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Abstract 

This paper presents investigations into the development of a Proportional-Integral Sliding 

Mode Control (PI-SMC) for trajectory tracking and vibration control of a flexible single link 

manipulator. The motor at the single rotating joint is the control actuator. Two SMC control 

laws are reviewed. The classical discontinuous control based on the signum function and a 

modified control law where the servomotor output voltage depends on the instantaneous 

values of the states. The selection of the discontinuity gain is reviewed for exact model 

(certain case) as well as when the parameter variations are present (uncertain case). To 

prove the reaching condition, we use the Lyapunov stability criteria. It is proven that this 

design is equivalent to a full state feedback with its steady state motion constrained to the 

sliding hyper-surfaces. Simulation results of the response of the flexible manipulator with 

both controllers are presented. The performances of the control schemes are examined for 

input tracking capability, level of vibration reduction and time response specifications. A 

comparative assessment of both control techniques shows the effectiveness of the second 

control law and its invariance to so-called matched uncertainty. 

Keywords: Vibration reduction, flexible manipulator, sliding mode control, model 

uncertainties 

 

1. Introduction 

Current generation of industrial robots need to be rigid to achieve precise control 

with today’s established control methods. Rigidity, however, necessitates massive 

construction, that results in slow operation, low load to weight ratio and high energy 

consumption. For faster response time, manipulators must be made with thin and light 

weight links that eventually lead to links flexibility. Using light weight links 

manipulators in industry has many advantages. Indeed, flexible links manipulators have 

higher speed, higher load to weight ratio, low energy consumption, lower overall cost 

and higher mobility. 

Control systems for light weight flexible arms, however, have to overcome more 

problems. Because of links flexibility and hence arms vibration, precise position control 

is much more difficult [1-4]. Also, a flexible arm is basically an under-actuated 

nonlinear system of infinite order. But due to the limitations of nowadays control 

processors, it is common to approximate a flexible arm by a finite order system. In this 

study, the assumed modes method is used and only the first two vibration modes are 

considered. Furthermore, in a single link manipulator arm, such as the one that will be 

modeled, the tip sensor and the actuator are located at the two ends of the arm. Such a 
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non-collocated sensor/actuator configuration yields to some control problems because 

of the non-minimum phase characteristics of the system [4-6]. 

To solve these problems, good controller designs are needed. A good controller has 

to be simple, practical, easy to implement and able to achieve good control 

performance. Variable structure sliding mode control is a good choice for this design 

because it has offered control engineers new possibilities for improving the 

performance of control in comparison to fixed structure systems [7, 13]. An important 

possibility is to improve the performance by combining properties of the  structures at 

the two sides of the switching line. We can also solve the conflict between static 

accuracy and speed of response. Indeed, it is possible to split the transient movement 

into two independent phases: a brief motion which brings the system’s s tate to the 

beginning of the sliding mode and achieves high rate of decrease in the absolute value 

of the error, and a second phase characterized by rapid damped oscillations. The good 

qualities of the variable structure sliding mode control are the reasons why we focus on 

applying this theory. 

This paper presents investigations into the development of a Proportional -Integral 

Sliding Mode Control (PI-SMC) for trajectory tracking and vibration control of a 

flexible single link manipulator [8-12]. The flexible link is modeled as an Euler-

Bernoulli beam and we apply Lagrange equations to derive the state-space model. To 

illustrate the surface design techniques, the original system is transformed to "regular 

form". We show that the problem of designing a system with desirable properties in the 

sliding mode can be regarded as a state feedback design problem. The selection  of the 

discontinuity gain is reviewed in the case of exact model (certain case) as well as when 

the parameter variations are present (uncertain case). To prove the reaching condition, 

we use the Lyapunov stability criteria. In the uncertain case, it turns  out when using the 

classical signum function, that bounds on values of the state vector must be known. The 

reaching condition in this case leads to high value of the discontinuity gain which has 

the effect of amplifying chattering and cause significant fatigue of the actuators. To 

keep the discontinuity gain independent of the states, a modified SMC control law is 

proposed. Simulation results show that the discontinuity gain can be set to its minimal 

value imposed by the specified convergence speed. A comparative assessment of the 

control techniques shows the effectiveness of the second control law and its invariance 

to so-called matched uncertainty. 

 

2. Mathematical Model 
 

2.1. Flexible Arm Modeling 

The flexible arm is treated as a Bernoulli beam. It is fixed to the rotor of a servomotor and 

rotates in a horizontal plane. The effect of gravity and internal damping are negligible. 

In the Figure 1, (OXYZ) denotes the fixed reference frame; (Oxyz) is a rotating coordinate 

system with basis vectors . 

 

 

 

),,( kji
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Figure 1. Flexible Arm Coordinates 

L(t) is the motor torque. The position vector of a point M in the rotating coordinate system is 

. The deformation of the arm at the point M is y(x,t) and (t) denotes the motor 

angular position. 

 

The system parameters are summarized in the following table: 

Table 1. System Parameters 

Parameter  Symbol Value 

Length 

Density 

Young's modulus 

Moment of area 

Section  

Motor resistance 

Motor inductance 

Motor gain 

Speed reduction factor 

Motor performance 

Performance of the speed reducer 

Moment of inertia 

Damping factor 

L (cm) 

 (Kg/m
 3
) 

E (GPa) 

Iz (m
 4
) 

A (mm x mm) 

Rm (Ω) 

Lm (mH) 

km (V/(rad.s
-1

) 

kg 

m 

g 

J (kg. m
2
) 

b (N m/rad.s
-1

) 

41.9 

7756
 

193 

1.6710 
-12 

20 x 1 

2.6 

0.18 

7.6810
-3

 

70 

0.69 

0.9 

2.08 10
-3 

4.10 
-3

 

 

The displacement of point M with respect to the absolute reference frame is given by: 

Y = y(x,t) + x      (1) 

The deformation y(x,t) is expressed by a finite sum of shape functions weighted by the 

generalized coordinates [1]: 

),( txr


 

 

 O  L(t) 

),( txr

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(2) 

where n is the number of vibration modes, qi is the ith generalized coordinate and 
 

denotes the ith shape function. The polynomial functions, 

,
 

are used in the discretization of the deformation [14]. 

In this work, only the first two vibration modes are considered so that: 

 
(3) 

 
(4) 

The model of the arm is obtained by writing the equations of Lagrange: 

   

(5) 

where qi is the ith coordinate of the vector Q = [, q1, q2]
T
, Fi denotes the generalized force 

associated with qi and l = T - V  is the Lagrangian of the system. 

The kinetic energy T is given by: 

   

(6) 

The potential energy V is:  

    

(7) 

The Rayleigh dissipation function is expressed by: 

       

(8) 

where 
 
is the internal damping coefficient of the arm we will neglect according to our 

assumptions. 

 

Written in a matrix form, the model of the arm becomes: 

   
(9) 
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2.2. Servomotor Modeling 

The dynamic equations of the DC actuator are given by:  

    (10) 

where m and  denote speed respectively before and after the speed reduction, m and L are 

torque respectively before and after speed reduction, vm is the motor voltage and im denotes 

the motor current. 

Neglecting the electrical time constant Lm/Rm with respect to the mechanical time constant
 J/b, the model of the actuator becomes: 

 

 

(11)

 

where 

 

and . 

 

2.3. Global System of Equations 

The torque L is related to the motor voltage by: 

  

(12) 

Using this expression, the model of the arm (Eq. (9)) becomes: 

  
(13) 
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where and  

Written in a state space form, the global system of equations is: 

  

(14) 

, , , 

, , u = vm. 

 

The quantities to be observed are the hub angle  and the displacement of the end of arm 

Yend: 

Yend = L + q1 +q2 (15) 

 

3. Vibration Reduction using Sliding Mode Control 
 

3.1. Reference Trajectory 

The reference trajectory is selected by setting the following state vector: 

 
(16)

 

The angle r is selected to be the step response of a first order system, i.e., 

 
(17)

 

where c is the final position to be reached and  is the time constant. 

Furthermore, to cancel vibrations, we choose: 

   
(18) 

The state space equations of the selected reference trajectory can be written: 

   
(19) 

T

m

gmgm

R

kkn
U 









 0,0,






































000

000

00

22

1

m

gmgm

R

kkn
b

H













xCY

uBxAx

0

00

















1

11

3333

0

0

HMKM

I
A

xx













UM

B
x

1

33

0

0












00011

000001

0
L

C

 
T

qqqqx
2121

  T
end

YY 

 
T

rrrrrrr
tqtqttqtqtx )()()()()()(

2121











cr

r


021 
rr

qq

crrrr
BxAx 



International Journal of Control and Automation 

Vol.7, No.7 (2014) 

 

 

Copyright ⓒ 2014 SERSC   209 

where 

 

and . 

 

3.2. First Control Law (Certain Model) 

To determine the sliding surface, we write first the state model (14) in the canonical basis 

of governability. The transition matrix P = [P1 P2….Pn], n=6, is obtained according to the 

following recurrent formulae: 

 

(20) 

where i varies from 1 to n-1 and ai are the coefficients of the following characteristic 

polynomial: 

 det(I-A0)= 
n 
+ an-1 

n-1 
+ ……… + a1  + a0 

The canonical form of the state model (14) is:  

 

(21) 

, , , C= C0.P 

 

The sliding surface s is defined by [7-8]: 

    
(22) 

where  and . 

The integral part in the previous expression has the effect of canceling the static angle 

error. s can also be written as:  
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Lemma 1: The coefficients  and i are determined by the desired dynamic. 

 

Proof: 

According to (21) and (23): 

  
(24)

 

In the sliding vicinity, , i.e. 

 
(25)

 

 
is the equivalent control and is given by: 

 (26) 

Using (21) and (26), the sliding dynamic equations become: 
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Expression (29) shows that the equivalent dynamic in the sliding vicinity is similar to that 

obtained in the classical state feedback control where the feedback matrix L is given by: 

 

(30) 

Choosing the desired dynamic that is the matrix L, the coefficients  and i are calculated 

as follows: 

 

(31) 

In subsequent sections, K2 is chosen to be 1 and consequently . 

 

 

 

X)-(XC+)-X(s
rrr

 BuAX  

0=s

X)-(XC+)-X(0
rrr


eq

BuAX  

equ

)()()()(
11

rrrreq XCXBXCABu  
 

)()(
1

rrre XCXBBXAX  
 

)()(
1

re CABBAA  


eA

A

  






















1

0
,,

1)1(

21

2

1 xn
BKK

A

A
A 

xnn
RA

)1(

1




)1(1

1




nx
RK eA

  






















r

e

C

A
KBK

A
A

1

1

1

2

1

0


  












rC

A
KKL

1

1

1

2 

 
1

1

21














r
C

A
LKK 

1B



International Journal of Control and Automation 

Vol.7, No.7 (2014) 

 

 

Copyright ⓒ 2014 SERSC   211 

Sliding control: 

 

The sliding control is given by: 

 
(32) 

According to (24), (25) and (32): 

 

To reach the sliding surface with a convergence speed greater than , M must verify the 

following condition of attractiveness: 

 
(33) 

 

3.3. Second Control Law (Uncertain Model) 

In the case of uncertain model where system parameters are not known with enough 

accuracy or vary with time, we show that we have to increase the discontinuity M to maintain 

the attractiveness of the sliding surface [7-8]. 

Suppose that system parameters ai may vary around their nominal values ai
*
 as follows: 
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where i denotes the maximum change in the parameter ai (i=0 to n-1). 

Replacing A by A + A in (24), and using (25) and (32) give: 
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To reach the sliding surface with a convergence speed greater than , M must verify the 

following condition of attractiveness: 

 (36) 

The discontinuity M depends not only on changes in parameters but also the amplitudes of 

the states. This has the effect of amplifying chattering and cause significant fatigue of the 
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Modified Sliding Control: 

 

To maintain the level of discontinuity M unchanged, the following modified sliding control 

is proposed: 

 
(37)

 

Lemma 2: We can set discontinuity M at its minimum value  by switching each coefficient 

ki between two suitable values. 

 

Proof: 

 

Replacing A by A + A in (24), and using (25) and (37) give: 

 
 

To reach the sliding surface with a convergence speed , we choose M =  and switch the 

gains between two values mi and Mi as follows: 

 

(38) 

The implementation of this switching scheme provides a robust control against parameter 

changes and limited values of the parameter M. 

 

4. Simulation Results 

To compare the two previous control laws, SIMULINK models were constructed in both 

cases. The simulation results were compared in the certain and uncertain cases. In the case of 

the exact model, the system parameters are supposed to be known exactly and the feedback 

matrix L is calculated based on the nominal parameters. In the uncertain case, the system 

parameters are supposed to vary around their nominal values. In this study, the maximum 

percentage change about the nominal values is 40%; the matrix L is calculated based on 

nominal parameters. The convergence rate  has been set to 0,001 in all cases. 

Figure 2 shows the motor angle  and the tip deviation in the case of the exact model. The 

motor angle tracks exactly the reference that is the first order system step response. The 

comparison between the tip deviations of both the beam (Ybeam = L+q1+q2) and the rigid 

body (Yrigid body = L) shows that the vibration was almost canceled.  
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Figure 2. Hub Angle and Tip Deviation M=0.001 (Exact model-1st Control Law) 

Figure 3 shows the motor voltage in the cases M = 0.001, 0.1 and 1. We can see the 

obvious fact that more M increases, the chattering increases. 

Figure 3. Motor Voltage in the Cases M=0.001, 0.1 and 1 (Exact Model-1st 
Control Law) 
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By using the first control law, changing the values of system parameters around their 

nominal values (a0=-40%, a1=32%, a2=-20%, a3=9%, a4=40%, a5=40%) leads to 

instability (see figure 4).
 
 

Figure 4. Hub Angle in the Case M=0.001 (Uncertain Model-1st Control Law) 

To regain stability, we had to increase M but this amplifies chattering (Figure 5). 

Figure 5. Motor Voltage and Hub Angle in the Case M=1 (Uncertain Model-1st 
Control Law) 
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To show the robustness of the second control law, the simulation has been carried out 

using the same changes in the system parameters. The discontinuity M has been set to its 

minimum value 0,001. Figure 6 shows that the dynamic response is stable and the chattering 

has been reduced to an acceptable level. This confirms the effectiveness of the second control 

law. 

 

Figure. 6 Motor Voltage and Hub Angle in the Case M=0.001 (Uncertain Model-
2nd Control Law) 

5. Conclusion 

In this paper, simulation results for trajectory tracking and vibration damping of a 

flexible single link manipulator are presented. The performances of a two proportional -

integral sliding mode control schemes are examined for input tracking capability, level 

of vibration reduction and time response specifications. A comparison of the results 

shows the effectiveness and robustness of the second control law. The paper gives also 

more insight into the mathematical development involved in such a design.  

Nevertheless, important issues must be resolved to implement the control in practice. 

First, the full known of the states is required for successful experiments. Data 

acquisition and observer design is the main issue to resolve before building the test 

bench. Moreover, it is known that SMC systems are vulnerable to the effects of high -

frequency dynamics often neglected in control system design. These neglected elements 

can be considered equivalent to unstructured uncertainty in the plant model. It is 

important to know the effects of finite bandwidth actuators/sensors on stability and 

vibration control. Also, further investigation into the actions to avoid exciting the un -

modeled higher frequency dynamics is required. 
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