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Abstract 

Nowadays, a growing number of mobile equipments have more than one single network 

interface. For instance, smart phones have 3G/4G and Wi-Fi interfaces at the same time.   

Regular TCP restricts communications to a single path per transport connection. MPTCP 

(Multipath TCP) is a set of extensions to traditional TCP to improve the robustness and 

performance of end-to-end transport layer connections using more than one interface 

simultaneously. A key issue in the design of MPTCP is the fairness to traditional TCP flows. 

In this paper, we do a research on the congestion control mechanism of MPTCP and propose 

a dynamic weighted congestion control algorithm, which can improve the fault of the 

congestion control algorithm in the RFC 6356 when the subflows have share bottleneck. 

When the subflow increases the window size, dynamic weight algorithm will increase weight 

of the congestion window by the size of the congestion window. A MPTCP flow with the 

dynamic weighted congestion algorithm can allocate their traffic by the throughput of the 

subflow and get more fairness to traditional TCP flows than the MPTCP in RFC 6356. 
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1. Introduction 

With the development of network technology and multi-homed technology, more and more 

endpoints have multiple network adapters, such as notebook computers with wired (Ethernet) 

and wireless (Wi-Fi) network adapters, and smart phones with 3G/4G and Wi-Fi interface. 

All these endpoints can create multiple network connections at the same time. As shown in 

Figure 1, there are two flow paths between the smart phone and the server using 3G/4G and 

Wi-Fi interface simultaneously. if the multi-homed endpoints use multiple network interfaces 

[1], it can indeed balance the load between the different paths, switching dynamically and 

automatically the traffic from congested, disrupted or broken links to the best paths, which 

will greatly enhance the user experience effect. But the traditional TCP network architecture 

cannot use these multiple network interfaces resources. In order to achieve the goal of 

improving the robustness and performance of end-to-end connections in transport layer, the 

MPTCP protocol is proposed by IETF, which can use multiple connections transmit data at 

the same time in transport layer. MPTCP can balance the traffic of the subflow by connecting 

situation with the throughput of the subflow. The current research about MPTCP mainly 

comprises connecting management, flow control and congestion control. Congestion control 

algorithms mainly focus on improving the network throughput and guaranteeing the fairness 

between MPTCP and traditional TCP. In this paper we analyzed the congestion control 

algorithm in RFC6356 and proved the unfairness between subflows when subflows have a 
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share bottleneck. The congestion control algorithm in RFC6356 puts more traffic on the link 

which have lower loss rate. We present the dynamic weighted congestion algorithm to 

improve the fault of the algorithm in RFC6356. Dynamic weighted congestion control 

algorithm can guarantee the fairness between MPTCP and tradition TCP, which is based on 

the EWTCP. The dynamic weight algorithm increases the congestion widow by the weight, 

so it can allocate the traffic to subflows as the throughput of the sublow.    

 

3G/gprs

WIFI

 

Figure 1.  MPTCP network structure 
 

In this paper we first introduce the architecture of MPTCP in Section 2, as it is specified in 

the current versions of the IETF drafts. In Section 3 we analyze the problems of the algorithm 

in RFC6356.Then in Section 4 we discusse the process of modeling the dynamic weight of 

congestion control algorithm. In Section 5 we describe the simulation scenario, and comment 

the behavior of the dynamic weight of congestion control algorithm. Finally, in Section 6 we 

conclude the paper. 

 

Application

MPTCP
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Subflow1(TCP)...Subflown(TCP)

 

Figure 2.  MPTCP architecture 
 

2. MPTCP Architecture 

In order to achieve the purpose of MPTCP, an IETF working group has recently been 

created to specify a multipath protocol for the transport layer. The architecture of the MPTCP 

is putted forward as shown in Figure 2. IETF adds a MPTCP layer based on the traditional 

TCP/IP network model. MPTCP layer is transparent to both higher application and lower IP 

network layer. It is a set of additional functions to regular TCP. MPTCP allows one TCP 

connection to be spread across more than one paths. MPTCP makes use of standard TCP 

sessions as subflows to provide the underlying transport per path. MPTCP distributes load 

through the creation of separate subflows across disjoint paths. MPTCP layer is responsible 

for the subflow scheduling and submits data to the application layer. The application layer 

needs not consider the detail of the transport layer. Traditional TCP layer in the protocol 
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ensures the reliable transmission of subflow and congestion control, and submits data to the 

MPTCP layer.  

There are some functions MPTCP must implement, path management, packet scheduling, 

subflow interface and congestion control. The path management looks after the discovery of 

multiple paths between two hosts. The packet scheduler receives data from the application 

and make the necessary operations before sending data to a subflow. The subflow adds 

sequence number and passes them to network. The receiving subflow re-orders data and 

passes it to the packet scheduling component, which performs re-ordering and sends to the 

application.  
 

A

TCP endpoint 1

TCP endpoint M

B

1...N sub flow

TCP flow 1

TCP flow M

Sub flow 1

Sub flow N

Sub flow 2

MPTCP 
Endpoint

...

 

Figure 3.  MPTCP fairness schematic 
 

MPTCP should perform congestion control as traditional TCP does. As a TCP flow each 

subflow of MPTCP must have its own congestion control state so that capacity on that path is 

matched by offered load. The simplest way to achieve this goal is to simply run TCP Reno 

congestion control algorithm on each subflow. But this solution is unsatisfactory as it gives 

the multipath flow an unfair share when the paths taken by its different subflows share a 

common bottleneck. As shown in Figure 3, when a MPTCP flow containing N subflows has a 

share bottleneck with a traditional TCP flow, if each subflow run congestion control 

algorithm as traditional TCP does, the MPTCP is approximately N times as aggressive as 

each TCP flow. In Figure 3, a MPTCP connection that contains N subflows competes with M 

traditional TCP flows at the shared bottleneck between router A and router B. While each 

traditional TCP flow receives a 1/(N +M) share of the bottleneck, the MPTCP flow receives a 

N/(N +M) share.  

In order to keep the fairness between traditional TCP and MPTCP, reference [2] proposed 

several principles of MPTCP congestion control algorithm: 

1. A multipath flow should perform at least as well as a single path flow would be on the 

best path available to it. 

2. A multipath flow should not take up more capacity from any of the resources shared by 

its different paths if it were a single flow using only one of these paths. This guarantees that it 

will not unduly harm other flows. 

3. A multipath flow should move off its most congested paths as much traffic as possible. 

The first principle means to improve throughput, the second principle means to do no harm, 

and these two principles together ensure fairness at the bottleneck. The third principle means 

to balance congestion, it captures the concept of resource pooling: if each multipath flow 
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sends more data through its least congested path, the traffic in the network will move away 

from congested areas. This improves robustness and overall throughput. 

 

3. Problem Definition and Analysis 

As described in Section 2, the congestion control of MPTCP aims to set the multipath 

flow’s aggregate bandwidth to be the same as that of a regular TCP flow would get on the 

best path available to the multipath flow. An algorithm named coupled congestion control 

algorithm has proposed in RFC 6356. The algorithm extends standard TCP congestion control 

for multipath operation.  The algorithm in RFC 6356 only changes the increase phase of the 

congestion avoidance state when the endpoint receives an ACK. The remaining phases such 

as the slow start, fast retransmit and fast recovery are the same as in traditional TCP [5]. 

Formula (1) is the increase value when the flow gets an ACK, which is proposed by IETF in 

RFC 6356. Let _cwnd i be the congestion window on the subflow i . Let _cwnd total  be 

the sum of the congestion windows of all subflows in the connection. Let _MSS i  and 

irtt _  be the maximum segment size on subflow i .  For each ACK received on subflow i , 

increase _cwnd i  as formula (1). The first argument is the computed increase for the 

subflow, and the second argument is the increase TCP would get in the same scene. The 

formula takes the minimum between the computed increase for the subflow and the increase 

TCP would get in the same scene. In this way, Any subflow of MPTCP cannot be more 

aggressive than a TCP flow in the same scenario, and principle 2 described in Section 2 has 

been achieved.   is a parameter of the algorithm that describes the aggressiveness of the 

multipath flow.. The total throughput of all flows in MPTCP depends on the value of   and 

the loss rates, maximum segment sizes, and RTT of its paths. Since the total throughput is no 

worse than the throughput a single TCP would get on the best path is required, It’s impossible 

to choose a priori a single value of   that achieves the desired throughput in every occasion. 

So   must be computed based on the observed properties of the paths.   can be calculate by 

formula (2) in RFC 6356, The value of   is chosen such that the aggregate throughput of the 

MPTCP is equal to the throughput a TCP flow would get if it ran on the best path, and to 

meet principle 1 described in Section 2.  

* _ * _ _ * _i
min ,

_ _

bytes acked MSS i bytes acked MSS

cwnd total cwnd i

 
 
 

                             (1)   

2

2

_

_
_ *

_

_

cwnd i
MAX

rtt i
cwnd total

cwnd i
SUM

rtt i

 
 
  

  
  

  

                                               (2)   

 _MAX x i  be the maximum among all the subflow. 

 _SUM x i  be the summation of all the subflow. 

The formula (2) is derived by equalizing the rate of the flows in MPTCP with the rate of a 

TCP running on the best path. In general cases this method can satisfy the fairness in share 

bottlenecks in the network, and get the throughput as well as traditional TCP in the best path. 

But it does not satisfy to all scenes. Take the scene shown in Figure 4 for example, this 
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method will move more than half of the traffic on the 3G path, and cannot get throughput as 

well as traditional TCP in the best path. The analysis is as follow: 

Assume all subflows have the same round-trip time and are in the congestion stage. We 

can get formula (3) and 1   from formula (2). Thus, the congestion window with increasing 

value is 
* _ * _

_

bytes acked MSS i

cwnd total


 by each ACK. 

 _

_

MAX cwnd i

cwnd total
                                                      (3)   

To get a feeling for the behavior of this algorithm, we assume a MPTCP flow has only two 

links, Let 
1p  and 

2p  be the loss rate. Let 
1R  and 

2R  be the round-trip time. Let 
1W and 

2W  

be the congestion windows. We also assume 
1 2W W  and all subflows have the same 

maximum segment size. From formula (3) we can get the congress window increasing with 

value is  
 

1

2

1 2

* _ *W bytes acked MSS

W W
 . 

As [3] proposed that each window is made to increase1 w  by ACKs, and decrease 2w  

by drops. To keep in equilibrium the increases and decreases must balance out and seen in 

formula (4). And we can get our balance formula (5) and (6). 
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(1 p)
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w w w
p

RTT w RTT
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                             （4） 
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W W bytes acked MSS W W
p p

R RW W

   
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           （6） 

From formula (5) and (6), we can deduce equation (7). If 
1 2W W  , we can get 

1 2p p . 

       1 1 2 2* *p W p W
                                                 (7)   

According to the above formula derivation, we can get the conclusion that the congestion 

control algorithm in RFC 6356 tends to select subflow link with low loss rate instead of 

subflow link with high throughput. According to the above formula (4), we can get the 

formula to   calculate the throughput of link with loss rate p as follows: 

2(1 p) 2w p p   , The parameter w means the throughput of link, and the parameter 

p means loss rate of the link.  We can calculate the throughput of link in the Figure 4 

according to this formula. The throughput of single traditional TCP in WIFI link with loss 

rate 4% is 126.5kbps and the throughput of single traditional TCP in 3G link with loss rate 
1% is 200kbps. 
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3G:p=1%

WIFI:p=4%

 

Figure 4.  Low throughput of the network environment 
 

4. Dynamic Weight Algorithm 

Dynamic weight algorithm is the improvement of the EWTCP algorithm. EWTCP 

algorithm is made to increase / ra w  by each ACK and decrease / 2rw  by drops. Reference 

[3] points out that this algorithm guarantees the fairness between MPTCP and traditional TCP 

and can obtain the throughput of the traditional TCP in the best path. Meantime this algorithm 

can allocate traffic by the throughput of the subflow, but in some special network 

environment, EWTCP cannot obtain the throughput of the tradition TCP in best path.  

 

 

Figure 5.  Ineffective usage of the network resource 
 

In Figure 5, it supposed that the three links have capacity of 12Mb/s. When each flow 

splits its traffic evenly, then each subflow will get 4Mb/s, hence the throughput of the 

subflow will be 8Mb/s. But if each flow uses only the one-hop shortest path, it could get 

12Mb/s [3]. EWTCP algorithm cannot work well in this situation. 

In order to improve EWTCP in this situation, we propose dynamic weight algorithm. 

When the subflow receives an ACK, dynamic weight algorithm will change the weights 

according to _ / _cwnd i cwnd total .Reference [4] and [5] models throughput of TCP T as 

a function of RTT. 

               

 22 3
3 1 32

3 8

s
T

p p
R t p p

a a


 

  
 

                                           （8） 

Where T is a function of RTT; t is the retransmission timeout value; s is packet size; p is 

packet loss rate. If a=1, we can get the throughput of traditional TCP. 
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                                       （9） 

According to the fairness rules of the MPTCP, we can get the increasing weights by the 

congestion window. We assume that the throughput of the subflow i  should be 
iD  times of 

the traditional TCP and 1iD  . According to formula (9), we can get the throughput  
iT  of 

subflow i . 

 22 3
3 1 32

3 8

i i

s
T D

p p
R t p P


 

  
 

                                （10） 

Reference [4] points out that
2

ia D  , so we can cumulate the increasing weight by the size 

of the congestion window. As a result the greater size of the congestion window provided the 

greater contribution to the throughput of the MPTCP. Thus we can get the equation (11) and 

communicate the weight when increasing the congestion window. 

1 2 1 2: :...: : : ...:i iw w w D D D                                                 (11)   

In Figure 5 dynamic weight algorithm can improve the throughput of MPTCP. Let 
iw   be 

the window size of i . When each flow splits its traffic evenly across its two paths, the flow 

through more nodes will drop more times than the flow though fewer nodes, so we can 

get
1 2w w . According to the dynamic weight algorithm, the flow with only one node will 

obtain larger weight, and then improve the increasing speed of the congestion window. In the 

long-term stability, MPTCP will focus their traffic on the link which passes through only one 

node and the MPTCP will obtain 12Mb/s. Dynamic weights can allocate the traffic more fair 

when subflows share a bottleneck. 

 

 

Figure 6. Subflows throughput using RFC6356 algorithm 
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Figure 7. Subflows throughput using dynamic weight algorithm 

 

5. Simulation 

We simulate the network environment showed in Figure 4. The simulated system is 

composed of a FTP application, to transfer a big file, running on Client/Server architecture 

where the two hosts are linked by two links. The simulation verifies the dynamic weigh 

algorithm from the fairness of subflows and the throughput of the MPTCP. In Figure 4, there 

are two links which have a share bottleneck A. By changing the throughput of the share 

bottleneck, we can detect the performance of the dynamic weight algorithm in subflow 

fairness. In the simulation, the throughput of the share bottleneck will be 50kb/s，100kb/s，

150kb/s，200kb/s，250kb/s，300kb/s. In Figure 4, the throughput of the 3G path and Wi-Fi 

path will be 200kb/s and 126.5kb/s when they do not have the share bottleneck. According to 

the Table 1, MPTCP will allocate the throughput of the share bottleneck as 200:126.5, but the 

algorithm in RFC 6356 cannot work well.  

In Figure 6, the congestion control algorithm in RFC 6356 allocate more traffic on the 3G 

path, it will cause the unfairness of the subflow. When the throughput of the share bottleneck 

bigger than 300kb/s, the algorithm in RFC 6356  allocate 200kb/s and 87kb/s on the 3G and 

Wi-Fi path, so algorithm in RFC 6356  cannot improve the network resource utilization. In 

Figure 7, the result of the dynamic weight algorithm will allocate the traffic to subflows as the 

throughput of subflows, and it can obtain higher throughput when the limitation of the share 

bottleneck is 300kb/s. Figure 8 shows the behavior of the congestion window in case the 

algorithm in RFC 6356 is used when the limitation of the share bottleneck is 300kb/s. Figure 

9 shows the behavior of the congestion window in case the dynamic weight algorithm is used 

when the limitation of the share bottleneck is 300kb/s. The result of the simulation proves the 

correctness of the dynamic weight algorithm.  

 

Table 1. Ration of 3G and WI-FI 

              Algorithm 

Throughput 
Tradition TCP RFC 6356 Dynamic weight 

3G:Wi-Fi 100:63 100:40 100:60 
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Figure 8. Congestion window evolution using RFC6356    
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       Figure 9. Congestion window evolution used  dynamic weight algorithm 
 

6. Conclusion 

In this paper, a dynamic weight congestion control algorithm is proposed. And this 

algorithm can work better than the algorithm in RFC6356 when subflows have share 

bottleneck. According to the result of the simulation and the proof, the dynamic weight 

congestion control algorithm has advantages as flows: 

1. The dynamic weight congestion control algorithm can allocate traffic to subflows by the 

throughput of subflows. 

2. The dynamic weight congestion control can obtain higher throughput in some limitation 

of the share bottleneck. 
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