
International Journal of Control and Automation

 Vol.7, No.5 (2014), pp.201-210

http://dx.doi.org/10.14257/ijca.2014.7.5.22

ISSN: 2005-4297 IJCA

Copyright ⓒ 2014 SERSC

A Dynamic Weight Congestion Control Algorithm to Achieve

Fairness in the MPTCP

Zun-liang Wang, Yue Ma and Jin-li Zhang

School of Computer Science, Beijing University of Posts and Telecommunications,

Beijing 100876, P.R. China

wangzl@bupt.edu.cn

Abstract

Nowadays, a growing number of mobile equipments have more than one single network

interface. For instance, smart phones have 3G/4G and Wi-Fi interfaces at the same time.

Regular TCP restricts communications to a single path per transport connection. MPTCP

(Multipath TCP) is a set of extensions to traditional TCP to improve the robustness and

performance of end-to-end transport layer connections using more than one interface

simultaneously. A key issue in the design of MPTCP is the fairness to traditional TCP flows.

In this paper, we do a research on the congestion control mechanism of MPTCP and propose

a dynamic weighted congestion control algorithm, which can improve the fault of the

congestion control algorithm in the RFC 6356 when the subflows have share bottleneck.

When the subflow increases the window size, dynamic weight algorithm will increase weight

of the congestion window by the size of the congestion window. A MPTCP flow with the

dynamic weighted congestion algorithm can allocate their traffic by the throughput of the

subflow and get more fairness to traditional TCP flows than the MPTCP in RFC 6356.

Keywords: MPTCP; Congestion control algorithm; Computer Network

1. Introduction

With the development of network technology and multi-homed technology, more and more

endpoints have multiple network adapters, such as notebook computers with wired (Ethernet)

and wireless (Wi-Fi) network adapters, and smart phones with 3G/4G and Wi-Fi interface.

All these endpoints can create multiple network connections at the same time. As shown in

Figure 1, there are two flow paths between the smart phone and the server using 3G/4G and

Wi-Fi interface simultaneously. if the multi-homed endpoints use multiple network interfaces

[1], it can indeed balance the load between the different paths, switching dynamically and

automatically the traffic from congested, disrupted or broken links to the best paths, which

will greatly enhance the user experience effect. But the traditional TCP network architecture

cannot use these multiple network interfaces resources. In order to achieve the goal of

improving the robustness and performance of end-to-end connections in transport layer, the

MPTCP protocol is proposed by IETF, which can use multiple connections transmit data at

the same time in transport layer. MPTCP can balance the traffic of the subflow by connecting

situation with the throughput of the subflow. The current research about MPTCP mainly

comprises connecting management, flow control and congestion control. Congestion control

algorithms mainly focus on improving the network throughput and guaranteeing the fairness

between MPTCP and traditional TCP. In this paper we analyzed the congestion control

algorithm in RFC6356 and proved the unfairness between subflows when subflows have a

International Journal of Control and Automation

Vol.7, No.5 (2014)

202 Copyright ⓒ 2014 SERSC

share bottleneck. The congestion control algorithm in RFC6356 puts more traffic on the link

which have lower loss rate. We present the dynamic weighted congestion algorithm to

improve the fault of the algorithm in RFC6356. Dynamic weighted congestion control

algorithm can guarantee the fairness between MPTCP and tradition TCP, which is based on

the EWTCP. The dynamic weight algorithm increases the congestion widow by the weight,

so it can allocate the traffic to subflows as the throughput of the sublow.

3G/gprs

WIFI

Figure 1. MPTCP network structure

In this paper we first introduce the architecture of MPTCP in Section 2, as it is specified in

the current versions of the IETF drafts. In Section 3 we analyze the problems of the algorithm

in RFC6356.Then in Section 4 we discusse the process of modeling the dynamic weight of

congestion control algorithm. In Section 5 we describe the simulation scenario, and comment

the behavior of the dynamic weight of congestion control algorithm. Finally, in Section 6 we

conclude the paper.

Application

MPTCP

IP

Subflow1(TCP)...Subflown(TCP)

Figure 2. MPTCP architecture

2. MPTCP Architecture

In order to achieve the purpose of MPTCP, an IETF working group has recently been

created to specify a multipath protocol for the transport layer. The architecture of the MPTCP

is putted forward as shown in Figure 2. IETF adds a MPTCP layer based on the traditional

TCP/IP network model. MPTCP layer is transparent to both higher application and lower IP

network layer. It is a set of additional functions to regular TCP. MPTCP allows one TCP

connection to be spread across more than one paths. MPTCP makes use of standard TCP

sessions as subflows to provide the underlying transport per path. MPTCP distributes load

through the creation of separate subflows across disjoint paths. MPTCP layer is responsible

for the subflow scheduling and submits data to the application layer. The application layer

needs not consider the detail of the transport layer. Traditional TCP layer in the protocol

International Journal of Control and Automation

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 203

ensures the reliable transmission of subflow and congestion control, and submits data to the

MPTCP layer.

There are some functions MPTCP must implement, path management, packet scheduling,

subflow interface and congestion control. The path management looks after the discovery of

multiple paths between two hosts. The packet scheduler receives data from the application

and make the necessary operations before sending data to a subflow. The subflow adds

sequence number and passes them to network. The receiving subflow re-orders data and

passes it to the packet scheduling component, which performs re-ordering and sends to the

application.

A

TCP endpoint 1

TCP endpoint M

B

1...N sub flow

TCP flow 1

TCP flow M

Sub flow 1

Sub flow N

Sub flow 2

MPTCP
Endpoint

...

Figure 3. MPTCP fairness schematic

MPTCP should perform congestion control as traditional TCP does. As a TCP flow each

subflow of MPTCP must have its own congestion control state so that capacity on that path is

matched by offered load. The simplest way to achieve this goal is to simply run TCP Reno

congestion control algorithm on each subflow. But this solution is unsatisfactory as it gives

the multipath flow an unfair share when the paths taken by its different subflows share a

common bottleneck. As shown in Figure 3, when a MPTCP flow containing N subflows has a

share bottleneck with a traditional TCP flow, if each subflow run congestion control

algorithm as traditional TCP does, the MPTCP is approximately N times as aggressive as

each TCP flow. In Figure 3, a MPTCP connection that contains N subflows competes with M

traditional TCP flows at the shared bottleneck between router A and router B. While each

traditional TCP flow receives a 1/(N +M) share of the bottleneck, the MPTCP flow receives a

N/(N +M) share.

In order to keep the fairness between traditional TCP and MPTCP, reference [2] proposed

several principles of MPTCP congestion control algorithm:

1. A multipath flow should perform at least as well as a single path flow would be on the

best path available to it.

2. A multipath flow should not take up more capacity from any of the resources shared by

its different paths if it were a single flow using only one of these paths. This guarantees that it

will not unduly harm other flows.

3. A multipath flow should move off its most congested paths as much traffic as possible.

The first principle means to improve throughput, the second principle means to do no harm,

and these two principles together ensure fairness at the bottleneck. The third principle means

to balance congestion, it captures the concept of resource pooling: if each multipath flow

International Journal of Control and Automation

Vol.7, No.5 (2014)

204 Copyright ⓒ 2014 SERSC

sends more data through its least congested path, the traffic in the network will move away

from congested areas. This improves robustness and overall throughput.

3. Problem Definition and Analysis

As described in Section 2, the congestion control of MPTCP aims to set the multipath

flow’s aggregate bandwidth to be the same as that of a regular TCP flow would get on the

best path available to the multipath flow. An algorithm named coupled congestion control

algorithm has proposed in RFC 6356. The algorithm extends standard TCP congestion control

for multipath operation. The algorithm in RFC 6356 only changes the increase phase of the

congestion avoidance state when the endpoint receives an ACK. The remaining phases such

as the slow start, fast retransmit and fast recovery are the same as in traditional TCP [5].

Formula (1) is the increase value when the flow gets an ACK, which is proposed by IETF in

RFC 6356. Let _cwnd i be the congestion window on the subflow i . Let _cwnd total be

the sum of the congestion windows of all subflows in the connection. Let _MSS i and

irtt _ be the maximum segment size on subflow i . For each ACK received on subflow i ,

increase _cwnd i as formula (1). The first argument is the computed increase for the

subflow, and the second argument is the increase TCP would get in the same scene. The

formula takes the minimum between the computed increase for the subflow and the increase

TCP would get in the same scene. In this way, Any subflow of MPTCP cannot be more

aggressive than a TCP flow in the same scenario, and principle 2 described in Section 2 has

been achieved.  is a parameter of the algorithm that describes the aggressiveness of the

multipath flow.. The total throughput of all flows in MPTCP depends on the value of  and

the loss rates, maximum segment sizes, and RTT of its paths. Since the total throughput is no

worse than the throughput a single TCP would get on the best path is required, It’s impossible

to choose a priori a single value of  that achieves the desired throughput in every occasion.

So  must be computed based on the observed properties of the paths.  can be calculate by

formula (2) in RFC 6356, The value of  is chosen such that the aggregate throughput of the

MPTCP is equal to the throughput a TCP flow would get if it ran on the best path, and to

meet principle 1 described in Section 2.

* _ * _ _ * _i
min ,

_ _

bytes acked MSS i bytes acked MSS

cwnd total cwnd i

 
 
 

 (1)

2

2

_

_
_ *

_

_

cwnd i
MAX

rtt i
cwnd total

cwnd i
SUM

rtt i

 
 
  

  
  

  

 (2)

 _MAX x i be the maximum among all the subflow.

 _SUM x i be the summation of all the subflow.

The formula (2) is derived by equalizing the rate of the flows in MPTCP with the rate of a

TCP running on the best path. In general cases this method can satisfy the fairness in share

bottlenecks in the network, and get the throughput as well as traditional TCP in the best path.

But it does not satisfy to all scenes. Take the scene shown in Figure 4 for example, this

International Journal of Control and Automation

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 205

method will move more than half of the traffic on the 3G path, and cannot get throughput as

well as traditional TCP in the best path. The analysis is as follow:

Assume all subflows have the same round-trip time and are in the congestion stage. We

can get formula (3) and 1  from formula (2). Thus, the congestion window with increasing

value is
* _ * _

_

bytes acked MSS i

cwnd total


 by each ACK.

 _

_

MAX cwnd i

cwnd total
  (3)

To get a feeling for the behavior of this algorithm, we assume a MPTCP flow has only two

links, Let
1p and

2p be the loss rate. Let
1R and

2R be the round-trip time. Let
1W and

2W

be the congestion windows. We also assume
1 2W W and all subflows have the same

maximum segment size. From formula (3) we can get the congress window increasing with

value is
 

1

2

1 2

* _ *W bytes acked MSS

W W
 .

As [3] proposed that each window is made to increase1 w by ACKs, and decrease 2w

by drops. To keep in equilibrium the increases and decreases must balance out and seen in

formula (4). And we can get our balance formula (5) and (6).

1
(1 p)

2

w w w
p

RTT w RTT

   
    

   （4）

 
 

1 1 1 1
1 12

1 11 2

* _ *
1 * *

2

W W bytes acked MSS W W
p p

R RW W

   
    

   
 （5）

 
 

2 1 2 2
2 22

2 21 2

* _ *
1 * *

2

W W bytes acked MSS W W
p p

R RW W

   
    

   
 （6）

From formula (5) and (6), we can deduce equation (7). If
1 2W W , we can get

1 2p p .

 1 1 2 2* *p W p W
 (7)

According to the above formula derivation, we can get the conclusion that the congestion

control algorithm in RFC 6356 tends to select subflow link with low loss rate instead of

subflow link with high throughput. According to the above formula (4), we can get the

formula to calculate the throughput of link with loss rate p as follows:

2(1 p) 2w p p   , The parameter w means the throughput of link, and the parameter

p means loss rate of the link. We can calculate the throughput of link in the Figure 4

according to this formula. The throughput of single traditional TCP in WIFI link with loss

rate 4% is 126.5kbps and the throughput of single traditional TCP in 3G link with loss rate
1% is 200kbps.

International Journal of Control and Automation

Vol.7, No.5 (2014)

206 Copyright ⓒ 2014 SERSC

3G:p=1%

WIFI:p=4%

Figure 4. Low throughput of the network environment

4. Dynamic Weight Algorithm

Dynamic weight algorithm is the improvement of the EWTCP algorithm. EWTCP

algorithm is made to increase / ra w by each ACK and decrease / 2rw by drops. Reference

[3] points out that this algorithm guarantees the fairness between MPTCP and traditional TCP

and can obtain the throughput of the traditional TCP in the best path. Meantime this algorithm

can allocate traffic by the throughput of the subflow, but in some special network

environment, EWTCP cannot obtain the throughput of the tradition TCP in best path.

Figure 5. Ineffective usage of the network resource

In Figure 5, it supposed that the three links have capacity of 12Mb/s. When each flow

splits its traffic evenly, then each subflow will get 4Mb/s, hence the throughput of the

subflow will be 8Mb/s. But if each flow uses only the one-hop shortest path, it could get

12Mb/s [3]. EWTCP algorithm cannot work well in this situation.

In order to improve EWTCP in this situation, we propose dynamic weight algorithm.

When the subflow receives an ACK, dynamic weight algorithm will change the weights

according to _ / _cwnd i cwnd total .Reference [4] and [5] models throughput of TCP T as

a function of RTT.

 22 3
3 1 32

3 8

s
T

p p
R t p p

a a


 

  
 

 （8）

Where T is a function of RTT; t is the retransmission timeout value; s is packet size; p is

packet loss rate. If a=1, we can get the throughput of traditional TCP.

International Journal of Control and Automation

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 207

 22 3
3 1 32

3 8

tcp

s
T

p p
R t p p


 

  
 

 （9）

According to the fairness rules of the MPTCP, we can get the increasing weights by the

congestion window. We assume that the throughput of the subflow i should be
iD times of

the traditional TCP and 1iD  . According to formula (9), we can get the throughput
iT of

subflow i .

 22 3
3 1 32

3 8

i i

s
T D

p p
R t p P


 

  
 

 （10）

Reference [4] points out that
2

ia D , so we can cumulate the increasing weight by the size

of the congestion window. As a result the greater size of the congestion window provided the

greater contribution to the throughput of the MPTCP. Thus we can get the equation (11) and

communicate the weight when increasing the congestion window.

1 2 1 2: :...: : : ...:i iw w w D D D (11)

In Figure 5 dynamic weight algorithm can improve the throughput of MPTCP. Let
iw be

the window size of i . When each flow splits its traffic evenly across its two paths, the flow

through more nodes will drop more times than the flow though fewer nodes, so we can

get
1 2w w . According to the dynamic weight algorithm, the flow with only one node will

obtain larger weight, and then improve the increasing speed of the congestion window. In the

long-term stability, MPTCP will focus their traffic on the link which passes through only one

node and the MPTCP will obtain 12Mb/s. Dynamic weights can allocate the traffic more fair

when subflows share a bottleneck.

Figure 6. Subflows throughput using RFC6356 algorithm

International Journal of Control and Automation

Vol.7, No.5 (2014)

208 Copyright ⓒ 2014 SERSC

Figure 7. Subflows throughput using dynamic weight algorithm

5. Simulation

We simulate the network environment showed in Figure 4. The simulated system is

composed of a FTP application, to transfer a big file, running on Client/Server architecture

where the two hosts are linked by two links. The simulation verifies the dynamic weigh

algorithm from the fairness of subflows and the throughput of the MPTCP. In Figure 4, there

are two links which have a share bottleneck A. By changing the throughput of the share

bottleneck, we can detect the performance of the dynamic weight algorithm in subflow

fairness. In the simulation, the throughput of the share bottleneck will be 50kb/s，100kb/s，

150kb/s，200kb/s，250kb/s，300kb/s. In Figure 4, the throughput of the 3G path and Wi-Fi

path will be 200kb/s and 126.5kb/s when they do not have the share bottleneck. According to

the Table 1, MPTCP will allocate the throughput of the share bottleneck as 200:126.5, but the

algorithm in RFC 6356 cannot work well.

In Figure 6, the congestion control algorithm in RFC 6356 allocate more traffic on the 3G

path, it will cause the unfairness of the subflow. When the throughput of the share bottleneck

bigger than 300kb/s, the algorithm in RFC 6356 allocate 200kb/s and 87kb/s on the 3G and

Wi-Fi path, so algorithm in RFC 6356 cannot improve the network resource utilization. In

Figure 7, the result of the dynamic weight algorithm will allocate the traffic to subflows as the

throughput of subflows, and it can obtain higher throughput when the limitation of the share

bottleneck is 300kb/s. Figure 8 shows the behavior of the congestion window in case the

algorithm in RFC 6356 is used when the limitation of the share bottleneck is 300kb/s. Figure

9 shows the behavior of the congestion window in case the dynamic weight algorithm is used

when the limitation of the share bottleneck is 300kb/s. The result of the simulation proves the

correctness of the dynamic weight algorithm.

Table 1. Ration of 3G and WI-FI

 Algorithm

Throughput
Tradition TCP RFC 6356 Dynamic weight

3G:Wi-Fi 100:63 100:40 100:60

International Journal of Control and Automation

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 209

0 2 4 6 8 10

W

T

 3G

 WIFI

Figure 8. Congestion window evolution using RFC6356

‘

0 2 4 6 8 10

W

T

 3G

 WIFI

 Figure 9. Congestion window evolution used dynamic weight algorithm

6. Conclusion

In this paper, a dynamic weight congestion control algorithm is proposed. And this

algorithm can work better than the algorithm in RFC6356 when subflows have share

bottleneck. According to the result of the simulation and the proof, the dynamic weight

congestion control algorithm has advantages as flows:

1. The dynamic weight congestion control algorithm can allocate traffic to subflows by the

throughput of subflows.

2. The dynamic weight congestion control can obtain higher throughput in some limitation

of the share bottleneck.

 Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities

2012RC207.

References

[1] M. Xue and Z. Zhang, “MPTCP joint Markov Model for congestion control mechanisms”, Journal of

Tsinghua University, Natural Science, vol. 52, no. 9, (2012), pp. 1281-1285.

[2] Raiciu, C. M. Handley and D. Wischik, “Coupled congestion control for multipath transport protocols”, draft-

ietf-mptcp-congestion-01 (work in progress), (2011).

International Journal of Control and Automation

Vol.7, No.5 (2014)

210 Copyright ⓒ 2014 SERSC

[3] D. Wischik and C. Raiciu, A. Greenhalgh and M. Handley, “Design, implementation and evaluation of

congestion control for multipath TCP”, Proceedings of the 8th USENIX conference on Networked systems

design and implementation, (2011).

[4] M. Honda, Y. Nishida, L.Eggert, P. Sarolahti and H. Tokuda, “Multipath congestion control for shared

bottleneck”, In Proceedings of PFLDNeT workshop, (2009).

[5] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP throughput: A simple model and its

empirical validation”, In ACM SIGCOMM Computer Communication Review, vol. 28, no. 4, (1998) October,

pp. 303-314.

[6] V. Paxson and M. Allman, “Computing TCP’s retransmission timer”, IETF RFC 2988, (2000) November.

[7] A. Ford, C. Raiciu, M. Handley, S. Barre and J. Iyengar, “Architectural Guidelines for Multipath TCP

Development”, IETF RFC 6182, (2011) March.

[8] P. Eardley, “Survey of MPTCP Implementations”, IETF blank version for implementers to fill in”, (2013)

March.

