length--and the number of flows with 

fixed length. 

 

4. A Resource-Efficient System 

We propose a Resource-Efficient system, named RES, its purpose is to monitor the flow 

distribution. 

 

4.1. RES Architecture 

Sampling measurement must fulfill two goals: improving estimation precision and 

reducing consumption of the resources. RES Achieves two goals by using double sampling. 

Figure 1 is the RES architecture, which consists of three modules: Double sampling module, 

On-line streaming module and off-line processing module. A packet is sampled from packet 

stream by double sampling module with sampling period N=n*m (arc 1 in Figure 1). Then, 

the sampled packet is processed by online streaming module (arc 2 in Figure 1). If there is a 

flow entry in the flow cache, then the counter of the flow is incremented, otherwise a new 

flow is created and its counter is set to 1. The measurement proceeds in epochs. At the end of 

each measurement epoch, the counter values( the length of sampled flow), which we refer to 

as the sampled flow data, will be paged out from the online streaming module, and these flow 

entries will be removed for the next measurement epoch(arc 3 in Figure 1). This sampled flow 

data will be processed by an offline processing module that produces a final estimate of the 

flow distribution using statistical inference techniques. 
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Figure 1. RES Architecture of Monitoring Flow Distributions 

4.2. Double Sampling Module 

In this section, we review the methodology of double sampling [20]. Double Sampling 

consists of packet sampling and flow sampling: 

Step 1: Independent and identically distributed (i.i.d.) packet sampling consists of, for each 

packet in an independent manner, retaining the packet with probability 
n

1  or discarding it 

with probability 
n

n 1 . 

Step 2: Independent and identically distributed (i.i.d.) flow sampling consists of, for each 

flow whose packet is selected in Step 1 in an independent manner, retaining the flow with 

probability 
m

1  or discarding it with probability 
m

m 1 . 

There are several ways to implement Step 1. In probabilistic sampling, the router makes a 

pseudorandom decision whether to sample each packet. In implementations, the decision 

could, for example, be governed by a pseudorandom number generator with well-known 

properties (see e.g., [21]). Periodic (or deterministic) sampling can be used too, e.g., every nth 

packet is selected. 

We use a hash function over flow identifier (the part of packet's header) to implement Step 

2. The same hash function is used throughout measurement interval, so that we are ensured 

that all packets of a flow are either sampled, or discarded. The choice of an appropriate hash 

function will obviously be crucial to ensure that this subset is not statistically biased in any 

way. For this, the sampling process, although it is a deterministic function of the packet's 

header, has to resemble a random sampling process. We can choose a hash function that maps 

each item in the universe of flows to a random number uniform over the range m,,2,1  . In 

practice, reasonable hash functions appear to behave adequately, e.g., [22]. A packet is 

sampled if its hash value is equal to the specific integer, e.g., 1. Because the hash function is 

perfectly random, flow sampling rate is 1/m, i.e., a flow in every m flows is sampled. 

For double sampling, we denote sampling period N by n*m, written as N=n*m. For 

example, if n=5, m=10, then N is written as 5*10.  
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4.3. Online Streaming Module 

Online streaming module processes sampled packets to update the flow cache. This 

module is like a Netflow or sampled Netflow. An important difference between this module 

and Netflow is that flow cache is updated by double-sampled packet. It maintains a flow 

cache containing flow records that describe the traffic forwarded by double sampling. These 

flow records are then exported to the offline processing module. To update the flow cache 

when a sampled packet is seen, it must look up the corresponding entry in the flow cache and 

update that entry's counter. It inserts a new flow record into the flow cache if the packet does 

not belong to an existing flow.  Since double sampling is used, the processor and the memory 

holding the flow cache can keep up with the packet rate in high speed link. This module may 

be a hardware implementation that can work at line speeds. 

 

4.4. Offline Processing Module 

Offline processing module helps to infer the actual flow distribution from the sampled 

data. Let },,2,1:{ tjgg
j

 , where 
j

g  is the frequency of sampled flows with j  

packets, denote a set of sampled flow length frequencies after double sampling, and let 

},,,2,1:{  tiff
i

  , where 
i

f is the frequency of original flows with i  packets, denote 

a set of original flow length frequencies. Our objective is inferring }{
i

f  from }{
j

g . 

Firstly, we make recovery of flow sampling as follows: 

.,,2,1,* tjgmg
jj

                                                            ( 1) 

We regard },,2,1:{ tjgg
jj

  as sampled flow length frequencies with packet 

sampling rate 
n

1  from original flows. In practice, measured sampled flow length distributions 

are smoother, so some effective manner of smoothing would be required for long flows. 

According to Eq.(1), the inferred distribution of flow lengths would be concentrated on length 

j. However, we know that flow length distributions have the property of being heavy-tailed, 

i.e., the number of long flows is very few. For example, for flow sampling rate 1/m=1/100, if 

we only sample a flow of length j=10000 in length interval [9900, 11000], i.e., 
10000

g =1, and 

0
j

g , for 11000,,9900 j , we shouldn't think that there are 100 flows of length 10000, 

rather than think that there are 100 flows in length interval [9900, 11000]. So we estimate as 

100 flows of different lengths, not 100 flows of the same length. After they are smoothed, we 

obtain: 

.},2,1,{  jgg
j

                                                (2) 

Under independent sampling of packets with probability np /1 , the number of packets j 

sampled from an original flow of i  packets follows the binomial distribution 

jij

p
pp

j

i
jiB

















 )1(),( . Let 

j j
g ,  and  

i
  denote the frequencies of original 

flows of length i  conditional on at least one of its packets being selected, and 
i i

1 . Our 

aim is to estimate }{
i

   from the frequencies }{
j

g . We now derive an expression for log-

likelihood )(L  to obtain 
i

g  given  . Here, ))0,(1/(),( iBjiBc
pPij

  is the probability 
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that j packets are sampled from a flow of length i , conditional on 1j , i.e., that the flow is  

sampled. For any j, its probability  function is j
g

ji

iji
c )(



 . Hence we obtain the likelihood 

function  
 1

)(

j

g

ji

iji

j

c . Therefore the logarithm of likelihood function is: 






ji

iji

j

j
cgL  log)(

1

                                  (3) 

Now we adopt a standard iterative approach: the Expectation Maximization (EM) 

algorithm [14], the standard form is as follows. 

Starting with an initial value 
)0(

 , for example, }{
)0(




i
g

 , the algorithm finds 

}:)(sup{ L , by iterating between the following two steps ( ,1,0k ): 

E step.  Let 
ij

f  denote  the frequencies of original flows of length i  from which j  packets 

are sampled. Thus 
i ijj

fg ，while  


1j iji
ff is the frequency of original flows of 

length i  at least one of whose packets is sampled. Form the complete data likelihood function 

assuming known
ij

f : 

iji

Nj

ji

ijc
cfL

bord

 log)(

1




                                                           (4) 

Form the expectation ),(
)( k

Q  of )(
c

L conditional on the known frequencies 
j

g , 

according to a distribution 
)( k

 : 

iji

ji

ij

k
cgfEQ k 


log]|[),(

1

)(

)(


                                  (5) 

M step. Define ),(maxarg
)()1( kk

Q 
 


 . From the Legendre equations in the 

maximization of ),(
)( k

Q   we have:





]|[)(
)1(

gfE
ik

i

k




. Through direct computation of 

the above conditional expectation we obtain: 

 

)1( k

i
 =








jl

lj

k

l

jij

k

i

ji c

gc

)(

)(

1

1






                                                          (6) 

Iterate steps E and M until some termination criterion is satisfied. Let  denote the 

termination point. We write our estimation of original small flows as 
i

f = ))0,(1/( iB
pi

 . 
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Table 1. Traces Used in our Experiments 

Note that flow label is 4-tuple <srcIP, dstIP, srcPort, dstPort> 

Trace # of flows # of packets 

IPKS0 164147 3453219 

IPKS1 132139 3453219 

MAVI 267984 2453203 

CERNET 147561 4032981 

 

5. Evaluation 

In this section we apply the estimators derived in the previous section to experimental 

traffic traces. We infer the flow statistics from the sampled versions of the traces, and we 

compare them with the unsampled flow statistics of the original traces. 

We adopt the Weighted Mean Relative Difference (WMRD) from [14] as our evaluation 

metric. Suppose the number of original flows of length i  is 
i

n  and our estimation of this 

number is 
i

n̂ . The value of WMRD is given by: 









i

ii

i ii

nn

nn
WMRD

)
2

ˆ
(

|ˆ|
. 

 

5.1. Data Considerations 

Trying to make the experimental data as representative as possible, we use packet header 

traces gathered at three different locations of the Internet, namely, the MAWI Working Group 

of the WIDE Project(MAWI) [23], Jiangsu provincial network border of China Education and 

Research Network (CERNET) [24], and NLANR [25]. The trace form MAWI was collected 

on a trans-Pacific line (150Mbps link), on March 30, 2009 at 00:00 am. The IPv6 packets of 

MAWI are filtered out in following experiments. 

The CERNET were collected at Jiangsu provincial network border of China Education and 

Research Network (CERNET)  on April 17, 2004. The backbone capacity is 1000Mbps; mean 

traffic per day is 587 Mbps. For this trace, we make double sampling at double sampling 

period n*m=2*2, 2*5, 2*10, 5*2, 5*5, 5*10, 10*2, 10*5, 10*10, respectively. 

We also use a pair of unidirectional traces from NLANR: IPKS0 and IPKS1, collected 

simultaneously on both directions of an OC192 link on June 1, 2004. The link connects 

Indianapolis (IPLS) to Kansas City (KSCY) using Packet-over-SONET. 

Table 1 summarizes all the traces used in the evaluation. 

Table 2. WMRD of Flow Distribution Estimation for Double Sampling and 
Packet Sampling Alone for CERNET Trace 

Sampling period n*m,N WMRD of  double sampling  WMRD of  packet  

sampling alone 

2*4,4 

2*5, 10 

5*2,10 

5*5, 25 

5*10, 50 

10*10, 100 

5% 

8% 

10% 

11% 

13% 

19% 

12% 

23% 

23% 

28% 

34% 

39% 
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5.2. Estimation Comparison 

We then compare double sampling with packet sampling alone in estimating flow 

distributions. For same trace in same sampling period (N=n*m, nm), we run double sampling 

and packet sampling respectively. Then we use EM algorithm to estimate flow distributions 

from sampled statistics, respectively. Comparing with the actual flow distributions, we find 

that the estimated results by double sampling are always more accurate than those by packet 

sampling. This conforms to the conclusion that inversion based on flow sampling performs 

well [17]. Figure 2 compares the two estimators derived by RES and EM, double sampling 

and packet sampling at sampling period N=10*10,100, respectively. Observe that estimated 

result by packet sampling is much worse. Table 2 shows the flow length distribution 

estimation of double sampling is much more accurate that of packet sampling alone. 
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(c) IPKS0 

 
(d) IPKS1 

Figure 2. Comparing Performance of Different Traces for RES and EM 
Algorithm at Sampling Period N=10*10,100. 

5.3. Estimation Accuracy and Scalability 

In this subsection, we consider how to choose n and m for fixed N=n*m. In fact, this is the 

choice on the estimation accuracy and on scalability with link speed. For fixed N, n is 

decreasing as m increases, and vice versa. When n=1, double sampling becomes flow 

sampling alone. In this case, scalability with link speed is worst because each packet is 

processed, but the estimation of flow length distributions is best. On the contrary, double 

sampling becomes packet sampling alone when m=1. The scalability is best, but the 

estimation accuracy is worst. Therefore, choosing proper m and n is the trade-off between the 

accuracy and the scalability in practical application. Double sampling is very flexible in 

making appropriate trade-offs between the accuracy and the scalability. 

 

6. Conclusions 

This paper presents the RES to monitor flow distribution. Double sampling is used in RES 

to overcome the shortcomings of packet sampling alone and flow sampling alone. This 
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system is not only simple to implement but also scalable for high speed links. In experiments, 

the advantage of RES is shown in estimating the distribution of flow length; i.e., the accuracy 

of flow distribution measurement is dramatically improved. 
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