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Abstract 

The methods of the fault diagnosis and degradations used in the different industrial sectors 

are various and consider the specifity of the materials forming their industrial processes. For 

some relatively simple processes, the relations between the causes and their effects are 

Biunivocal and the diagnosis with reverse reasoning is easy. Contrarily for the complexes 

processes, the situation is slightly different and is impossible to precede a deductive 

reasoning. The diagnosis is therefore only possible by using a different and a complementary 

knowledge. The sensitivity method for the detection and localization of the linear system 

defects is used in this paper. 
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1. Introduction 

Fault detection is a very wide field of research. Indeed, in industrial technology fields such 

as transport of energy [1, 2] and aerospace [3], defects must absolutely be detected. 

In this paper, we present a diagnosis method based on the sensitivity theory [4]. This 

method can detect and localize the defects that may exist in a linear system. 

Once the model of the faulty linear system is obtained [5-8], the sensitivity matrix of the 

initial system is computed and the tolerance intervals of all the system are defined, we can 

detect and localize the faults that affect the system. This method has been applied to second 

and third order linear systems. 

 

2. Method Principle  

For a second order system, the localization problem doesn’t arise really, since, having two 

equations with two unknown parameters, we can determine their values and check their 

appurtenance to tolerance intervals. However, for higher order system this assumption is not 

guaranteed [9-11]. 

For a third order system with depending coefficients, the variation of two unknown 

parameters should verify a system of three equations. This kind of systems not always have 

solutions, determining of both parameters remains almost impossible. In such this case, we 

use the sensitivity which enables to determine from the variations of the transfer function 

coefficient, the parameter causing the fault [5, 12-14], knowing the influence of its variation 

on these coefficients. The principle of the sensitivity method is described by Figure 1. 
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Figure 1. Fault detection and localization using the sensitivity technique 
 

3. Theory of the Sensitivity of System Performances with Respect to 

Parameter Variations  

H(p,x) the transfer function of a given system depending on a real parameter x which has a 

nominal value xn and the corresponding transfer function H(p,xn) is noted H(p). In the 

following, we focus on the variation of the real x around its nominal value xn. We show that 

H(p,x) is a homographic function of x such as : 

  
   

   

C p x D p
H p x

A p x B p

 
,

 





  (1) 

the coefficients of polynomials A(p), B(p), C(p) and D(p) are real, independent of x. 

 

3.1. Classical Sensitivity  

Assume that x is the only parameter which varies. The classical sensitivity of a transfer 

function H(p,x) with respect to x is:  

  
 

 
H

x

d logHdH H
S p,x

dx x d log x
      (2) 

3.1.1.  Properties  

If  
 

 

P p,x
H p,x

Q p,x
   we have: 
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  
   

H

x

1 P 1 Q
S p,x x

P p,x x Q p,x x

  
  

   
    (3) 

Let’s consider the frequential study  p j   : 

 

      Log H j ,x Log H j ,x jArg H j ,x           (4) 

 
 

 

    

H

x

d log H
S p,x

d log x

d Log H j ,x d Arg H j ,x
              x jx

dx dx

 



   
   

 

  (5) 

We deduce the following equalities:  

 

  H

x

d Log H d Hx
Re S x

dx dx H

 
 

      (6) 

  

  
  H

x

d Arg H
Im S x

dx
     (7) 

 

For a small variation δx of x we have then: 

 

  H

x

H x
Re S

xH

 
     (8) 

and  

     H

x

x
Arg H Im S

x


      (9) 
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3.2. Generalization  

When H(p) depends of many parameters x1, x2, …, xn, we have: 

  

 

 1 2 n 1 2

1 2

n

n

H H
dH p,x ,x ,..., x  dx dx

x x

H
dx

x

 
  
 





    (10) 

   
n

H i
xi

i 1 i

dxdH
d LogH S

H x

                (11) 

 

We define the vector S
H
 as:  

 

 
 

 
H

xi

i

LogH
S

Logx





     (12) 

 

and the column vector Δ the term of which are d(Log xi), we have:  

 

 
H TdH

 (S ) .
H

       (13) 

 

Where 
H T(S )  it the transpose of S

H
. 

 

3.3. Sensitivity of poles and zeros of H(p,x) with respect to x  

 

3.3.1. Case of one root (pole or zero)  

Let pj a pole of a zero of a transfer function H(p,x). The variation of x to x+dx transforms 

the pole pj to pj+dpj. The sensitivity of pj with respect to x is given by:  

 

 jp j

x

dp
S

dx x
      (14) 

Since the performances of any system depend the position of its poles and zeros (roots), the 

classical sensitivity is therefore related to the root sensitivity. 

Let study the case of poles which are assumed to be all simple. A similar reasoning can be 

applied in the case of the zeros. 
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Let Q(p,x) the denominator of H(p,x); it can be written as: 

      Q p,x A p x B p    

Let pj a root of Q(p,x), we have: 

 

    j jA p x B p 0       (15) 

 

For the variation of x to x+dx, the pole pj moves to t '

j j jp p dp   and the relation (15) 

become: 

      ' '

j jA p x dx B p 0        (16) 

If  
 

 

x B p
F p,x

Q p,x
 , the poles of F(p,x) are the roots of Q(p,x) and we have: 

  '

j

dx
1  F p ,x  0

x
       (17) 

Then F(p,x) becomes: 

   i

i i

K
F p,x

p p



      (18) 

Where Ki is the residual of F(p,x) relatively to the pole pi. We have:   

 i

'
i j i

Kdx
1 0

x p p

 
  

  
      (19) 

By neglecting the terms which goes to zero with dx, the relation (19) is written  

 
j j

'

j j j

K Kdx dx
1 1

x p p x dp

   
     

      

     (20) 

Where   

 jp j

x j

xdp
S K

dx
        (21) 

If the numerator of H(p,x) is      P p,x C p x D p    and if zi is a simple root of P(p,x) 

we have: 

 iz

x iS K    

Where Ki is the residual relative to zi. 
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Since pj et zi are assumed to be simple roots, we have:  

 
 

 

 
 

j

j

j '

jp p

x B px B p
K résidu   

Q p,x Q x,p


 
  

  
     (22) 

and  

 
 

 

 

 
i

i

i '

ip z

x D p x D z
K résidu    

p p,x P x,z


 
  

  
     (23) 

In the following we formulate the classical sensitivity in term of root sensitivity:  

  
' '

H

x

P Q
S p,x x

P Q

 
  

 
    (24) 

 

Since we have 
 

 

' D pP

P P p,x
        and       

 

 

' B pQ

Q Q p,x
   

then 

  

 

     
j i

H

x

p z

x x

j ij i

S p,x G p,x F p,x

S S
             

p _ p p _ z

 

  
    (25) 

 

3.4. Generalization of sensitivity matrix  

Let P(p) a polynomial with real coefficients and simple roots: 

  

  
n

i

i

i 0

P p a  p


     (26) 

Without loss of generality we assume that
na 1 ; the coefficients 

ia  are function of m 

parameters x1, x2, …, xm  and ai = fi(x1, x2, …,xm). 

Let changing xj to xj +dxj (j = 1, …, m) and assume that dai the variation of ai, (i = 1, …, n-

1). If we define Δa the column vector containing the variations dai and Δx the column vector 

containing the variations dxj, we can write:  

 a   F . x       (27) 

Where F is a (n*m)-dimensional matrix the components of which fij are given by i
ij

j

f
f

x





 . 
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P(p) can be written as: 

     
q n

2

2i 1 2i i

i 1 i 2q 1

P(p) p b p b p b

  

         (28) 

The polynomials  2

2i 1 2ip b p b  have complex roots and those of the form  ip b   

have real roots. The variation of bj influences the variations of the roots more than those of 

the ai. If Δb is column vector with components dbj, we have 

 a    D . b       (29) 

Where D is a n-dimensional matrix, the coefficients of which are i
ij

j

a
d

b





. If D is a regular 

matrix we can write:  

 1b    D . F. x       (30) 

Let B a diagonal matrix with 
ii iB b  and Δb a column vector i

i

i

db
B

b
  , we have: 

 b    B . B       (31) 

Similarly we can write (with j j jx dx x    and jj jX x ):  

 x    X . X       (32) 

The relations (30) – (32) leads to:  

 1 1B    B  . D . F . X . X        (33) 

We define the sensitivity matrix S as:  

 1 1S    B  . D . F . X      (34) 

With                        i i
ij

j j

db b
S

dx x
   

 

4. Detection and Localization of a Linear System using Sensitivity 

In this section we intend to determine, the safe functioning domains of a second order and 

third order linear systems using the tolerance intervals relative to the parameters of then 

transfer functions. 

The starting from transfer functions describing defect system we determine the fault causes 

using the sensitivity approach. 
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4.1. Determination of the safe functioning domain  

 

4.2. Case of a second order system  

Let the following second order system given by its transfer function: 

   2
2

2

0 0

1
H p

1 2
p p 1



 



 

     (35) 

Where 
0  represents the natural pulsation and ξ is the damping factor. 

The aim of this section is to determine a domain in which we can ensure a normal 

functioning of our process. 
0 10   and 0.4  . The safe functioning is defined by the 

tolerance intervals relative to 
0  and ξ as: 

 0 0 010%; 10%       and  10%; 10%        

These intervals should be respected to determine validity domain of the system step 

response. 

This is done by considering all the variations of the parameters (
0  and ξ) as summarized 

in Table 1. 

Table 1. Validity domain by considering the variations of the  

parameters 
0  and ξ 

Case° Variation of ω0 Variation of  ξ Expression of H(p) 

1 -10% -10% 2

1

0.0123p 0.08p 1 
 

2 -10% 0% 2

1

0.0123p 0.088p 1 
 

3 -10% 10% 2

1

0.0123p 0.097p 1 
 

4 0% -10% 2

1

0.01p 0.072p 1 
 

5 0% 10% 2

1

0.01p 0.088p 1 
 

6 10% -10% 2

1

0.0082p 0.065p 1 
 

7 10% 0% 2

1

0.0082p 0.072p 1 
 

8 10% 10% 2

1

0.0082p 0.08p 1 
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The Figure 2 illustrates the functioning domain when a unit step is chose as system input.  

 

 

Figure 2. Safe functioning domain of a second order system 
 

4.2.1. Third order system  

Let consider a third order system given by transfer function:  

  
   

3 3 2

1 2 1 2 1 2

1
H p

p 5x x p x x 2 p x x


    
   (36) 

Where x1 and x2 define the system parameters 

 Let    x1 = 1    and    x2 = 2. 

The tolerance interval which guarantee a safe functioning are: 

                   1 1 1x x  10%  ;   x 10%       

and             2 2 2x x  10%  ;   x 10%      

The different cases of both parameter variations are given by Table 2, which the 

functioning domain is given by Figure 3. 

 

Table 2. The different cases of the parameter x1 and x2 variations 

Case n° Variation of x1 Variation of x2 Expression of H(p) 

1 -10% -10% 3 2

1

p 2.7p 3.62p 1.62  
 

2 -10% 0% 3 2

1

p 2.5p 3.8p 1.8  
 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time
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3 -10% 10% 3 2

1

p 2.3p 3.98p 1.98  
 

4 0% -10% 3 2

1

p 3.2p 3.8p 1.8  
 

5 0% 10% 3 2

1

p 2.8p 4.2p 2.2  
 

6 10% -10% 3 2

1

p 3.7p 3.98p 1.98  
 

7 10% 0% 3 2

1

p 3.5p 4.2p 2.2  
 

8 10% 10% 3 2

1

p 3.3p 4.42p 2.42  
 

 

 

 

Figure 3. Domain of safe functioning of a third order system 

 

4.3. Determination of the fault causes  

We propose to determine the parameter which causes the fault by using the sensibility 

notion detailed previously. 
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4.3.1. Second order system  

The Laplace transform of a second order step response is: 

  
3 2

2

0 0

1
S p

1 2 
 p       p     p



 



 

  (37) 

and its transfer function is: 

  
2

2

0 0

1
H p

1 2 
 p      p   1



 



 

  (38) 

Let’s determine the sensibility matrix: 

Consider the polynomial  Q p  defined as: 

  

   2

2

0 0

1 2 
Q p   p   p    1



 
     (39) 

Since the sensibility considers essentially, the pole variation we consider the polynomial 

 P p  which has the same roots as  Q p  given by: 

   2 2

0 0P p     p     2   p         (40) 

Let 

 
1

0 1x 10 rad.s        and     
2x 0.4      

Which yields:  

   2 2

1 0P p p a p a p 8p 100        (41) 

with                 
2

0 1a x      et    
1 1 2a 2x x   

The matrix F, the components of which are i
ij

j

a
f

x





, is : 

20 0
F

0.8 20

 
  
 

 

The polynomial  P p   can be written as: 

  2

1 2P p p b p b    

The matrix D with i
ij

j

a
d

b





  is: 

0 1
D

1 0

 
  
 
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The diagonal matrices B and X such as 
ii iB b  and 

ii iX x   are: 

8 0
B

0 100

 
  
 

        
10 0

X
0 0.4

 
  
 

 

and the sensibility matrix is defined as: 

1 1
1 1

S B .D .F.X   
2 0

   
   

 
 

Which means 
1 1

2 2

B X1 1
.

B X2 0

     
    

     
  

Based on this result we can state the following: 

o A 1% variation on 
0   ( 0

0

0.01



  ) implies: 

- variation of 
1b   of 1% ( 1

1

b
0.01

b


  ) 

- variation of 
2b   of 2% ( 2

2

b
0.02

b


  ). 

o A 1% variation on ξ implies a 1% variation on 
1b  but no variation on 

2b . 

Therefore since the tolerance intervals are: 

 0 0 010%  ;   10%       

and               10%  ;   10%        

and since the system is faulty (the output s(t) is outside the functioning domain) we can 

presume that: 

o A value of 
1b   outside the interval  01 01b 10%  ,   b 10%    and a value 

2b  outside 

the interval  02 02b 20%  ,   b 20%   imply that the faulty is due to
0  .  

o A value of 
1b  outside the interval  01 01b 10%  ,   b 10%   and et de 

2 02b  b   

means that the faulty results from ξ. 

Where b01 and b02 are system coefficient before the fault. 

Example 1 

Let the second order transfer function  
2

1
H p

0.009p 0.09p 1


 
  its step response 

doesn’t belong to safe functioning domain indicted by 4.2.1. We propose to determine the 

cause of its fault. 

  



International Journal of Control and Automation 

Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC         29 
 

The polynomial P(p) obtained from H(p) is: 

  2

2P p p 10 p 111.11 b    

The non-faulty system transfer function is: 

 0 2

1
H p

0.01 p 0.08 p 1


 
 

Which mean 
01b 8   and 

02b 100   

Therefore 
1 01b  10  b 25%     

and            
2 02b b 11.11%    

We can conclude that the fault is due to
0 . 

4.3.2. Third order system  

The transfer function of our third order system is: 

 
   4 3 2

1 2 1 2 1 2

1
S p

p 5x x  p x x 2  p x x  p


    
 (42) 

and the corresponding step response Laplace transform is : 

  
   3 2

1 2 1 2 1 2

1
H p

p 5x x  p x x 2  p x x


    
 (43) 

and the polynomial P(p) is: 

      3 2

1 2 1 2 1 2P p p 5x x  p x x 2  p x x       (44) 

with          x1 = 1   and   x2 = 2 

The matrix F is:              

2 1

F 2 1

5 1

 
 


 
  

  

 

   

3 2

2

P p p 3p 4p 2

        p 1  p 2p 2

   

   
 

0 3 2 1

1 3 1 2

2 3

da 0 b b db

da b 1 b . db a D. b

da 1 0 1 db

     
     

    
     
          

 

1b 2  ,
2b 2   et 

3b 1   

Then 

0 1 2

D 1 1 2

1 0 1

 
 


 
  

    ,  1

1 1 0

D 1 2 2

1 1 1



 
 

  
 
   

, 
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2 0 0

B 0 2 0

0 0 1

 
 


 
  

   and  
1 0

X
0 2

 
  
 

 . 

By taking 
i idb b   and j jdx x , we have: 

 

1 1

2

3 2

B 0 0 X

B 4 3 .

B 5 2 X

      
     
  
     
            

  (45) 

Based on this result we can presume that: 

o 1% variation on 
1x   implies a -4% variation on 

1b   and 5%.variation on
3b . 

o 1% variation on 
2x leads to 3% variation on 

2b and 2%.variation on
3b . 

Therefore, since the tolerance intervals are  1 1 1x x 10%  ;   x 10%     and

 2 2 2x x 10%  ;   x 10%     and since the system is faulty, we can conclude that: 

o A value of 
2b  outside the interval  02 02b 40%  ,   b 40%   and a value of 

3b  

outside the interval  03 03b 50%  ,   b 50%   means that the fault results from
1x   

o A value of 
2b  outside the interval  02 02b 30%  ,   b 30%   and a value of 

3b  

outside the interval  03 03b 20%  ,   b 20%   implies that the fault results from 

means that the fault results from
2x . 

where 
02b  and 

03b  are the system coefficients before the fault. 

Example 2 

The comparison of the step reponse of the transfer function 

 
3 2

1
H p

p 3.4p 4.1p 1.82


  
  with that of the domain given by figure 3 confirm the fault 

existence. We propose to determine the cause leading to this fault. 

From the transfer H(p), the polynomial P(p) is: 

     

   

2

3 1 2

2

P p p b  p b  p b

        p 1.4  p 2p 1.3

   

   
 

Or the safe system is given by the transfer function: 

 
3 2

1
H p

p 3p 4p 2


  
 

Which means 01b   2 , 02b 2  and 03b 1  
and which assume that 1 01b b , 

2 02b b 40%    and
3 03b b 35%  . 
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Referring to previous results we can affirm that the fault is due to x2. 

4.4. Graphical determination of fault causes  

Assume that the response of the second order system is not completely in the domain as 

described by Figure 2. The purpose is to seek which of parameter 
0   and ξ is the cause of 

the abnormal functioning of the system. We remind that the step response of an oscillating 

second order system is: 

   
 0

0

t 2

0
t 2

0
2

e . .sin . 1 .t
s t 1 e cos . 1 .t

1




  

 







   


 

The coordinates of two points of the above response provide the values of 
0  and ξ. The 

parameter located outside the tolerance domains will be the fault cause. In Figure 4, form 

plots of the step response are drown for different values of 
0  and ξ. As shown in Table 3, 

only the green plot is not fault as confirmed by Figure 5 where the plots are superposed to the 

safe functioning domain.  

 

 

Figure 4. Step response of the second order system for different  
values of ω0 and ξ 

 

 

Table 2 

Curve color Chosen coordinates Values of ω0 and ξ Fault cause 

Green 

(0.936 ;1.767) 0 10.321   

no fault  

(1.218 ;1.30) 0.417   

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time
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Blue 

(0.927 ;1.39) 0 16.899   

0  

(1.236 ;1.23) 0.411   

Red 

(0.963 ;1.5) 0 14.012   

0 and ξ 

(1.145 ;1.27) 0.521   

Violet 

(0.8 ;1.25) 0 9.921   

ξ 

(1.009 ;1.53) 0.797   

 

 

Figure 5. Superposition of step responses with the safe functioning domain 

Remark 

This graphical approach may suffer from some results uncertainty, due the risk of 

inaccuracy in determining the points coordinates. Moreover even if the results are convincing 

for the second and the third order, this assumption can’t be assumed for higher order because 

of the equation complexity.  

 

5. Conclusion 

In this paper we have used the sensitivity notion for the fault detection and localization in 

the second order and the third order linear system given by their transfer functions. Although 

its sufficiency, this approach raises the deficiency of affecting both the system and the sensor. 

Therefore to insure that the fault cause result from system parameters we have guarantee the 

safe functioning of the sensor. 
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