
International Journal of Control and Automation 

   Vol.7, No.2 (2014), pp.21-32 

http://dx.doi.org/10.14257/ijca.2014.7.2.03 

 

 

ISSN: 2005-4297 IJCA 

Copyright ⓒ 2014 SERSC 

Modeling and Analysis of Traffic Guidance Systems Based on Multi-

Agent 
 

 

Haitao Zhang and Yanyan Li 

Information Engineering College, Henan University of Science and Technology, 

Luoyang 471023, China 

zhang_haitao@163.com 

Abstract 

Aimed at the deficiency of existing modeling method of traffic guidance system based on 

Multi-Agent, the advantage of Unified Modeling Language (UML) and Hierarchical Colored 

Petri Nets (HCPN) is combined to model the system. The modeling method using UML and 

HCPN is first put forward, and more UML diagrams are constructed so as to model the 

framework of traffic guidance systems. Moreover, the mapping rules from UML model to 

HCPN is set up, the formal model of traffic guidance system is gotten, and design error may 

be found by formal verification and validation of HCPN model. So UML model can be 

improved and correct UML model can be gotten. 

 

Keywords: Multi-Agent, Petri Nets, Traffic Guidance Systems, UML 

 

1. Introduction 

With the rapid development of city transportation, it becomes more necessary to develop 

traffic guidance systems. Because of the complexity of city traffic, for a given destination the 

driver must identify all feasible routes, and select the most appropriate route in accordance 

with complicated traffic information. 

Traffic guidance systems have been developed in many developed countries, such as 

United States, Germany and Japan. These systems play a very significant role in 

strengthening traffic management and control function [1]. In china, the traffic guidance 

systems have been lately paid more and more attention by the government, and set up the 

traffic guidance systems in some large city such as Beijing, shanghai and Shenzhen [2]. 

However, the existing traffic guidance systems are too complicated and costly, and are not fit 

for the need of many Chinese cities. So it is necessary to develop the traffic guidance systems 

on basic of the existing equipments and technology.  

In recent years with the popularity of embedded processors and network technology, 

vehicles, intersection controllers, and control centers have made up a networked system. With 

higher performance requirements of traffic guidance control, the complexity of control 

algorithm and the cost of control device will increase rapidly. For example, in order to make 

traffic guidance control more intelligent, we must design the intelligent traffic intersection 

controllers and vehicular controller with higher cost. In addition, most embedded devices only 

have limited ability of computation and memory, and it is difficult for these devices to 

implement complex control algorithm, so traditional control theory including classical and 

modern control theory has great deficiencies. So some researchers introduce agent technology 

into the network systems, and put forward agent-based control method [3-4]. The control 

method is fit for the running and management of traffic systems and vehicle systems.  



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

22                    Copyright ⓒ 2014 SERSC 
 

The first step is to design formal model of agent-based control system on so as to analyze 

and verify whether the design method is correct, then we can get software agent from the 

model after correct model is gotten. Petri Nets has been used to model multi-agent system [5-

6]. Petri Nets has strong dynamic analysis capabilities of the concurrency, asynchronous and 

uncertainty of the system. It is easily not only extended to satisfy modeling requirements of 

complicated traffic systems, but also has perfect math theory and simulation tool. So the 

hierarchical colored Petri Nets is applied to satisfy the requirements of agent-based traffic 

guidance systems.  

However, Petri Nets is mainly used in the analysis stage of agents, and cares for the 

conversation and interaction of agents. But it isn’t fit for the whole design and 

implementation stage of systems. In order to make up for the deficiencies of Petri Nets, UML 

is introduced into the whole modeling of traffic guidance systems so as to get perfect system 

model [7-8]. UML is very good at describing the static structure of systems, but don’t fit to 

describe the dynamic behavior, and UML model is lack of strict and effective verification and 

analysis method, so UML and HCPN are combined to model traffic guidance systems. 

The rest of the paper is organized as follows. In Section 2, we first present the modeling 

methodology of agent-based systems for traffic guidance systems. Section 3 gives the 

construction method of traffic guidance systems based on multi-agent technology, and 

corresponding simulation result. Finally, a brief summary are discussed in Section 4. 

 

2. Modeling Method 

2.1. Hierarchical colored Petri Nets 

Basic Petri Nets is difficult to model and analyze the complicated systems, so Hierarchical 

Colored Petri Nets (HCPN) is used to model agent-based control systems. In the following, 

we first present the definition of HCPN. 

Definition 1: Hierarchical Colored Petri nets is a 10-tuple HCPN=(S，SN，SA，PN，PT

，PA，FS，FT，PP) where S is a finite set of pages. s S  , s is a non-hierarchical CPN. If 

1 2,s s S  and 
1 2s s , then they don’t include common elements; 

SN T is a set of substitution nodes; 

SN is a page assignment function. It maps each substitution node to a page. 

PN P is a set of port nodes. 

PT is a function of port type. PT：PN{in, out, i/o, general}. 

PA is a function of port allocation that makes Socket nodes associate with port nodes. 

FS PS is a limited set of fusion sets.  fsFS：p1p2fs：[C (p1) =C (p2)   I (p1) =I 

(p2)]  

FT is a function of fusion type. FT：FS{global, page, instance}； 

PPSMS is a set of prime page. 

 

2.2. UML 

UML is a graphical modeling language, and uses diagrams to describe static structures as 

well as dynamic behavior systems. Each diagram is composed of a set of figures that includes 

the important information on one aspect of the system. UML describes the static structure of 

the system by class diagrams and object diagrams, and describes the dynamic behaviors by 

state diagrams, collaboration diagrams, sequence diagrams and activity diagrams.  

Of course, when we model a system, we don’t need design all diagrams, but select the 

necessary diagrams according to real requirements. 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC             23 
 

Once UML model is designed by the software “rational rose”, source code framework is 

easy to be gotten from the software. The following UML diagrams are all designed in the 

software. 

 

2.3. Modeling Framework 

In the following, we first present modeling framework combining the merits of UML and 

HCPN.  
 

Specification

Use case diagram

Class diagram

HCPN top page

Verification

Deployment digram

Software code

Collaboration  

diagram
State diagram

Subpage

correct
NN

Y

 

Figure 1. Modeling framework 
 

Shown as Figure 1, we first constitute the system specification according the requirements 

of the system. Then the use case diagram of UML model is designed to capture the traffic 

guidance requirements corresponding to system specification, and the class diagram is 

designed according to the existing objects and their functions.  

After that the collaboration diagram and state diagram are designed on the basic of class 

diagram, we map the two diagrams to HCPN model. Using the simulation tool and math 

theory we may get some characteristics of the model so as to decide whether the model satisfy 

the system requirements, such as deadlock, reachability, boundedness. According to the 

simulation result of HCPN model we may improve the corresponding UML model. Then we 

repeat the process of “map, verification and improve” until the verification satisfy the 

requirements.  

This approach integrates the merits of UML and Petri Nets. Petri Nets is used to do 

quantitative and qualitative analysis, then software code can be gotten from UML model. 

 

3. Construction of System Model 

The traffic guidance system based multi-agent is composed of a city center agent, some 

region center agents, many traffic intersection controller agents and many vehicle agents. All 

vehicle agents are dynamically divided into one or a number of region groups by city 

command center agent; each group has a region center agent as a leader. Vehicle agents need 

identify and select the best path by all information from environments.  



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

24                    Copyright ⓒ 2014 SERSC 
 

Region center agent must communicate with intersection controller agents so as to get all 

traffic information, and transmit the information to city center agent. 

Region center agent can communicate with city center agent and all vehicle agents of the 

region at any time, and realize the information exchange. In traffic guidance system, each 

vehicle agent must register their information, including name, address, interfaces and relative 

services to the city and region center agent. When a vehicle agent enters or exits a region, 

region command center must add or remove the registered information, thus it only keep one 

dynamic information table that will not cause confusion. City center agent should have the 

highest priority to control and communicate with every region center agent.  

In our systems, route control algorithm is discomposed into the design of region route 

control agents, and different control algorithms are assembled by different region route 

control agents. Each region center agent doesn’t hold all route control agents, but “control on 

demands”, and it only possesses the region route control agents which are currently needed. 

In the following, all kinds of diagrams of UML model are presented. 

 

3.1  The use case diagram 

Shown as Figure 2, it is the use case diagram of traffic guidance systems, and includes a 

vehicle agent, a city command center agent, a region center agent and an intersection 

controller agent. The use cases which are drawn as eclipses represent the scenarios of the 

systems. 
 

intersection 

controller agent city center agent

compute route

vehicle agentdriver
route request

input the destination

<<includes>>

route selection run the route

<<includes>>

command process

trasmit vehicle inforamtion

region center agent

transmit traffic information

trasmit information

register vehicle information

<<includes>>

register information

<<uses>>

<<uses>>

 

Figure 2. The use case diagrams of the system 
 

In Figure 2, the request from the driver “input the destination” causes the vehicle agent to 

carry out “route request”, then cause region and city center agent to carry out “route 

compute”. After getting feasible routes, the drive carries out “select the route”, and the 

vehicle carries out “receive the route” and “running the route”. 

 

3.2 The Static diagrams 

The class diagram is the most important static diagram in UML model. It describes all 

kinds of static relationships among objects, and the attributes and operations of a class. 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC             25 
 

 

Figure 3. The class diagrams of the system 
 

Figure 3 is a class diagrams of the traffic guidance systems based on Multi-Agent. Figure 3 

includes the following four classes: city command center agent, region center agent, vehicle 

agent, and intersection agent. The “vehicle agent” class includes six operations corresponding 

to the six use cases of the actor “driver” and “vehicle agent” in Figure 2. The “city center 

agent” and “intersection controller agent” class are both simple. However, the region center 

agent add two internal functions “receive route from the city” and “send route to the city” on 

the basic of Figure 2 so as to make the relation of city and region center agent more clear. 

 

 3.3 The dynamic diagrams 

Figure 4 is the collaboration diagram of requiring the route. The collaboration diagram 

represents the dynamic structure among the class instances. Figure 4 only represents the case 

in which the driver requests a route whose destination is not in local region.  
 

:vehicle agent :region center 

agent

:driver agent

:city command center 

agent

:intersection controller 

agent

2: recevie requirement from the vehicle( )

3: send route requirement to the city( )

6: receive the route( )

4: compute the route( )

5: receive the route from the city( )

1: input the destination( )

7: select the route( )

8: running the route( )

 

Figure 4. The collaboration diagrams of the vehicle 
 

In Figure 4, at first, after the driver inputs a destination, the vehicle receives the request 

and sends it to the region center agent. Then city center agent disposes all possible city routes 

into region routes using its algorithm, and region center agents receive, compute and get the 

region routes. Moreover, the vehicle agent receives all region routes, assembles them. Finally, 

the driver selects a route, and makes the vehicle agent run according to the route.  



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

26                    Copyright ⓒ 2014 SERSC 
 

vehicle running

waiting the input 

of destination

showed 

routes

vehicle 

running

selected 

route

destination 

inputed

computed 

routes

waiting the input 

of destination

showed 

routes

vehicle 

running

selected 

route

vehicle information

news vehicle 

information

waiting the receipt of 

vechicle information

news vehicle 

information

waiting the receipt of 

vechicle information

destination 

inputed

input

computed 

routes

request

receive

select

run

transmit vehicle information

time reachtransmit end

 

Figure 5. The state diagrams of the vehicle agent 
 

By the collaboration diagram, we may get the relationship among objects. However, in 

order to get the conversion relationship of various state of an object, the state diagram must 

be constructed. Figure 5 is the state diagram of the vehicle agent. It has two parallel states 

including “vehicle information”, and “vehicle running”. In the state “vehicle running”, it 

includes six sub-states, and the sub-state converts from “waiting the input of the destination” 

to “vehicle running” by continuous trigger of events.  

Figure 6 is the state diagram of region center agent. It has three states: “city route”, 

“command send” and “information transmission”.  
 

compute route

region route 

request

region request city request

cmputed 

routes

region route 

request

region request city request

cmputed 

routes

receive the route

command send

region 

command

command input

region 

command

command input

route computation

reqobj="region" reqobj="city"

give a command

information transmission

vehicle 

information

traffic 

information

new 

information

vehicle 

information

traffic 

information

new 

information

vehicle information register

traffic information register

end

time reach

 

Figure 6. The state diagrams of the region center agent 
 

After the destination request arrives, the region center agent first decides whether the route 

is city route or region route, then the diagram converts from “region route request” to the 

corresponding sub-state. 

During the driving, because of the changes of traffic information, in some road segments of 

the route there may exist some unexpected incidents, such as traffic jams, traffic control, 

region command center agent can receive the warning message that this road has some 

abnormity from intersection agent on this road segments. The region center agent must adjust 

the original route based on the message and set down a new route so as to complete the 

mission successfully. 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC             27 
 

However, the aim of the paper is to research the modeling of traffic guidance systems, for 

simplicity, so we only consider one traffic and vehicle information transmission during one 

route request. 

 

3.4. Mapping methods 

In the following we give the steps by which HCPN model can be constructed from UML 

model. 

1) Obtain the substitution transitions of top page of HCPN model from UML class 

diagram. 

In the class diagram the class that contains several operation functions is mapped to a 

replacement transition in HCPN model, and the name of the replacement transition may be 

same with the class name. Each operation in the class that is mapped to a substitution 

transition of the HCPN is replaced by a transition of the sub-page of this substitution 

transition. In addition, the class that only contains one operation function is mapped to an 

ordinary transition with same name [9].  

The class that only has the static property in class diagrams is mapped to the place whose 

color sets is corresponding to the color sets of the class. 

In HCPN the direction of the arc is decided by the association direction of the class 

diagram. 

2) Map the state diagrams to a sub-page. 

State diagram displays the details of the dynamic behavior of objects, so it can easily be 

mapped to sub-page of HCPN.  

According to the characteristics of the state diagram and the HCPN, a conversion event in 

UML state machine diagram is mapped to a transition of the Petri Nets, the source state is 

mapped into a pre-set place of the transition, the target state is mapped to a post-set place of 

the transition, and the conversion element is mapped to the two arcs which are from the pre-

set place to the transition and from the transition to post-set place. The state diagram reflects 

states of the objects and external events which make states changed in UML. In HCPN the 

place and transition of sub-page reflects these relationships. 

3) The whole HCPN of the system is constructed by UML collaboration diagrams and 

many sub-pages. 

The step is to connect all the sub-pages so as to form the HCPN model of the whole 

system. 

 

3.5. HCPN model 

In Figure 3, there are four classes, according to the mapping rules of the UML to HCPN, 

HCPN model of traffic guidance should includes four substitution transitions: vehicle agent, 

intersection agent, region center agent and city center agent. 

For the substitution transition “vehicle agent”, the sub-page is shown as Figure.7. The 

place “vehicle destination” represents the route request of driver, and it makes the transition 

“input” and “request” enabled. The place “input_ tag” models the execution sequence of the 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

28                    Copyright ⓒ 2014 SERSC 
 

transition “input” and “select”. Once region or city center agent finished the computation of 

requested destination, the place “computed routes” will have a token whose type is route list. 

Then the transition “receive”, “select” and “run” will be fired sequentially. After the vehicle 

is run according to selected route, the place “vehicle running” will get a token. 

 

 

Figure 7. The sub-page of vehicle agent 
 

Figure 8 is the sub-page of the substitution transition “region center agent”. Once the 

vehicle requests a route, the place “route request” will get a token. If the token of the place 

“region city tag” is “region”, the token will make the transition “request compute” enabled, 

then the place “computed routes” gets a token which represents that route request has been 

finished.   

 

 

Figure 8. The sub-page of region center agent 
 

If the token of the place “region city tag” is “city”, it makes the transition “city request” 

enabled. It makes region center agent request the routes to city center agent. After the city 

center agent transmits the routes to the place “city routes”, the place “give city routes” is 

fired, and the place “computed routes” gets a token. 

 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC             29 
 

 

Figure 9. The sub-page of city center agent 
 

Figure 9 is the sub-page of the substitution transition “city center agent”. Once it gets the 

request from the region center agent, the transition “city route compute” is fired, and 

transmits the computation result to all relative region center agents. The transition 

“information receive” models the collection of vehicle and traffic information.  

 

 

Figure 10. The sub-page of intersection controller agent 
 

Figure 10 is the sub-page of the substitution transition “intersection controller agent”. It 

models the receipt of command from the region center agent, and the collection of traffic 

information. 

Of course, we may further get more HCPN models of traffic guidance system. However, 

the above models have made us implement formal verification and gotten reliable UML 

model. 

After getting all the sub-pages of each substitution transition of HCPN model, the top page 

of HCPN model is gotten from the collaboration diagram of UML model. 

In the following, the top page which is gotten by the collaboration diagram of UML model 

is shown as Figure 11. In Figure 11, the name of substitution transition is same with that of 

the class in Figure 3. The relation among the substitution can be gotten from the collaboration 

diagram of UML model. 

In Figure 11, four substitution transitions are corresponding to the above four sub-pages. 

 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

30                    Copyright ⓒ 2014 SERSC 
 

 

Figure 11. The top page of the system 
                                   
3.6 The verification of Petri Nets model 

Various analysis methods of Petri Nets can be used to do the strict qualitative analysis and 

validate the Petri Nets model that we get.  

CPN Tool is the simulation software of HCPN model, and provides two analysis tools. 

One is to simulate the running of the model, and observe the changes of the mark of each 

place after a transition is fired. So we may get the properties of the model by single step or 

continuous running of transitions. The other is the State analysis tool which is called 

“Statespace”. It can generate all states of HCPN model so that we can get all the properties by 

state graph. In the following, we use the two analysis method to verify the HCPN model 

which is gotten from UML model. 

Shown as Figure 12, it is the running result after executing 17 steps of transitions 

continuously. The place vehicle running gets a token “1” which represents that the vehicle has 

selected a route and is running. 
 

 

Figure 12. The running result of completing a route request 
 

Shown as Figure 13, it is the part result after executing the analysis of calculating the state 

space and SCC graph. It represents that the state space and SCC graph have both 432 nodes 

and 1320 arcs. The upper boundedness of the place vehicle running is “1” which represents 

that the vehicle has selected a route and is running. The dead and home marking nodes are 

both 432. Since the state space has only 432 nodes it must be end node. The existing of dead 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC             31 
 

transition “request compute” is that the token of the place “region city tag” is “city” so that  

the transition  is not executed. 
 

 Home Properties

----------------------------------------

  Home Markings     [432]

 Liveness Properties

---------------------------------------

Dead Markings     [432]

  Dead Transition Instances

     region_center_agent_process'request_compute 1

  Live Transition Instances     None

 Fairness Properties

--------------------------------------

     No infinite occurrence sequences.

 Statistics

---------------------

  State Space

     Nodes:  432

     Arcs:   1320

     Secs:   0

     Status: Full

  Scc Graph

     Nodes:  432

     Arcs:   1320

     Secs:   0

 Boundedness Properties

----------------------------------------------

  Best Integer Bounds                        Upper      Lower

 Top'city_information_library 1             2          0

 Top'city_routes 1                                   1          0

 Top'city_routes_library 1                       1          0

 Top'city_vehicle_traffic_infomation 1  2          0

 Top'command_input 1                           1          0

 Top'command_running 1                       1          0

 Top'computed_routes 1                          1          0

 Top'region_command 1                         1          0

 Top'region_information_library 1          2          0

 Top'region_route_library 1                    1          0

 Top'route_region_requirement 1            1          0

 Top'route_requirement 1                        1          0

 Top'selected_route 1                               1          0

 Top'showed_routes 1                              1          0

 Top'traffic_information 1                        1          0

  Top'traffic_sensor 1                                1          0

  Top'vehicle_destination 1                       1          0

  Top'vehicle_information 1                      1          0

  Top'vehicle_running 1                             1          0

  Top'vehicle_sensor 1                               1          0

region_center_agent_process'region_city_tag 1   

                                                                   1          0

     region_center_agent_process'region_require_tag 1

                                                                   1          0

  vehicle_agent_process'input_tag 1         1          0

  vehicle_agent_process'receive_tag 1      1          0

  vehicle_agent_process'require_tag 1      1          0

 

Figure 13. The part analysis result of state space 
 

We know that the simulation result is correct by the above analysis. So we think that 

UML model is also correct. The correct source code framework may be gotten from 

UML model. 

 

4. Conclusion 

In the traffic guidance systems based Multi-Agent, we have presented a methodology to 

support formal validation of UML model. The main idea is to map a HCPN model from UML 

diagrams so as to utilize the analysis techniques of HCPN. We construct key UML 

components of traffic guidance systems, and discussed the mapping activities: 1) Generation 

of sub-page of each class instance, 2) Generation of top page of the model, and 3) Combine 

top page and sub-pages to create a system-level model. The proposed methodology helps us 

to model and analyze the traffic guidance systems based Multi-Agent. 
 

References 
 
[1]  F. Yu, “The Application of Agent Technology in Intelligent Traffic”, Henan University of Science and 

Technology, Luoyang, (2009). 

[2]  X. F. Zha, “Vehicle guidance system and key technology research”, jiangsu university, Zhenjiang, (2007). 

[3]  F. Y. Wang, C. H. Wang, “Agent-Based Control Systems for Operation and Management of Intelligent 

Network-Enabled Device”, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 

Washington DC, United States, (2003) October 5-8. 

[4]  H. T. Zhang, F. Y. Wang and Y. F. Ai, “An OSGi and Agent Based Control System Architecture for Smart 

Home, Proceedings of IEEE International Conference on Networking, Sensing and Control, Tucson, AZ, 

United states US, (2005) March 19-22. 

[5]  Y. L. Cai, Z. H. Yu and X. M. Zhang, “Formal Modeling Methodology for Multi-Agent Systems”, Journal of 

System Simulation, vol. 19, no. 14, (2007), pp. 3151-3157. 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

32                    Copyright ⓒ 2014 SERSC 
 

[6]  D. X. Xu, R. Volz, T. Ioerger, et al., “Modeling and Verifying Multi-Agent Behaviors Using 

Predicate/Transition Nets”, Proceedings of International Conference on Software Engineering and 

Knowledge Engineering, Ischia, Italy, (2002) July 15-19. 

[7] J. S. Lee and P. L. Hsu, IEEE Transaction on Control Systems Technology, no. 12, (2004), pp. 293. 

[8]  F. Basile, P. Chiachio and D. D. Grosso, “Computer Standards & Interfaces”, no. 31, (2009), pp. 528.  

[9]  J. A. Aaldhana, A. M. Shatz, “UML Diagrams to Object Petri Net Models: An approach for Modeling and 

Analysis”, Proceedings of International Conference on Software Engineering and Knowledge Engineering, 

Kaiserslautern, Germany, (2000) June 16-19. 

 


