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Abstract 

The model and control of a human forearm is analyzed. In this work, we study the problem 

of human hand control carrying a mass. The equation of motion and the natural frequency of 

the forearm for small angular displacement are derived. We develop new methods that use 

vector fields in the controller construction for a set of nonlinear dynamical systems.  The 

paper deals with compensate of non-linear system which has a similar idea as the method 

mentioned in linear system. The nonlinear control design procedure, as in the case of linear 

systems, involves three steps. The first step is the devise of a state-feedback control law, the 

second step involves the design of a state estimator, and the third step merges the first two 

steps to obtain a collective controller–estimator compensator. We have managed to design a 

control law for the non-linear representation of a system, in such a way that the 

representation of a closed loop system is affine, controllable, and observable and a closed 

loop system is asymptotically stable. Throughout any motion, the forearm can be considered 

a one-link robot manipulator which could be exploited to benefit people with disabilities 

(missing extremities). 
   

Keywords: Forearm; Nonlinear Control; Modeling; Observer, Vector Field; Lie 

Derivatives 

 

1. Introduction 

The problems associated with the design of artificial arm replacements are far more 

challenging than those associated with the design of robotic arms or terminal devices. The 

design of artificial arms is a multidisciplinary effort. The design team needs an understanding 

of the mechanics of mechanisms, such as gears, levers, and points of mechanical advantage, 

and electromechanical design, such as switches, dc motors, and electronics [1]. When the 

someone wants to move the arm, the brain sends signals that first bond the chest muscles, 

which send an electrical signal to the prosthetic arm, instructing it to reposition. The 

procedure requires no more aware effort than it would for a person who has a ordinary arm. 

Typically, a person with a prosthetic arm can make only a few motions, often so slowly that 

many people use the arms only for limited activities. There is a separate motor for each 

movement. By far the most common actuator for electrically powered prostheses is the 

permanent magnet dc electric motor with some form of transmission [2]. In proportional 

control, the amount/intensity of a controlled output variable is directly related (proportional) 

to the amount of the input signal. For example, the output speed of a dc motor is proportional 

to the amount of voltage applied to its terminals. This is why dc motors are said to be speed 

controlled. This is also the reason why most of today’s commercially available prosthetic 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

310                    Copyright ⓒ 2014 SERSC 
 

components are speed controlled—it is simple [3]. Output speed is proportional to the amount 

of input signal. Proportional control is used where a graded response to a graded input is 

required. In position control the position of the prosthetic joint is proportional to the input 

amount/intensity. The input amount/intensity might be the position of another physiological 

joint or a force level. If the position of another joint is used as the input then the system is 

known as a position actuated, position servomechanism. If the amount of force applied by 

some body part is the input, then the system is a force actuated, position servomechanism [4].  

With position control the amputee’s ability to perceive and control prosthesis position is 

directly determined by his or her ability to perceive and control the input signal. A major 

disadvantage of position control is that, unlike velocity control, it must maintain an input 

signal to hold an output level other than zero. This means that power must be continuously 

supplied to the component to maintain a commanded position other than zero. This is one of 

the reasons why speed or velocity control is the dominant mode of control in externally-

powered prosthetics today, despite the fact that it has been shown that position control for 

positioning of the terminal device in space is superior to velocity control.  In control theory, 

a state observer is a system that provides an estimate of the internal state of a given real 

system, from measurements of the input and output of the real system [6]. It is typically 

computer-implemented, and provides the basis of many practical applications. Knowing the 

system state is necessary to solve many control theory problems; for example, stabilizing a 

system using state feedback. In most practical cases, the physical state of the system cannot 

be determined by direct observation. Instead, indirect effects of the internal state are observed 

by way of the system outputs. If a system is observable, it is possible to fully reconstruct the 

system state from its output measurements using the state observer. In this day of digital 

circuits and microprocessor based controllers pulse width modulation is the preferred method 

of supplying a graded (proportional) control signal to a component. A PWM stream only 

requires a single digital output line and a counter on the microprocessor to be implemented, 

whereas a conventional analog signal (linear dc voltage level) requires a full digital-to-analog 

(D/A) converter. PWM techniques are used extensively in switched-mode power supply 

design and audio amplifiers and as such, there is a large array of resources available to the 

designer to choose from [8]. 

 In this study, a model for a forearm performing a motion is presented, using a new 

controller technique based on vector fields.  Furthermore, we evaluated three position 

controllers. The forearm bar of mass 1m  and length b  is shown in Figure 1.  A mass 2m  is 

carried by the angular of the forearm of a human hand.  During motion, the forearm  can be 

considered to rotate about the joint (pivot point O) with muscle forcers modeled in the form 

of a force by triceps  1c x 
and a force in biceps  2c  , where 1c and 2c are constant and 

x 
is the velocity with which triceps are stretched (or contracted ). We will derive the 

equation of motion and natural frequency of the forearm of the forearm for small angular 

displacement .  The paper is organized as follows: section 1 describes an introduction about 

prosthetic research and its control techniques.  In Section 2 the mathematical model of  a 

human forearm is  described i.e. equation of motion for the angular motion of the forearm 

about the pivot point O is derived, and the motion of the robot arm by a DC motor via a gear 

is resulting Section 3 develops a method for constructing state-feedback stabilizing controls 

law for a class of dynamical systems where position control algorithms are treated. Sections 4 

and 5 nonlinear state-feedback controller and asymptotic state estimator are derived 

respectively for one-link manipulator model.  Nonlinear combined controller-estimator 

compensator is simulated in Section 6 and Finally, A short conclusion in Section 7 

summarizes the study. 

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/State_space_(controls)
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Full_state_feedback
http://en.wikipedia.org/wiki/Observability
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2. Mathematical Modeling 

Equation of motion for the angular motion of the forearm about the pivot point O [9]: 

0 2 1 2 2 1 1cos cos 0
2

P P P

b
I m gb m g F a Fa             (1) 

Where P the angular displacement of the forearm is, 0I is the mass of inertia of the forearm 

and the mass carried: 

2 2

0 2 1

1

3
I m b b m           (2) 

And the forces in the biceps and triceps muscles (  2 1 and F F are given by 

2 2 PF c             (3) 

1 1 1 1 PF c x c a            (4) 

Where the linear velocity of the triceps can be expressed as  

1 Px a            (5) 

Using Equations (2)-(4), equation (1) can be rewritten as 

2

0 2 1 2 2 1 1

1
cos 0

2
P P P PI m gb m gb c a c a     
     
 

    (6) 

Let the forearm undergo small angular displacement   about the static equilibrium 

position, , so that   

P                              (7) 

 

 

 
 

Figure 1. Forearm of a human hand carrying a mass 
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Using Taylor’s series expansion of cos P about P , the static equilibrium position, can be 

expressed as (for small value of   ) 

 cos cos cos sinP                  (8) 

Using 
P   and

P   , Equation (6) can be expresses as 

    2

0 2 1 2 2 1 1

1
cos sin  0

2
PI m gb m gb c a c a        
       
 

 Or 

2

0 2 1 2 1 2 2 2 2 1 1

1 1
cos sin  0

2 2
I m gb m gb m gb m gb c a c a c a          

          
   

    (9) 

Notice that the static equilibrium equation of the forearm at P  , Eq.(6) is given by 

2 1 2 2

1
cos 0

2
m gb m gb c a 
 

   
 

       (10) 

In view of Equation (10), Equation (9) becomes    

2 2 2

2 1 1 1 2 2 2 1

1 1
sin  0

3 2
m b b m c a c a gb m m         

         
    

   (11) 

which denotes the equation of motion of the forearm.  

 The undamped natural frequency of the forearm can be expressed as:  

2 2 2 1

2

2 1

1
sin  

2

1

3

n

c a gb m m

b m m





 
  

 
 

 
 

       (12) 

The design of fully functioning artificial arms with physiological speeds-of- response and 

strength (or better) that can be controlled almost without thought is the goal of upper 

extremity prosthetics research. Unfortunately, current prosthetic components and interface 

techniques are still a long way from realizing this goal [1]. By far the most common actuator 

for electrically powered prostheses is the permanent magnet dc electric motor with some form 

of transmission. While there is much research into other electrically powered actuator 

technologies, such as shape memory alloys and electro active polymers, none is to the point 

where it can compete against the dc electric motor. 
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Figure 2. A manipulator of length b1 
and mass   m1 controlled by a DC 

motor via a gear. 

 

Figure 3.  Schematic of an armature                    
controlled DC-Motor 

 

In terms of artificial arm, consider a model of one-link robot manipulator shown in Figure 

2.  Many different types of drive mechanisms have been devised to allow wrist and forearm 

drive motors and gearboxes to be mounted close to the first and second axis of rotation, thus 

minimizing the extended mass of the arm. The motion of the robot arm is controlled by a DC 

motor via a gear [10]. The DC motor is armature-controlled and its schematic is shown in 

Figure 3.The torque delivered by the motor is: m m aT K i , where mk  is the motor-torque 

constant, and ai is the armature current. Let N denote the gear ratio. Then we have 

       1

  arm     

P

m

radius of motor gear Number of teeth motor gear

radius of gear Number of teeth arm gear N




    

The work done by gears are proportional to their number of teeth and the work done by the 

gears must be equal. Let PT denote the torque applied to the robot arm. Then, 

P P m mT T  .  Thus, the torque applied the rod is   P m m aT NT NK i  . We use Newton’s 

second law to write the equation modeling the arm dynamics,  

2 2

2 1 2 1

1 1
cos

3 2
P P m am b b m m gb m gb NK i    

      
   

    (13) 

Where   g=9.8 m/sec
2
 is the gravitational constant.  Applying Kirchhoff’s voltage law to the 

armature circuit yields 

a P
a a a b

di d
L R i k N u

dt dt


           (14)   

Where Pk is the back emf constant. We can now construct a third-order state-space model of 

the one-link robot. For this we choose the following state variables: 

1 2 3, , ,P
P P a

d
x x x i

dt


        
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Then, the model in state-space format is 

2

1 2 1

2 1 3
2 2 2 2

2 1 2 13

2 3

1 0
2

cos 0
1 1

1
3 3

m

a
b

a a

x

x m gb m gb
Nk

x x x u

m b b m m b b mx

L
k N R

x x
L L







 
 
   
                                       
    
 

 
 
 

,  (15) 

Reasonable parameters of the robot are: m2=5kg, m1=2kg, b=30cm, N=10, km=0.1Nm/A, 

kb=0.1 V sec/rad, Ra=1Ω, La=100mH. Then the robot model takes the form: 

 

1 2

2 1 3

3 2 3

0

34.59cos 1.96 0

10 10 10

x x

x x x u

x x x







     
     

       
          

      (16) 

We assume that the output y, is  

1y x            (17) 

0 1 2 3 4 5 6 7 8
-6

-5

-4

-3

-2

-1

0

1

2

3

Time (sec)

 x
1
 (

ra
d
)

Uncontrolled one-link robot

 

Figure 4. Plots of the one-link manipulator’s, versus time for three different 

initial angles (0)  

 



International Journal of Control and Automation 

Vol.7, No.2 (2014) 

 

 

Copyright ⓒ 2014 SERSC            315 
 

Time histories of state trajectories of the uncontrolled nonlinear system of the model by 

(16) and (17) [ 1( ) ( )x t t ] versus time is shown in Figure 4. The manipulator is driven 

by 0u  , initial conditions 1(0) 1, 1 2x and   and 2(0) 0 andx   3(0) 0x  . It is clear 

that drastic change response due to the initial conditions and also the system has more than 

one equilibrium points. 

 

3. Nonlinear Control  

One of the objective of this paper is to devise a method for constructing state-feedback 

stabilizing control law for a class of dynamical nonlinear systems modeled by  

 

( ) ( ) ,x f x G x u

y h x

  


                                                                                                            (18) 

where : , :n n n nxmf R R G R R  and the output map : n ph R R  

We thus first discuss a method for reducing a nonlinear system model into an equivalent 

form that is a generalization of the controller form known from linear system theory. In our 

subsequent discussion, we will be using three types of Lie derivatives [11, 12]. They are as 

follows:  

1. Derivative of a vector field with respect to a vector field, also known as the Lie bracket. 

Given the vector-valued functions : n nf R R  and : n ng R R , where f and g  are 

C 
 vector fields, their Lie bracket is defined as 

 ,
f g

f g g f
x x

 
 
 

         (19) 

2. Derivative of a function with respect to a vector field. Let  : R Rnlet h   be a C 
 

function on 
nR . Let 

TDh h  , where  h is the gradient (a column vector) of h  with 

respect to x . Then, the Lie derivative of the function h with respect to the vector field f, 

denoted   ( )f fL h or L h , is defined as 

  1 1

1 1

,  f f n

n

h h h
L h L h h f Dh f f f f

x x x

  
       

  
   (20) 

3. Derivative of Dh  with respect to the vector field. The Lie derivative of Dh  with respect 

to the vector field  f  , denoted ( )fL Dh , is defined as 

 
T

T

f f f

h f
L Dh f Dh DL h L h

x x

  
    

  
     (21) 

Our goal now is to construct a C
∞
 state variable transformation  ( ),  0 0z T x T   

for which there is a C 
 inverse

1( )x T z , such that system model ( ) ( )x f x g x u    in 

the new coordinates has the form 
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21

32

1

1 2

0

0

0

1( , , , )

nn

nn n

zz

zz

u

zz

z f z z z











    
    
    
     
    
    
        

       (22) 

A  transformation ( )z T x  such that (0) 0T   and for which there is a C 
 inverse 

x = T
−1

(z) is called a diffeomorphism[13].  The transformation ( )z T x  has the form 

2 1

1 1 1, , , ,
T

n n

f f fT T L T L T L T            (23) 

The above means that the problem of constructing the desired transformation ( )z T x  is 

reduced to finding its first component 1T . The remaining components of T can be successively 

computed using 1T .  The row vector 1( )T x

x




is the last row of the inverse of the 

controllability matrix, provided the controllability matrix is invertible. We denote the last row 

of the inverse of the controllability matrix by q(x). Then, the problem we have to solve is to 

find 1

nT R R   such that  1
1

( )
( ),  (0) 0

T x
q x T

x


 


  

where the controllability matrix of the nonlinear system can be expressed in terms of Lie 

brackets as: 

     0 1 1, , ,nQ ad f g ad f g ad f g 
 

     (24) 

The controllability matrix of the system model in Equations (16, 17) is  

     0 1 2

0 0 19.6

, , , 0 19.6 196

10 100 804

Q ad f g ad f g ad f g

 
    

   
  

   (25) 

The above controllability is of full rank on R
3
. The last row of its inverse is  

 0.051 0 0q   , Hence   1 10.05T x   

Having obtained 1T , we construct the desired transformation ( )Z T x , where  

 

1 1

1 2

1 3

0.051

( ) 0.051

1.77cos 0.1

f

f f

T x

T x L T x

L L T x x

   
   

    
     

      (26) 
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Note that the inverse transformation 
1( )x T z exist and has the form 

1

1

2

3 1

19.6

( ) 19.6

10 17.7cos(19.6 )

z

T z z

z z



 
 


 
  

       (27) 

Further more 

1

0.05 0 0

0 0.05 0

1.77sin 0 0.1

T

x
x

 
  


 
  

     (28) 

Applying the transformation ( )Z T x to the model of the one-link robot manipulator 

yields 

1 1( ) ( )

( ) ( )
x T z x T z

T T
z f x g x u

x x 



 

 
 
 

 

2

3

2 1 2 3 1

0

0

34 sin19.6 19.6 10 17.7cos(19.6 ) 1

z

z z u

z z z z z



   
   

 
   
         

   (29) 

 

4.  Nonlinear State-feedback Control 

Once the plant model is transformed into the controller form, we can construct a state-

feedback controller in the new coordinates and then, using the inverse transformation, 

represent the controller in the original coordinates [14]. While constructing the controller in 

the new coordinates, a part of the controller is used to cancel nonlinearities, thus resulting in a 

linear system in the new coordinates. Then, we proceed to construct the other part of the 

controller. This part can be designed using linear control methods because the feedback 

linearized system is linear. The controller form of the one-link manipulator model is given by 

(29). It is easy to design a stabilizing state-feedback controller in the new coordinates. It takes 

the form 

 3 1 2 3 1 1 2 2 3 3( , , ) ,u f z z z k z k z k z    
      (30) 

Where 3 1 2 3 2 1 2 3 1( , , ) 34 sin19.6 19.6 10 17.7cos(19.6 )f z z z z z z z z          

Suppose that the desired closed-loop poles of the feedback linearized one-link manipulator 

are to be located at  2 3.46,8j  which verify a damping factor 0.5  and natural 

frequency 4 / secn rad  . Then, the linear feedback gains 1,2,3ik i   that shift the 

poles to these desired locations are   1 2 3128, 48 , 12k k k   .    

Applying (30) with the above values of the linear feedback gains to the model gives 
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0 1 0

0 0 1

128 48 12

z z

 
 


 
    

                                                (31)

Next, applying the inverse transformation yields the controller in the original coordinates,    

1 2 3 1 2 16.528 1.428 0.2 21.24cos 1.81 sinu x x x x x x                      (32) 

In Figure 5, three plots of the manipulator’s link angle, 1 ,x  versus time are presented. 

The initial conditions have the form  (0) (0) 0 0
T

x  . The control law applied to the 

manipulator is given by (32). 
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Figure 5.  Plots of the one-link manipulator’s link angle, 1 ,x   versus time for 

three different initial angles (0) . The manipulator is driven by the state-

feedback control law (32) 
 

5.  Nonlinear Observer Form   

In this section we discuss the problem of transforming a class of nonlinear system models 

into an observer form, which is then used to construct state estimators for these systems [15-

17].  We consider a nonlinear system model of the form of equation (18). We desire to find a 

state variable transformation, written as ( )x T z , such that the model in the z coordinates is 

 ( ) ( ),          0 0 0 1z Az y f z y z cz          (33) 
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It is easy to verify that the state z  of the dynamical system  

( ) ( )z A LC z y Ly            (34) 

Will asymptotically converge to the state z of (33) if the matrix A−Lc is asymptotically 

stable. 

This is because the dynamics of the error, e z z   are described by 

0 0 0( ) ,            ( ) ( ) ( )e A LC e e t z t z t            (35) 

Taking the derivative of ( )x T z   with respect to time yields 

( )
T T

x z f z
z z

  
 
          (36)

where we represent the Jacobian matrix of T(z), denoted
T

z




, as 

1 n

T T T
DT

z z z

   
   

   
       (37) 

With the help of Lie-derivative notation introduced above,  

1

1

, , ,        1,2, , 1
k k k

T T T
f ad f k n

z z z

     
      

     
      (38) 

 

We express all the columns of the Jacobian matrix (37) of ( )T z  in terms of the starting 

vector
1

T

z




, that is, 

0 1 1

1 1 1

, , ,nT T T T
ad f ad f ad f

z z z z


         

       
         

    (39) 

To obtain an expression for the starting vector
1

T

z




, we use the output equation 

( ) ny h x z           (40) 

We use the chain rule when taking the partial derivative of (40) with respect to z to get 

 
( )

0 0 0 1
h x T

x z

 


 
       (41) 
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We utilize derivative of Dh  with respect to the vector field to express the first component 

on the left-hand side of the above as 

 0

1 1

( )
0f

h x T T
L Dh

x z z

  
 

  
       (42) 

By repeated application of the Leibniz formula and (39), we express (41) equivalently as 

         0 1 2 1

1

0 0 0 1
T Tn n

f f f f

T
L Dh L Dh L Dh L Dh

z

  
    

 (43) 

The first term of the left hand side is called the observability matrix of the nonlinear 

system model (18). It follows from (43) that the starting vector 

1

T

z




 is equal to the last 

column of the inverse of the observability matrix. The  observability matrix for the system is 

 

 

 

0

1

2

1

0 1 0

0 0 1

34.59sin 0 1.96

f

f

f

L Dh

L Dh

L Dh x

   
   

   
     

      (44)

     

The starting vector 1T z  is the last column of the inverse of the above observability 

matrix,  

 
1

0 0 0.51
TT

z





         (45) 

 

We will now find the Jacobian matrix of the desired transformation: 

0 1 2

1 1 1

0 0 1

, , , 0 1 10

0.51 5 40

T T T T
ad f ad f ad f

z z z z

 
           

                      

  (46) 

Therefore, we can take 

1

0 0 1 19.6 9.8 1.96

( ) 0 1 10   ( ) 10 1 0

0.51 5 40 1 0 0

x T z z and z T x x

   
   

    
   
      

  (47) 

The system in the new coordinates has the form 

1 1

( ) ( )

( ) ( ) ( , )

x T z x T z

T T
z f x g x u Az y u

z z

y cz



 



 

    
      

    


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Performing simple manipulations yields 

  3

0 0 0 339.1cos 19.6

1 0 0 34.59cos 19.6

0 1 0 10

0 0 1

y u

z z y y

y

y z z



   
   

  
   
      

 

      (48) 

Once the nonlinear system model (18) is in the observer form, we can proceed with the 

construction of an asymptotic state estimator using the technique from the linear systems. The 

state estimator dynamics in the new coordinates are 

   ,z A LC z Ly y u           (49)

where the estimator gain vector L  is chosen so that the matrix (A−Lc) has its eigenvalues in 

the desired locations in the open left-hand complex plane. It is easy to verify that the state 

estimation error, z z   satisfies the linear differential equation 

    
d

z z A Lc z z
dt

           (50) 

Applying the inverse transformation to (49), we obtain the state estimator dynamics in the 

original coordinates. We illustrate the above method of constructing a state estimator using 

the model of the one-link manipulator from the previous model. We first construct a state 

estimator for the one-link manipulator model in the observer form given by (48). Suppose that 

we wish the eigenvalues of the state estimator matrix, A − Lc, to be located at {−9,−10,−11}. 

Then, the estimator gain vector is L= [ 990 299 30 ]T .With the above choice of the state 

estimator design parameters, its dynamics in the new coordinates become 

  3

0 0 990 990 339.1cos 19.6

1 0 299 299 34.59cos 19.6 ,

0 1 30 30 10

0 0 1

y u

z z y y y

y

y z z

      
     

    
     
           

 

    (51) 

 

Using transformations (47), we represent the state estimator dynamics in the original 

coordinates, 

20 1 0 30 10

79.4 0.196 1.96 1 34.59cos 80.4 ,

92 9.01 9.8 210 302 10

y

x x y y y

y u

      
     

      
     
             

                (52) 
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Performing simple manipulations, we represent the above state estimator as 

 

 

 
1

1

0 1 0 0 20 0

0 0 1.96 34.59cos 79.4 0 ,

0 9.1 9.8 0 92 10

1 0 0

1 0 0

x x y y y u

y x x

y x x

       
       

    
       
                

 

 

   (53) 

 

6.  Nonlinear Combined Controller–estimator Compensator 

The designed state feedback controller is singularity free, and guarantees asymptotic 

tracking of smooth reference trajectories for the speed of the motor under time-varying 

load torque and rotor resistance uncertainty, for any initial condition [20]. Having 

constructed a state estimator, we use the state estimates, rather than the states 

themselves, in the state-feedback control law implementation. The question now is how 

the incorporation of the state estimator affects the stability of the closed -loop system 

with the combined estimator– controller compensator in the loop. Recall that in the case 

of linear systems, we were able to show that the closed-loop system was asymptotically 

stable. In the present case, one has to be careful when analyzing the stability of the 

closed-loop system with the combined estimator–controller compensator in the loop. 

The plant’s nonlinearities may cause difficulties in stabilizing the closed-loop system 

using the combined controller–estimator compensator [21]. However, s for which the 

Lipschitz condition is satisfied—one should be able to find stability conditions in terms 

of the on linearity’s Lipschitz constant and the location of the estimator’s poles rather 

easily. We now illustrate the implementation of the combined estimator–controller 

compensator on the one-link manipulator model., the controller is 
 

1 2 3 1 2 16.528 1.428 0.2 21.24cos 1.81 sinu x x x x x x                    (54) 

 

In Figure 6, plots of the one-link manipulator output for three different initial conditions 

are shown. The manipulator is driven by the combined controller-estimator compensator 

consisting of the state estimator (53) and the control law (54). The initial conditions of the 

estimator were set to zero while the initial conditions of the plant were the same as when we 

implemented the state-feedback control alone.  An observer designed using Lie algebraic 

methods is valid in any region where a state transformation to (51) can be found. A state 

observer typically combines system input/output with a mathematical model to predict the 

behavior of that system.  Estimated 1( )x t versus time with compensator in the loop and zero 

initial conditions is shown in Figure 7. Comparing plots of Figures 5, 6 and 7, the results 

show that, state observer is much alike in dealing with nonlinear system. This technique is 

often successful for solving real-world control problems.  
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Figure 6.  Plots of the one-link manipulator’s link angle, 1 ,x   versus time for 

three different initial angles (0) . The manipulator is driven by the combined 

controller–estimator compensator 
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Figure 7.  Plots of the one-link manipulator’s link angle, 1 ,x   versus time for 

three different initial angles (0) . The manipulator is driven by the combined 

controller–estimator compensator 
 

7.  Conclusions 

An analysis and design of fully functioning artificial arms with speeds-of response and 

strength is conducted. The equation of motion and natural frequency of a human forearm is 

derived. Synthesis of control law for non-linear systems based on vector fields has been 

successfully solved. The method is exact and does not require any system linearization.  We 

have managed to design a control law for the non-linear representation of a system, which is 
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controllable and observable, in such a way that the representation of a closed loop system is 

affine, controllable, observable and asymptotically stable. This fact gives us more flexibility 

in the choice of the desired behavior of a closed loop system than a linear one.  We presented 

an introduction to qualitative theory of a nonlinear control system, with the main emphasis on 

controllability and observabilty properties of such systems. We introduced the differential 

geometric language of vector fields and Lie bracket. We explored Lie-algebraic techniques 

for nonlinear observer design. The advantage of these techniques, were that they attempt to 

exploit our knowledge of linear observer design by reducing a nonlinear observer problem to 

one that can be handled by linear techniques. We illustrated our considerations with forearm 

nonlinear system. The combination of the nonlinear observer and the nonlinear controller 

stabilizes the system and guarantees exponential convergence of the tracking error to zero.      
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