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Abstract 

Three-phase bearingless induction motor is a multi-variable, nonlinear and strong 

coupling object, to achieve its high performance control, the dynamic mathematical models 

was analyzed firstly. According to the derived mathematical model, the reversibility of 

bearingless induction motor system was discussed, and the dynamic mathematical models of 

inverse system were derived. Then, based on the inverse system method, the dynamic 

decoupling control strategy of three-phase bearingless induction motor was researched, and 

the dynamic decoupling control system was build. Simulation results show that the dynamic 

decoupling control has been achieved between motor speed, rotor flux linkage and two radial 

displacement components, and the control system has higher dynamic and static 

performance; the presented decoupling control method is effective and feasible.  
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1. Introduction  

Motor with magnetic bearings has been developed and widely used in high-speed drive 

kingdoms. But, the motor with magnetic bearings has a series of disadvantages, such as: 

longer rotor shaft, higher magnetic suspensions cost, difficulty to over speed, etc. [1, 2]. 

Based on the comparability in configuration between magnetic bearing and conventional 

motor stator, the bearingless motor is proposed, which embeds the windings of magnetic 

bearing in the stator slots along with the conventional motor windings. Bearingless motor is a 

newly type of electric machinery, which not only has the function of conventional motor, but 

also has the self-suspension function. Compared with the motor with magnetic bearings, the 

bearingless motor has a series of advantages, such as shorter rotor shaft, higher critical speed, 

being applicable to super-high speed and long time running [1-6]. Bearingless control 

technology can be used to all kinds of AC motors [1-3].  

Bearingless induction motor not only has the advantages of other bearingless motors, but 

also has the compact and robust structure, then owns broad application prospects [1, 4- 8]. 

But, there exist complex electromagnetic coupling relations within bearingless induction 

motor. Then, to achieve its high performance control, it is necessary to achieve the dynamic 

decoupling between all state variables of bearingless induction motor.  

Inverse system method is direct feedback linearization method that be proposed according 

to complex nonlinear system in recent years. The basic idea of inverse system method can be 

summarized as following: based on the mathematical model of original system, the 

mathematical model of inverse system is build; and the original system will be compensated 
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to several decoupled pseudo linear subsystems. Then, using various design methods of linear 

systems theory, the controller of each pseudo linear subsystem can be designed [9]. About the 

inverse system decoupling control of bearingless induction motor, there have been 

preliminary researches [9, 10]. But, the current research always define the motor equations in 

two-phase synchronous reference frame, the solution process of inverse system model is 

complicated and is not convenient for application. To simplify the mathematical model of 

bearingless induction motor, the paper will define the bearingless induction motor in the 

reference frame orientated by rotor flux-linkage, and take the stator currents as input 

variables. Then, adopting inverse system method, the controlled object will be decoupled to 

four linear integral subsystems, including motor speed, rotor flux-linkage and two radial 

displacement components. And by way of design methods of linear systems theory, integrated 

designs of four linear integral subsystems will be made, and the dynamic decoupling control 

with high performance of three-phase bearingless induction motor will be achieved.  

 

2. Dynamic Mathematical Model of Bearingless Inducion Motor  
 

2.1 Working principle of bearingless motor  

There are two sets of windings in stator slots of bearingless motor, including torque windings 

whose number of pole pairs is p1 and its electrical angle frequency is ω1, and suspension 

control windings whose number of pole pairs is p2 and its electrical angle frequency is ω2.  

 

 

Figure 1. Sketch map of working principle for bearingless motor 

The torque windings will produce rotate magnetic field of conventional motor that be used 

to realize rotary drive of rotor; the suspension control windings will produce another set of 

rotate magnetic field that be used to control the radial suspension of rotor. When the 

suspension control magnetic field is superimposed on the motor magnetic field, the magnetic 

field in some airgap area will be increased, and that in its spatial symmetrical airgap area will 

be weakened. When the numbers of pole pairs and the electrical angle frequencies of two sets 

of windings meet the qualification of “p2=p1±1，ω1=ω2”, the radial magnetic suspension 

force can be produced whose amplitude and direction can be controlled stably. The 

controllable magnetic suspension force can be used to control the suspension of rotor. That is 

known as the working principle of bearingless motor.  

Figure 1 shows the production principle of controllable magnetic suspension force of four-

pole bearingless motor with two-pole suspension windings. On the moment that stator current 
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of two sets of windings are as shown in Figure 1, the stable controllable magnetic suspension 

force F  will be produced.  

 

2.2 Dynamical mathematical models of three-phase bearingless induction motor  

For bearingless induction motor, the production principle of electromagnetic torque is the 

same with conventional motor. To simplify the mathematical model of bearingless induction 

motor, the stator current of toque system will be taken as control variable. Then, the dynamic 

model of four-pole torque system in d-q synchronous reference frame can be derived as 

following:   

1 1 1
/ ( ) /

rd rd r r rq m s d r
T L i T                                                  (1) 

1 1 1
/ ( ) /

rq rq r r rd m s q r
T L i T                                                  (2) 

2

1 1 1 1 1
( )/( ) /

r m rd s q rq s d r L
p L i i JL p T J                                         (3) 

In equations (1)~(3): ωr is the motor speed; ω1 is the synchronous electrical angle 

frequency of d-q reference frame; ψrd and ψrq are two rotor flux-linkage components of torque 

system along d and q reference axes; is1d and is1q are two current components of torque 

windings along d and q reference axes; Lm1 is the excited inductance of torque windings; Lr is 

the self-inductance of equivalent two-phase rotor windings; J is the rotor’s rotation inertia; TL 

is the load torque.  

If the d-q reference frame is oriented by the rotor flux-linkage vector of torque system, 

there will exist relationships of “ rdr  , 0rq rq   ”. Put the relation equations into 

equation (1), then following equations can be derived:  

rdsmrrr TiLT // 11                                                          (4) 

)/(111 rrqsmrs TiL                                                      (5) 

JTpJLiLp Lrqsrmr /)/( 111

2

1                                                   (6) 

For two-pole magnetic suspension system, the mathematical model of controllable radial 

magnetic suspension force can be expressed as following [7]:  

2 1 2 1( )m s d d s q qF K i i                                                        (7) 

2 1 2 1( )m s d q s q dF K i i                                                        (8) 

Where, Km is magnetic suspension force coefficient determined by the configuration of 

bearingless induction motor.  Km can be expressed as following:  

2 0 1 2/(4 N N )m mK L lr                                                       (9) 

In equations (7), (8) and (9): Fα and Fβ are two components of controllable radial magnetic 

suspension force along stationary α and β reference axes; is2d and is2q  are two current 

components of two-pole suspension control winding along d and q rotary reference axes; μ0 is 

the magnetic permeability of air; l is the length of stator iron core; r is the interior radius of 

stator; Lm2 is the single-phase excited inductance of three-phase suspension control winding; 

N1 and N2 are the numbers of turns in series per phase of three-phase four-pole torque 

windings and three-phase two-pole suspension control windings.  
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From upper models, it can be seen that: the controllable radial suspension force 

components Fα and Fβ are the results of mutual coupling between the airgap magnetic flux-

linkage of torque system and the two excited current components of suspension control 

windings along d and q reference axes. When rotor flux orientation is adopted for torque 

system, the required airgap magnetic flux-linkage in equations (7) and (8) can be expressed as 

equations (10) and (11).  

1 1 1 1 1( ) /d m r r l s d rL L i L                                                      (10) 

1 1 1 1 1/q m r l s q rL L i L                                                                (11) 

Once the rotor deviate from the stator’s centre, the unbalanced distribution of airgap 

magnetic field in bearingless induction motor will come into being, and the unilateral 

electromagnetic pull will be produced. The unilateral electromagnetic pull can be expressed 

as following:   

 skf  ，  skf                                                         (12) 

In equation (12): ks is the stiffness coefficient of radial displacement. Then, the radial 

motion equation of rotor can be expressed as following:   

m F f m F f       ，                                                 (13) 

Where, m is the rotor mass.  

According to the dynamic mathematical model of torque system and the radial motion 

equation of rotor, etc., the dynamic model of bearingless induction motor can be derived as 

following:  

m F f                                                                  (14) 

m F f                                                                 (15) 

2

1 1 1 1/( ) /r m r s q rp L i JL p T J                                                (16) 

1 1/ /r r r m s d rT L i T                                                       (17) 

 

3. Reversibility Analyses of Three-phase Bearingless Induction Motor 

System  
 

3.1 State control equations of bearingless induction motor system  

Firstly, the state variables, input variables and output variables of bearingless induction 

motor system should be selected as following:  

State variables:  

 1 2 3 4 5 6, , , , ,
T

X x x x x x x T

rr ),,,,,(                                (18) 

Input variables:  

 1 2 3 4, , ,
T

U u u u u T

qsdsqsds iiii ),,,( 2211                                      (19) 
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Output variables:  

 1 2 3 4, , ,
T

Y y y y y
T

rr ),,,(                                              (20)
 

Put equations (18) ~ (20) into equations (14) ~ (17), then the state equations of system can 

be derived as following:   

1 3x x                                                                    (21) 

2 4x x                                                                    (22) 

3 1 6 1 1 3 1 2 4 1 1[( ) ]/( ) /m m r l r l r sx K L x L u u L u u mL k x m                                (23) 

4 1 1 2 3 6 1 1 4 1 2[ ( ) ]/( ) /m m r l r l r sx K L L u u x L u u mL k x m                                 (24) 

2
5 1 1 6 2 1 1/( ) /m r Lx p L x u JL p T J                                                 (25) 

6 6 1 1/ /r m rx x T L u T                                                           (26) 

From equation2 (20)~(26), it can be seen that: under the condition of rotor flux-linkage 

orientation of four-pole torque system, the state equations of bearingless induction motor is 

six order with four order input and four order output. Compared with the state equations of 

bearingless induction motor that is not oriented, the order number of state equations decreases 

an order, and the complexity of state equations is weakened respectively [11].  

 

3.2 Reversibility analyses of bearingless induction motor system  

To analyze the reversibility of bearingless induction motor, according to interactor 

algorithm, the output variables of  1 2 3 4, , , Ty y y yY   should be asked the derivative to time 

gradually, until the input variable ( )1,2,3,4ju j   is obviously included in the derivative 

function of each ( 1,2,3,4)iy i  . The detail process can be expressed with following equations:  

1 1 3y x x                                                                  (27) 

1 3 1 6 1 1 3 1 2 4 1 1[( ) ]/( ) /m m r l r l r sy x K L x L u u L u u mL k x m                              (28) 

2 2 4y x x                                                                 (29) 

2 4 1 1 2 3 6 1 1 4 1 2[ ( ) ]/( ) /m m r l r l r sy x K L L u u x L u u mL k x m                             (30) 

2

3 5 1 1 6 2 1/( ) /m r Ly x p L x u JL p T J                                               (31)
 

rmr TuLTxxy // 11664                                                       (32) 

Assumption:   

Tyyyyuy ),,,()( 4321
                                                       (33) 
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Then, the Jacobi matrix of bearingless induction motor system can be derived as following:  

 TuYuxA /),(  

1 1 3 1 1 4 1 6 1 1 1 1 1 2 1

1 1 4 1 1 3 1 1 2 1 1 6 1 1 1

2

1 1 6

1

/( ) / ( ) /( ) /( )

/( ) / /( ) ( ) /( )

0 /( ) 0 0

/ 0 0 0

m m r l r m r l m m r l r m m r l r

m m r l r m r l m m r l r m m r l r

m r

m r

K L L u mL K L u m K L x L u mL K L L u mL

K L L u mL K L u m K L L u mL K L x L u mL

p L x JL

L T

 
 
  
 
 
 
 

(34) 

In normal operation of bearingless induction motor, 06 x , [ ( , )] 4rank A x u  . Then, the 

),( uxA matrix is non- singular; and the relative order of system is:   1 2 3 4, , ,( )     

(2,2,1,1) . More over, the sum of ( 1,2,3,4)i i   equals to 6, i.e., equals to the order of 

state equations, the bearingless induction motor system is reversible.  

 

4. Inverse System Models and Dynamic Doupling Control System  

4.1 Dynamic mathematical model of inverse system  

Selecting the input variable of inverse system as following:   

   1 2 3 4 1 2 3 4
( ) , , , , , ,=

T T
Y u y y y y                                             (35) 

According to the implicit function theorem, the inverse system can be expressed as 

following:   

1 2 3 4( , , , , )u x                                                             (36) 

If the actions of load and outside interference are ignored, the additional integrator 

realization of inverse system can be expressed as following equations:   

16141 // mrmr LxLTu                                                          (37) 

]/[)/( 611132 xLpTpJLu rmLr                                                (38) 

 2 2

3 1 6 1 1 1 1 1 2 2 2 6 1 1 1 2 1[( )( ) ( )]/ [( ) ( ) ]r r l s r l s r l r l m mu L x L u m k x L u m k x x L u L u K L          (39) 

 2 2

4 1 1 2 1 1 6 1 1 2 2 6 1 1 1 2 1[ ( ) ( )( )]/ [( ) ( ) ]r r l s r l s r l r l m mu L L u m k x x L u m k x x L u L u K L          (40) 

 

4.2 Dynamic decoupling control system of bearingless induction motor  

By series connecting the inverse system in front of the original system, then bearingless 

induction motor can be compensated to a linear system with four decoupled pseudo linear 

subsystems. Thereinto the torque system is decoupled into two first order linear integral 

subsystem, include motor speed and rotor flux-linkage subsystems; and the suspension 

control system is decoupled into two second order linear integral subsystem, include α and β 

radial displacement subsystems.  

Then, aiming at each subsystem, relevant controller is designed, and composite control 

system is build to enable the system to obtain excellent static and dynamic performance, and 

obtain anti-jamming capability. Thereinto, motor speed and rotor flux-linkage subsystems 

adopt PI controller, two radial displacement subsystems adopt PD controller to adjust α and β 

radial displacement components of rotor.  
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Figure 2. Dynamic decoupling control system Structure diagram of 
bearingless induction motor 

 

Figure 2 shows the structure of dynamic decoupling control system. Thereinto the rotor 

flux-linkage of torque system can be calculated with following equations:  

1 1 /( 1)r m s d rL i T s                                                           (41) 

1 1( ) [ /( )]r s r m s q r rdt L i T dt                                             (42) 

 

5. System Simulation Validation and Analysis  

Aiming at the upper analyses, the four-pole bearingless induction motor with two-pole 

suspension control windings is taken as the research object. According to the control system 

structure in Figure 2, simulation research has been made by Matlab/Simulink.  

Parameters of bearingless induction motor:  

1) Stator inner diameter r=62mm; the effective core length of bearingless induction motor l 

=0.82mm; motor airgap length δ0=0.6mm; Auxiliary bearing air gap δ1=0.2mm.  

2) Torque system: P=2.2kW, stator winding resistance Rs=1.6Ω, rotor winding resistance 

Rr=1.423Ω, leakage inductance of stator windings Ls1l=0.0043H, leakage inductance of rotor 

windings Lr1l=0.0043H, excited inductance of torque windings Lm1=0.0859H, and the rotation 

inertia of motor J=0.024 kg.m2.  

3) Suspension system: stator winding resistance Rs2= 2.7Ω, leakage inductance of stator 

windings Ls1l=0.00398H, leakage inductance of rotor windings Lr1l=0.00398H, excited 

inductance of suspension windings mutual Lm2=0.230H.  
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Setting simulation conditions as following:  

1) The initial radial displacements of rotor α0=-0.12mm, β0=-0.16mm; given value of 

rotational speed n
*
=1500r/min, given value of rotor flux-linkage ψ

*
r = 0.95Wb, given value of 

radial displacements α
*
=β

*
=0. The motor starts with no-load.  

2) To validate the dynamic decupling performance of control system, several given signals, 

including α
*
, β

*
, ψ

*
r and n

*
, will be changed suddenly in the simulation process.  

Figure 3 shows the simulation waveforms of dynamic decoupling control system of three-

phase bearingless induction motor. Thereinto, Figure 3(a) to Figure 3(d) present the dynamic 

response curves of motor speed, rotor flux-linkage, α radial displacement and β radial 

displacement respectively. And Figure 3(e) shows the given curve of load torque. From the 

simulation results in Figure 3, it can be seen that:  

 1) In the non-load starting process of bearingless induction motor, the motor speed reach 

to its given reference value within 0.1s, and has no overshoot; the rotor flux-linkage has little 

overshoot, but it can reach to steady state within 0.2s; After a slight fluctuation, two radial 

displacement components, i.e., α and β, can accurately track the given values within 0.1s, the 

fast and stable suspension of bearingless induction motor has been achieved.  

2) To verify the decoupling performance between torque system and suspension system, 

and that between motor speed and rotor flux linkage, the given value of rotor flux-linkage is 

decreased to 0.38Wb at 0.4s, and the given value of motor speed be increased to 3750r/min, 

i.e. the working frequency be increased to 125Hz at 0.8s. From Figure 3(a) to Figure 3(d): in 

the sudden change processes of motor speed and rotor flux-linkage, α and β radial 

displacements component have no change basically. Simulation results have shown that better 

dynamic decoupling performance has been achieved between torque system and suspension 

system.  

3) From Figure 3(a) to Figure 3(b): in the sudden change process of rotor flux-linkage, the 

motor speed almost has no change; and in the sudden change process of motor speed, there 

has little change in rotor flux-linkage. Simulation results have shown that better dynamic 

decoupling control has been achieved between motor speed subsystem and rotor flux-linkage 

subsystem.  

4) To verify the decoupling performance between two radial displacement control 

subsystems, the radial displacement given value α* suddenly changes from 0.0 to 0.04mm or 

40μm at 1.2s, and at 1.35s, the given value α* returns to the zero. The radial displacement 

given value β* suddenly changes from 0 to -0.04mm or -40μm at 1.6s, and the given value β* 

returns to the zero at 1.75s. According to Figure 3(c) to Figure 3(d): in the change processes 

of α and β, there almost has no coupling between each other. The simulation results have 

shown the higher dynamic decoupling control performance between α and β radial 

displacement subsystems.  
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Figure 3. Response curves of decoupling control system of bearingless 
induction motor  

 
5) According to Figure 3(a) to Figure 3(e), when 5.5 mN   torque load is added on the 

control system of bearingless induction motor at 2.0s, the motor speed, rotor flux-linkage, α 

and β radial displacements component have no change basically. The simulation results not 

only have verified the dynamic decoupling control performance between torque system and 

suspension control system in farther step, but also have shown the stronger anti-interference 

ability of the control system.  

 

6. Conclusion  

Three-phase bearingless induction motor is a multi-variable, nonlinear and strong coupling 

object. To achieve its high performance control, the dynamic mathematical model of three-

phase bearingless induction motor has been analyzed firstly; then the reversibility of the 
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overall bearingless induction motor system were discussed in detail, and based on the rotor 

flux orientation of torque system, the dynamic mathematical models of inverse system of 

three-phase bearingless induction motor were derived. And adopting inverse system 

decoupling control theory and method, the three-phase bearingless induction motor were 

compensated to four decoupled pseudo linear subsystems, include motor speed, rotor flux 

linkage, α and β radial displacement components, etc. After then, using the design method of 

linear systems theory, the controller of each pseudo linear subsystem has been designed. The 

overall inverse dynamic decoupling control system structure has been presented, and overall 

system simulation research and verification have been made.  

According to the simulation results, stable dynamic decoupling between torque control 

system and suspension control system can be achieved. More over, within torque system, the 

dynamic decoupling between motor speed and rotor flux-linkage control subsystem has been 

achieved; and within suspension control system, stable dynamic decoupling between α and β 

radial displacement component control subsystems has been achieved also. The decoupled 

control system of three-phase bearingless induction motor has the characteristics of fast 

dynamic response and stronger anti-interference ability. The presented inverse dynamic 

decoupling control strategy is validate and feasible.  Thus the theory foundation has been laid 

for the research and design of high performance decoupling controller of three-phase 

bearingless induction motor.  
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