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Abstract 

Chattering is one of the main shortcomings of sliding mode control. In this paper method 

using observer to designing continuous sliding mode control (CSMC) law for a class of 

nonlinear uncertain systems with uncertainty in control channel is addressed. By constructing 

a robust observer based on LMI method, variable structure control (VSC) law can be 

designed on the derivative of the control signal. Consequently chattering phenomenon is 

eliminated. Simulation results on a numerical example are reported to illustrate the system 

performance and the feasibility of the control algorithm. 
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1. Introduction 

Many research results about the chattering problem of variable structure systems (VSS) 

were reported recently. Among them, high order sliding mode control (HOSMC) is a good 

approach to form continuous sliding mode control (CSMC) and certainly avoiding chattering 

[1-4]. In this method, not only the sliding mode but its 1n  order successive derivatives are 

stabilized to zero which will be called n  order sliding mode.  

As a special case of HOSMC, second order sliding mode control was presented by 

G.Bartolini and P. Pydynowski [5-9], in which a continuous first-order estimator is acquired 

to replace the nonlinear dynamic function in the sliding mode firstly and then a second-order 

auxiliary system is obtained to design the time derivative of the control signal. Nevertheless, 

some differential inequalities with several conditions are required to be solved, which 

introduce difficulties for control design. Afterwards, the method was mended and the results 

were improved [6]. Sub-optimal variable structure control law is obtained based on the 

proposed results [7-8], which conduces to better performance of closed-loop systems. The 

same research about multi-input systems is discussed in [9].  

In succession, HOSMC with observer was also been investigated [10-13]. It is used to 

resolve issues when system state variables cannot be measured directly. For example, 

Shtessel, propose HOSM Observer for a Class of Nonlinear MIMO Systems to deal with the 

immeasurable state feedback problem [14], Bejarano et al. realize HOSMC by Min-Max 

optimization based on integral sliding mode [15]. However, the HOSMC method or sub-

                                                           
 This work is supported by the National Natural Science Foundation of China (61304024), the Fundamental 

Research Funds for the Central Universities (3142013055), the Natural Science Foundation of Hebei Province 

(F2013508110) and the Science and Technology plan projects of Hebei Provincial Education Department 

(Z2012089). 



International Journal of Control and Automation 

Vol.7, No.5 (2014) 

 

 

398                    Copyright ⓒ 2014 SERSC 
 

optimal VSC theory has some shortcomings. For example, the differential inequalities with 

constraints are required to be resolved [6], the search program of sub-optimal control signal is 

very complicated and some conditions are required. Additionally, the high order derivatives 

of sliding mode are necessary to be estimated by differentiators [1-4].  

In this paper, utilization of observer to realize HOSMC is considered. A method to design 

continuous SMC (second order SMC) based on a robust observer is presented to eliminate the 

chattering phenomenon of VSC system. It has many merits such as: 

(1) The design of the observer is via LMI technique and hence possesses convenience.  

(2) The VSC control is designed on the derivative of the control signal and independent on 

the observer design.  

Firstly we selected a suitable sliding mode and then a second-order robust observer was 

constructed via LMI method inspired by [16-20]. A general sliding mode control law was 

designed on the time derivative of the control signal, and then the continuous sliding mode 

control law was obtained. Simulation research validated the CSMC design via LMI method.  

This paper is organized as follows. In Section II, the problem formulation is provided. The 

constructing of the second-order robust observer is presented in Section III as a theorem. The 

designing of the derivative of the control input is generalized in Section IV. The simulation 

results on a numerical example are shown in Section V. Finally, Section VI gives the 

conclusions. 

 

2. Problem Formulation 

Consider a class of uncertain nonlinear system with high-order dynamics as follows,  

1,     1,2, , 1

( , ) ( ( )) ( )

i i

n

x x i n

x f x t b b t u t

  

   
                                                      (1) 

where  1

T n

nx x x  is the state vector and can be measured, ( , )f x t   is the 

unknown nonlinear dynamic, b  is the nonlinear gain, ( )b t   is its uncertainty, u  is the 

single control signal.  

Suppose that the desired trajectory is ( )r t  and produced by the following tracked model  

( 1)

1

1

,     1,2, , 1

( )

di d i

n

dn j dj

j

x x i n

x a x r t







  

  
                                                      (2) 

with its state vector   1

T

d d dnx x x  and parameters 1ja  , 1,2, ,j n  coefficients of a 

Hurwitz polynomial.  

To ensure the effectiveness of our method, the following assumptions for the systems (1), 

(2) and a lemma of matrices inequality are introduced. 

Assumption 1. The nonlinear uncertainty f  has one-order continuous time derivate and 

satisfies that ˆ
d

df
f

dt
   with   is positive scalar and ˆ

df  is the estimation of 
df

dt
 .  

Assumption 2. The time derivate of the trajectory ( )r t  and other tracked signal can be 

acquired.  
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Assumption 3. The control gain uncertainty ( )b t  and its time derivative are all bound, 

namely 1 2( )b t    , ( )b t    with 1 2, ,    are positive scalars. 

Assumption 4. The control gain uncertainty ( )b t  and the time derivative of control gain 

uncertainty ( )b t  both satisfy  

0 0 0 1 1 1( ) ( ) , ( ) ( ) ,b t H F t E b t H F t E   
 

where 0 1 0 1, , ,H H E E  are all constant matrices with suitable dimension, 0 ( )F t  and 1 ( )F t  are 

Lebesgue-measurable and fulfill ( ) ( )T

i iF t F t I ( 0,1i  ) with I  is identity matrix. 

Lemma 1
[21]

. Suppose matrix ( )F t  satisfies ( ) ( )TF t F t I  with I  is identity matrix, then 

for any constant scalar 0   and real constant matrices D , E  with suitable dimensions, the 

following inequality  

1( ) ( )T T T T TDF t E E F t D DD E E      

is valid.   

Consider the augmented system 

1

1

    ,     1,2, ,

( ) ( ) ( ) ( ) ( )

i i

n

x x i n

df
x bu t b t u t b t u t

dt





 

     
                                       (3) 

and the augmented model 

 

( 1)

1 ( 1)1
1

      ,     1,2, ,

( )

di d i

n

j d jd n
j

x x i n

x a x r t



 


 

  
                                                     (4) 

where  

1 ( , ) ( ( )) ( )nx f x t b b t u t    , 

( 1) 1

1

( )
n

d n j dj

j

x a x r t 



    

are the corresponding augmented state variables.  

The control problem is to construct a control law ( , , )u x s t  such that the error vector  

 1 1 , ,     1,2, , 1
T

n i di ie e e e x x i n                                    (5) 

converges to the tolerance range, where s  is the sliding mode surface 

Ts c e ,  1 1[ 1]T

n nc c c c ,                                          (6) 

and the vector c  makes a Hurwitz polynomial.  

Once the system (1) stepped into the sliding mode 0s  , the closed-loop system will 

become a n -order linear system. Furthermore, the n -order linear system is stable as the 

sliding mode coefficient c is Hurwitz. However, 1nx  and s  are immeasurable in the system 

(1), which will introduce difficulty for control design. In the following section, we will design 

robust observer to approximate them. 
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3. Auxiliary Robust Observer 

The time derivate of the sliding mode s  can be described as follows from (6),  

1

1

( )
n

n i i

i

s t e c e



 
1

( 1) 1 1 1

1

n

d n n n n i i

i

x x c e c e


   



     

1

1 1 ( 1) ( 1) 1

1

n

n n n d n n d n i i

i

x c x x c x c e


    



       

1 1n n nx c x                                                                               (7) 

where 
1

( 1) ( 1) 1

1

n

d n n d n i i

i

x c x c e


  



   .                                              (8) 

Denote ( )v bu t  and by using (3) and (8), the following can be achieved, 

1 ( ) ( ) ( ) ( )n

df
x v b t u t b t u t

dt
      , 

1 ( ) ( ) ( ) ( )n n

df
s c x v b t u t b t u t

dt
       .                              (9) 

According to the equations (8), (9),   is measurable and v  is the control derivative to be 

designed. Define the output 
1y  of the auxiliary system (9) as follows,  

1 ( 1)

1

n

d n i i

i

y x c e



  .                                                    (10) 

Using the equations (9) and (10) yields the following,  

1 1

0 0

0

1
( )

0

0

n nx x

s s
A A

u u

u u



      
     
         
     
     
     

0 1

df
B v B

dt
 ,                           (11-a) 

 1

TT

ny C x s u u ,                                                      (11-b) 

where 

0 0

1

0 0 0 0
1 1 0 0

0 0 0
,   ,   0 0 1 0

0 0 0 1 0
0 0 0 1

0 0 0 0

T

n

b

c b
A B C

b

   
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, 

1

1

1
,

0

0

B

 
 

 
 
 
 

0

0 0 ( ) ( )

0 0 ( ) ( )

0 0 0 0

0 0 0 0

b t b t

b t b t
A

  
 

   
 
 
  

. 

The variables 1nx   and s  are necessary for resolving the control problem. However, they 

are all immeasurable. 

Consider the following observer,  

11
0 0 0 1 1 ˆ

0 1 1 1

nn

d

n

xx
v f

c ss
 

           
               

           
, 

 1

TT

ny C x s u u ,                                                                  (12) 

where   is a new control input for the observer and to be designed. The variables 1nx   and s  
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are the observation value of 
1nx 
, s  respectively. 

Define the control input   as 

1G y   ,                                                                  (13) 

where 
1G  is feedback gain matrix to be determined and  

1 2

T
T TG G G    , 4 3G R  , 

y  is the measurable output error. Denote a vector of the state variable as the following, 

 1 1

T

n ne x x s s u u    ,                                               (14) 

which includes observing error 
1 1n nx x   and s s . 

According to the equation (11), (12), the observation error equation can be depicted as the 

following linear system,  

0 0 0 1( ) ,

,

d

T

e A A e Gy B v B f

y C e

     


                                         (15) 

where ˆ
d d

df
f f

dt
   is considered as immeasurable perturbation. 

It can be verified that 0 , TA C    is observable. Therefore the problem becomes to design the 

control law   via output feedback y  to stabilize the error system (15) which state vector 

e contains parts of variables that cannot be measured. Namely, the parameter G  and the 

control   are to be determined so that the observation errors of the variables  
1nx 
 and s  

converge to zero or a tolerance range.   

Main result of designing the parameters G of the observer (12) and the control input (13) is 

given as the following theorem.  

Theorem 1. For any small positive scalar  , if there exist parameter 4 3G  , symmetric 

positive-definite matrices 

1 0

0 1

P
P

 
  
 

, 3 3

1 1 1 1, 0( )TP P P P R    , 

4 4 , 0, TR R R R R    and some scalar 0   satisfying the following LMI,   

1

1

2

0

0 0
0

0 0

0 0 0

T
Tc c

T T

T

A P PA
E PB

R PHH P

E I

B P I

I











  
 
 

 
 

 
 

 
 

,                                   (16) 

where 0

T

cA A GC  , I  is identity matrix with suitable dimensions, then the observation 

error system (15) is robust quadratically stable when the norm of the error vector is greater 

than   and consistently boundary when the norm of the error vector is less than  .  

Proof: Select a Lyapunov function as  

1 1 1

TV e P e , 

where   1 1 1

T

n ne x x s s u    . Obviously using the equation (15) the Lyapunov function 

can be given by 
2 2TV e Pe b v  . 

Consequently calculate its derivative along the trajectory of system equation (14) with respect 

to the time,  
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2

0 0 1

2

   ( ) 2 .

T T

T T T T

c c d

V e Pe e Pe b vv

e A P PA A P P A e B Pef

  

     
                         (17) 

By Lemma 1, we have 

1

1 1 1 1

T T
T T T T

d d d dB Pe f f e PB e PB B Pe f f                  ,                  (18) 

where 0   is an arbitrary scalar. Additionally according to Assumption 1, the variable 
df  

satisfies the inequality 
df   . And cccording to Assumption 3, 

0 ( )A HF t E   where 

0 1

0 1

0 0

0 0

H H

H H
H

 
 
  
 
 
  

, 0

1

( ) 0
( )

0 ( )

F t
F t

F t

 
  
 

, 0

1

0 0 0

0 0 0

E
E

E

 
  
 

. 

Therefore the following inequality can be given 

0 0 ( ) ( )T T T T TA P P A PHF t E E F t H P     1T T TPHH P E E    .                (19) 

Then, substituting the inequality (18) and (19) into (17) yields 

1 1

1 1( )
T

T T T T T T

c c d dV e A P PA PHH P E E PB B P e f f             
 

1 1 2

1 1( )T T T T T T

c ce A P PA PHH P E E PB B P e           

1 1 2

1 1( )T T T T T T

c ce A P PA R PHH P E E PB B P e           .                        (20) 

For 2Te e  , we can obtain the following inequality from the inequality (20),  
TV e Me , 

where 

1T T T T

c cM A P PA R PHH P E E       
2

1

1 1 2

TPB B P I


 


  .                       (21) 

According to the statements in theorem 1, the solution of LMI (16) is equivalent to that of 

0M  . Hence, the observation error system (15) is robust quadratically stable when the error 

vector 2Te e  . 

For 2Te e  , we can’t determine the negative of the Lyapunov function derivative (17) 

because the absolute value of the item 1

1 1( )T T T

c ce A P PA R PB B P e     will be near zero along 

with 0e   in the inequality (20). However, we can draw the conclusion that the error vector 

e  converges to e  .                                                                                                              ■ 

Remark 1. If we choose 2/    with 0   is some scalar, then the LMI (16) becomes 

1

2

1 2

0

0 0

0

0 0

1
0 0 0

T
Tc c

T T

T

A P PA
E PB

R PHH P

E I

B P I

I













  
 
 
 


 
  
 

 
 
 

  

.                                 (22) 

We can directly seek the solution of the LMI (22) 4 3G  , symmetric positive-definite 

matrices P , R  and some scalar 0  for any small scalar  . 
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Remark 2. The observation error is independent on the derivative signal v . It is 

significant for control synthesis which allows us design the control derivative v  

arbitrarily. 

 

4. Continuous SMC Via the Robust Observer 

Choose the control derivative v  as the following,  

1 2
ˆ sgnn n dv c x f ks s y      b ,                                    (23) 

where  
1

2 1 2

1

1

ˆ ( )

1

n n db c x f y u t

b

  
 









   
 



b
                             (24) 

and  , 0k    are all arbitrary positive scalars, 
2b  is the row vector element of the parameter 

matrix 1

1

2

G
 

  
 

b

b
.  

Following the above, the control law of the origin system (1) is designed as 
1

0
( ) (0) ( )

t

u t u b v t dt   ,                                                (25) 

where (0)u  is the initial value of the control input u . Generally, we can consider (0) 0u  .  

    Then the second result can be given by the following theorem.  

Theorem 2. The sliding mode observation s (defined by observer equation (12)) is 

asymptotically stable and reaches the origin in finite time by the control (23),(24) and (25). 

Proof: By using equation (12), (15), we have  

1 2
ˆ[ ( ( )) ( ) ( ) ( ) ]d n nss s b b t u t b t u t f c x y       b    

      1

1 2
ˆ[ (1 ( ) ) ( ) ( ) ]d n ns b t b v b t u t f c x y

       b  

1 2( ) ( ) ( ) sgnb t b sv b t u t ks s s      

1

1 2

1 2 1

ˆ( ) [ ] ( ) ( )

     (1 ( ) ) (1 ( ) ) sgn .

n n db t b s c x f y b t u t

k b t b s b t b s s









 

      

  

b
 

Afterwards the following inequality can be given by using the inequality (24), 

     2 sgnss ks s s   ,                                              (26) 

which shows that the sliding mode observation s  reaches to the origin in finite time. This 

convergence character is determined by the arbitrary scalars k  and  . According to the 

Theorem 1 and its remarks, the observation error is independent on the control derivative v . 

Consequently, the sliding mode s  of the system (1) is boundary stable and satisfies 

s c  with   any small positive scalar. The tracking error vector e  converges to zero 

adjacence along the sliding surface 0s  .  

In fact, if we design the control input v  as (23), the robust observer (12) becomes  

11

1

0 0 0 1 1 ˆ
0 1 1 1

nn

d

n

xx
v f G y

c ss


           
               

           
.                       (27) 

The obtained control algorithm is as follows,  

1) Design sliding mode parameter 1nc  , 

2) Design parameters 1G  by Theorem 1, 

3) Select parameters k  and   for reaching law (26),  

4) Calculate the observation value 1nx   and s  by (27),  
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5) Calculate the control derivative v  by (23),  

6) Calculate the control input u  by (25). 

 

5. Numerical Example 

Consider a nonlinear system with three-order dynamic,  

1 2

2 3

3

1

0 0

0 0 ,

1 0.5sin10 12sin100

     ,

x x

x x u

x f t t

y x

 

       
       

  
       
              



                             (28) 

where  1 2 3

T
x x x x  is the system state vector, u  is the control signal and can be designed 

by the method in this paper,  y  is the system output, 0.1

10.3 1.2costf e x   is the unknown 

nonlinear uncertainty, 12sin100 t  is the matched disturbance.  

The tracked model is described as the following, 
( ),

  ,

d d d d

T

d d

x A x B r t

y C x

 


                                                                   (29) 

where  

 TT
ddd CBA 001   ,

400
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and  1 2 3

T

d d d dx x x x  is the state vector, ( )r t  is the  reference signal. 
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Figure 1. The system out response when the reference signal is step 
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Figure 2. The control input u when the reference signal is step 
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Figure 3. The control derivative signal when the reference is step 
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   When the reference signal ( ) 1r t  , and the system initial states  0 0 0.5
T

x  , the sliding 

mode parameter  is designed as  240 180 40 1
T

c  and the parameters of robust observer 

1

0 0 0

16 0 0
G

 
  
 

. Suppose the estimation of the time derivative as ˆ 0df   . Choose the 

parameters of control derivative 4k  and 

1 2
ˆ ( )

0.01
3

n n dc x f b y u t


   
   

by the equaton (24). The output response of the closed-loop system, the control input u  and 

the variation of v  are shown in Figure 1-Figure 3 respectively. 

Note that the control input u  in Figure 2 doesn’t converge to zero, because that the 

uncertainty includes the item 0.10.3 te  which will increase all along with t  . It is inevitable 

to require greater control signal with t  increases. 

When the reference signal ( )r t  is rectangle pulse, select different values of the parameters. 

It is shown that the parameter G  has important effects on the system response. G  determines 

the system damp, and mainly make effects on the oscillating actions and the response speed 

of the system. The corresponding response results are shown in Figure 4 and Figure 5.  
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Figure 4. The system out response when the reference signal is rectangle 

pulse. The parameter of robust observer  2 4 0 0b  

 

From the numerical simulation results in Figure 2, it can be seen that the control input u is 

continuous. The chattering phenomenon of the control input is eliminated by the integrator, 

because the variable structure control is designed on the derivative signal of the control input 

u  . 
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Figure 5. The system out response when the reference signal is rectangle 

pulse. The parameter of robust observer  2 16 0 0b  

 

6. Conclusions 

A kind of chattering free sliding mode control method by robust observer to design 

the switching control on the control derivative is presented. By the robust observer via 

LMI method, the immeasurable augmented state variables can be obtained for control 

systhesis even if there are unmodelled dynamics or disturbance on control gain . The 

derivative of the control signal is designed to form sliding mode control based on the 

robust observer. Therefore the chattering is eliminated completely in the method. The 

numerical simulation results prove its validity and effectiveness. 
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