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Abstract 

This paper presents an adaptive Takgi-Sugeno (T-S) fuzzy terminal sliding-function 

controller (AFTSFC) approach to synchronize two chaotic systems with parameter mismatch. 

First, an appropriate terminal sliding function (TSF) is designed and then represented by the 

T-S fuzzy model. The T-S fuzzy terminal sliding-function (FTSF) is applied to the control law. 

Different from classical terminal sliding mode control, which uses a discontinuous switching 

control law, the FTSF control uses a continuous control law and thus avoids the chattering 

problem. The linear matrix inequality (LMI) problem is solved to obtain the initial feedback 

control gain, and the adaptive law of the control gain is adapted online to estimate 

parametric mismatch. Based on the Lyapunov stability theory, the AFTSFC guarantees that 

the error of synchronization is uniformly ultimately bounded (UUB); i.e., the drive and 

response chaotic systems can be synchronized with only a small bounded error. The 

simulation results demonstrate that the proposed method is able to provide a satisfactory 

synchronization performance. 
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1. Introduction 

It is well known that synchronization of chaotic systems faces some specific problems, 

such as being extremely sensitive to different initial conditions between the drive and 

response systems, and having uncertain parameters and parameter mismatch between both 

systems. Recently, several methods have been proposed in the literature to synchronize 

chaotic systems, such as those based on fuzzy mode control [1-4], LMI technique [6-8], 

sliding-mode control [9-11], state observer based design [12, 13], and adaptive control [14, 

15]. All of these have had practical applications in secure communication. 

The T-S fuzzy-model-based control technique is exact and effective in the control of 

chaotic systems. In [6], the most chaotic systems can be exactly represented by T-S fuzzy 

models with simple rules. Moreover, LMI algorithms [5-8, 20, 21] have been widely adopted 

in solving the problem of stability in T-S fuzzy control systems, while adaptive algorithms 

and SMC techniques have been applied against parameter variations and external 

disturbances. Recently, several methods combining the robustness of SMC and the 

intelligence of fuzzy logic and adaptive algorithms have been developed [17-19] to improve 

controller performance. An adaptive synchronization of uncertain chaotic systems based on 

T-S fuzzy models is proposed in [15], and it is specifically derived to estimate the uncertain 
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parameters or parameter mismatch between the drive and response systems. Guo et al. [8] 

presents an integral observer-based chaos synchronization approach which uses the 

integration of the output signal as the drive signal so that the noise performance can be 

improved. 

Another approach, called terminal sliding-mode control (TSMC), has been developed in 

[22-27]. Different from the classical sliding mode, the terminal sliding mode has a nonlinear 

sliding surface. While reaching the terminal sliding mode, the system tracking error can 

converge to zero in finite time. Unfortunately, chattering still remains a problem in terminal 

sliding mode control. 

In this paper, a new scheme of chaos synchronization is presented for a class of chaotic 

systems, which combines T-S fuzzy terminal sliding-function (FTSF) control and adaptive 

scheme. The combined scheme preserves the advantages of both of these methods. The 

proposed scheme uses T-S fuzzy models to exactly represent the system dynamics of chaotic 

systems. An appropriate FTSF is designed and then applied to the control law. By using the 

Lyapunov stability criterion, the LMI stability condition can be derived and the adaptive law 

of control gain can be defined to realize the synchronization. The initial feedback gain can be 

obtained by solving the LMI problem so that the initial synchronization performance can be 

improved. The adaptive scheme does not require prior knowledge of dynamic parameters and 

can adjust the feedback gain of the controller to reduce the error between the drive and the 

response of chaotic systems. Based on the Lyapunov approach, the proposed AFTSFC 

guarantees that the tracking error and the FTSF are UUB. 

This paper is organized as follows. In Section 2, the AFTSFC scheme is presented. In 

Section 3, examples and corresponding numerical results are shown to demonstrate the 

performance of the proposed approach. Three examples with parameter mismatch 

chaotic systems are considered in the synchronization. Finally, the conclusions  are 

presented in Section 4. 

 

2. Chaotic Synchronization Using AFTSFC 

Based on the T-S fuzzy model of chaotic systems, three types of chaotic synchronization 

are proposed in this paper. The synchronization problem forces the response system to the 

same internal state as in the drive system. In this section a new AFTSFC scheme is proposed 

for chaos synchronization so that the parameter mismatch performance can be improved. The 

block diagram of the synchronization scheme is shown in Figure 1. The details of the T-S 

fuzzy model, T-S fuzzy terminal sliding function, adaptive scheme, and fuzzy controller are 

presented in the following subsections. 

 

2.1. T-S fuzzy model 

In order to realize a fuzzy system design based on LMI algorithms, chaotic systems and 

terminal sliding surface should be represented via T-S fuzzy models. In prior research [6], 

several chaotic systems have been represented exactly by the T-S fuzzy model, which is 

described by fuzzy if-then rules where the consequent parts represent linear models. Consider 

the dynamics of the drive chaotic systems represented as follows: 

Drive System Rule i : 

If 1̂z  is 1
ˆ

iM ,…, ˆ
pz   is ˆ

ipM  , then 

 ˆˆ ˆ
iAx x . (1) 
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Figure 1. Block diagram of the chaotic synchronization system 
 

ˆ ( 1,2,..., )ijM j p  is a fuzzy term of rule i  and ˆ ( 1,2,..., )jz j p  is the premise variable. 

ˆ( ) nt Rx  is the state vector, ˆ n n

iA R  . 

The fuzzy drive system is inferred as follows: 

 
1

ˆ ˆˆ ˆˆ( ) 1,...,
r

i i
i

f z A i r


 x x       (2) 

where 

 

1

ˆ ˆ( )ˆ ˆ( )
ˆ ˆ( )

f

i
i r

f

i
i

z
f z

z









. (3) 

ˆ ˆ( )if z  can be regarded as the normalized weight of the if-then rules, and r  is the number of 

fuzzy rules. 

 
1

ˆ ˆˆ ˆ( ) ( )
p

f

i ij j
j

z M z




  (4) 

ˆ ˆ( )ij jM z  is the grade of membership of ˆ
jz  in ˆ

ijM . 

Consequently, the dynamics of the response chaotic systems can be represented as follows: 

Response System Rule i : 

If 1z  is 1iM ,…, pz   is ipM  , then 

 i iA B x x u . (5) 

( 1,2,..., )ijM j p  is a fuzzy term of rule i  and ( 1,2,..., )jz j p  is the premise variable. 

( ) nt Rx  is the state vector of the response system, ( ) mu t R  is the input vector, n m

iB R  . 

n n

iA R   are different from those of the drive system, that is, ˆ
i iA A .  

The fuzzy response system can be inferred as 

 
1

( )( )
r

i i i
i

f z A B


 x x u  (6) 

where 
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1

( )
( )

( )

f

i
i r

f

i
i

z
f z

z









 , 

1

( ) ( )
p

f

i ij j
j

z M z




 . (7) 

 

2.2. T-S Fuzzy Terminal sliding function 

This subsection describes the FTSF that is applied to the control law. The FTSF design can 

be decoupled into two steps. The first step is the selection of an appropriate TSF. The next 

step, the TSF and control law will be represented by the T-S fuzzy model, respectively. 

Let the synchronization error signal be 

 ˆ e x x . (8) 

where 
1[ ,..., ,..., ]i ne e ee , 

1
ˆ ˆ ˆ ˆ[ ,..., ,..., ]i nx x xx , and 

1[ ,..., ,..., ]i nx x xx . 

The control goal considered in this paper is that the drive and response chaotic systems can 

be synchronized with only a small bounded error.  

The TSF is defined as 

 
0

t
q pd    s e e  (9) 

where 1[ ,..., ,..., ]i ndiag     and 1[ ,..., ,..., ]i ndiag     are positive constants, while p 

and q are positive odd integers and satisfy the following conditions [23],  

 2p q and q p  .  (10) 

The FTSF and FTSF dynamic are constructed as follows. 

From (9), the time derivative of s  becomes 

 q p  s e e . (11) 

The terminal sliding-mode is then defined as = 0s  and = 0s , and can be expressed in the 

following equations 

 
0

0
t

q pd   e e  (12a) 

 0
q

p  e e . (12b) 

The slope of the tangent line at a point ile  on the curve 0q p

i i i ie e    is given as follows: 

 il i ilm     (13) 

where ( )

il

q p p

il

i

q
e

p

  . 

The equation of the slope at the point ile  is 

 0i i i il ie e    . (14) 
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The phase plot of the s  is shown in Figure 2. From (14), the T-S fuzzy terminal sliding 

dynamic s  is given as follows. 

 

TSS TS TSS

T
S T

SS

Slope =  1i i  Slope =  i ir 

ie

ie1ie ire

 
 

Figure 2. Phase plot of the is  

 

 

Rule i : 

If 
1z  is 1iM  ,…, pz 

  is ipM 
 , then  

 , 1,...,l l r    s e e .  (15) 

where  1 ,..., ,...,l l il nl     . 

The s  can be inferred as 

 
1

( )( )
r

l l
l

z  


  s e e  (16) 

where   

1

( )
( )

( )

l
l r

l
l

z
z

z












 


, 

1

( ) ( )
p

i ij j
j

z M z




   . 

T-S fuzzy terminal sliding function can be inferred as  

  0
1

( )
r

t

l l
l

z dt  


    s e e .  (17) 

Let us design the control law as follows. 

Control Rule i : 

If 1z  is 1iM  ,…, pz 
  is ipM 

 , then  

 , 1,...,i ik h i r  u s e  (18) 

where ik  and ih  are adaptive gains. 
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The control law can be inferred as 

 
1

( )( )
r

i i i
i

g z k h




 u s e k h s e  (19) 

where 

 

1

( )
( )

( )

g

i
i r

g

i
i

z
g z

z









 


 , 

1

( ) ( )
p

g

i ij j
j

z M z




   , 
1

( )
r

i i
i

k g z k




 , 
1

( )
r

i i
i

h g z h




 . (20) 

From (2), (6), (8), and (19), the error dynamic system is constructed as  

  ˆ e x x  

 
1 1

ˆ ˆ ˆˆ( ) ( )( )
r r

i i i i i
i i

f z A f z A B
 

   x x u  

 
1 1 1 1

ˆ ˆ ˆˆ( ) ( ) ( ) ( )( )
r r r r

i i i i i j i j i j
i i i j

f z A f z A f z g z B k B h


   

     x x s e  

1 1 1 1 1

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( )( ) ( )( )
r r r r r

i i i i i j i j i j i i i
i i i j i

f z A f z A f z g z B k B h f z A A


    

        x x s e x x  

 
1 1 1

ˆ( ) ( ) ( ) ( )( )
r r r

i i i j i j i j
i i j

f z A f z g z B k B h


  

    x x s e
1 1

ˆ ˆ ˆ ˆˆ( ) ( )
r r

i i i i
i i

f z A f z A
 

  x x  

 
1 1

( ) ( ) ( )
r r

i j i i j i j
i j

f z g z A B h B k


 

       e s ω  (21) 

where   
1

ˆ ˆ ˆ ˆˆ( ( ) ( ) )
r

i i i i
i

f z A f z A


 ω x x .   

It should be noted that ω  is bounded due to that ( )if z , ˆ ˆ( )if z , and x̂  are bounded. From (16) 

and (21), the s  is constructed as  

 
1 1 1

( ) ( ) ( ) ( )
r r r

i j l i i j i j l
i j l

f z g z z A B h B k     


  

       s e s e ω  

 
1 1 1

( ) ( )
r r r

ijl i i j l i j
i j l

f Z A B h B k    


  

        e s ω  (22) 

  where 
1 1 1

( ) ( ) ( ) ( )
r r r r r r

ijl i j l
i j l i j l

f Z f z g z z
 

  

   . 

 

2.3. Stability analysis 

 In this subsection, the adaptive law and LMI are designed based on the Lyapunov method, 

and the stability of the overall system is mathematically proved. 

An augmented system can be obtained together with (21) and (22) 

 ( )
r r r

i i j i j

ijl
i j l i i j l i j

A B h B k
f Z

A B h B k    

         
                    


e e ω

s s ω
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0

( )
0

r r r
i

ijl
i j l i l

A
f Z

A 

     
          


e

s

i j i j

i j i j

B h B k

B h B k  

     
       

     

e ω

s ω
 

 
0

( )
0

r r r
i i

ijl j j
i j l i l i

A B
f Z h k

A B   

          
                          


e e ω

s s ω
. (23) 

Using a new notation 

 
 

  
 

e
e

s
, 

0

0

i

il

i l

A
A

A 

 
  

  
, 

i

i

i

B
B

B

 
  
 

, j j jk h k    , 


 
  
 

ω
ω

ω
. 

where j j jk K   , jK  can be obtained by solving the LMI problem, and j  is updated by 

the adaptive law (25). We thus have 

  ( )
r r r

ijl il i j
i j l

f Z A B k


  e e e ω . (24) 

Define *

j  as the optimal estimation gain. Let the error of the optimal estimation gain as  

 *

j j j    . 

Theorem 1: Consider the overall augmented system (24), which consists of the error 

dynamical system (21), the terminal sliding dynamical system (22), and the fuzzy control law 

(19). The adjustable gain of the fuzzy controller is updated by 

 ( ) ( )
r

T T

j j i i
i

g z f z B P   e e . (25) 

And a suitable initial feedback gain jK  is selected such that  

 2 2 22 0T T T

il il j i i jA P PA K B P PB K PP I P PP            (26) 

where P  is a positive definite and symmetric matrix, I  is the identity matrix, 0  , and 

0  . The augmented system state will then converge to the following small neighborhood of 

the origin: 

 
 0

min

2
:

2 ( )
D

P



  

  
  

  

e e   (27) 

where min ( )P  denotes the minimum eigenvalue of matrix P , and   is a small positive 

constant. Then, the AFTSFC guarantees that the synchronization errors are UUB. 

Proof: 

To prove the stability of the system, we choose the Lyapunov function candidate as 

 ( )
r

T T

j j
j

V P tr  


 e e . (28) 

The time derivative of V  along the state trajectory becomes 
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 ( )
r

T T T T

j j j j
j

V P P tr    


   e e e e   

  ( )
r r r

T T T T T T

ijl il j i
i j l

f Z A P k B P P


   e e e e ω e  

  ( ) ( )
r r r r

T T T T T

ijl il i j j j j j
i j l j

f Z PA PB k P tr    
 

     e e e e e ω  

 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

f Z A P PA K B P PB K


      e e  

  ( ) ( )
r r

T T T T

i j j i
i j

P f z g z B P


 e ω e e  

  ( ) ( ) ( )
r r r

T T T T

i j i j j j j j
i j j

P f z g z PB tr    
 

    ω e e e .  (29) 

Using *

j j j    , then the above equation becomes  

 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

V f Z A P PA K B P PB K


      e e  

  *( ) ( )
r r

T T T T T T T

i j j i j i
i j

P f z g z B P B P 


  e ω e e e e   

  *( ) ( ) ( )
r r r

T T T T T

i j i j i j j j j j
i j j

P f z g z PB PB tr     
 

     ω e e e e e  

 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

f Z A P PA K B P PB K


      e e  

  *( ) ( )
r r

T T T T

i j j i
i j

P f z g z B P


 e ω e e

  *( ) ( )
r r

T T

i j i j
i j

P f z g z PB


 ω e e e   

 ( ) ( )( )
r r

T T T T

i j j i i j
i j

f z g z B P PB 


  e e e e ( )
r

T T

j j j j
j

tr    


  . (30) 

Since    *( ) ( )
r r

T T

i j i j
i j

P f z g z PB 


 ω e e e  

 
2*T P  ω e e  *T P    ω e e e  

where T Pω  is bounded,  
2* *( ) ( )

r r
T

i j i j
i j

f z g z PB 


  e e e , * 0  , and   is a positive 

constant. Then (30) becomes 

 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

V f Z A P PA K B P PB K


      e e  

 2 ( ) ( ) 2 ( ) 2
r r r

T T T T

i j j i j j
i j j

f z g z B P tr   
 

   e e e  
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 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

f Z A P PA K B P PB K


      e e  

 2 ( ) ( ) 2
r r r

T T T T

j j i j j i
j i j

tr f z g z B P   
  

   
 
  e e e . (31) 

Using the adaptive law (25), then the above equation becomes 

 ( ) ( )
r r r

T T T T

ijl il il j i i j
i j l

V f Z A P PA K B P PB K


      e e 2 e . (32) 

For given 0  , and 0  , then (32) becomes 

 ( ) (
r r r

T T T T

ijl il il j i i j
i j l

V f Z A P PA K B P PB K


    e  

 2 2 22 )PP I P PP        e
2 2 2T T P    e e e e e . (33) 

If (34) is satisfied 

 2 2 22 0T T T

il il j i i jA P PA K B P PB K PP I P PP            (34) 

then we get 

 
2 2 2T TV P     e e e e e   

 
2 22

min2 ( ) 2P     e e e  

 min

2
2 ( )P


  



 
    

 
e e e  

  min

2
2 ( )P


  



 
    

 
e e . (35) 

If the error variable e  does not belong to 0D , namely, 
 min

2
2 ( )P


  




e , then we 

have 

 
min

2

( 2 ( ))
V

P




  
   


e e . (36) 

Based on the Lyapunov stability theory, the AFTSFC guarantees that the states of the 

augmented system (23) are UUB; i.e., the augmented system will converge to a small 

neighborhood of the origin. By choosing   and   appropriately, the state trajectories can be 

synchronized with only a small bounded error. The proof is thus completed. 

The projection operators (37) are used to modify the adaptive law (25) such that the 

 parameters vector will remain inside the constraint set  |
j jj j M     . 

 ( ) ( )
r

T T

j j i i
i

P g z f z B P
 

 
  

 e e  
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( )

( ) ( )
( )j

r
T T T

i j ir
iT T

j i i jT
i j j

tr f z B P

g z f z B P I
tr






 

  
  

 
   

 
  




e e

e e   (37a) 

where 

 

  

0       
 ( ( )( )) 0

1      ( )( ) 0  

j

j

j

j

j

rj
T T T

i j i
i

r
T T T

j i j i
i

M and

if M or
tr f z B P

I

if M and tr f z B P














 

   
   

   
        


          





e e

e e

. (37b) 

  There exists a symmetric positive-definite matrix P  such that by pre-multiplying and 

post-multiplying (34) by 1P , and defining 1Q P , we can obtain 

 2 2 22 0T T T

il il j i i jQA A Q QK B B K Q I QQ Q I           . (38) 

Let j jM K Q , and we can then obtain 

 2 2 ( ) ( ) 0T T T

il il j i i jQA A Q M B B M I Q I I Q I
 

 
 

        . (39) 

Using Schur Complements [16] (39) can be transformed to the following LMI form. 

 

2

2

0

T T T

il il j i i jQA A Q M B B M I Q I

Q I I











 
     

  
 

  
 

.  (40) 

If suitable matrices Q  and jM  are selected such that the LMI (40) is satisfied, then the 

feedback gain 1

j jK M Q . 

 

3. Numerical Examples 

Three examples are given in this section to illustrate the effectiveness of the proposed 

approach. In example 1, two Rössler systems subject to parameter mismatch are used as the 

response and drive chaotic systems, while the proposed controller is employed to realize the 

synchronization. In example 2, two unified chaotic systems are considered as the drive and 

response systems. In example 3, two different chaotic systems are synchronized using the 

proposed method, with a unified chaotic system and a Rössler system considered as the 

response and drive systems, respectively. In all examples, we apply the proposed AFTSFC 

and adaptive T-S fuzzy classical sliding-function controller (AFSFC) to the chaotic systems, 

respectively. 
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3.1. Example 1 

The Rössler chaotic drive system is described as follows [1]. 

 ˆˆ ˆAx x  (41) 

where  1 2 3
ˆ ˆ ˆ ˆ

T
x x xx  and 

 

1

0 1 1

ˆ ˆ1 0

ˆ ˆ ˆ0 ( ( ) ( ))

A a

b c t x t

  
 

  
 

  

,  max min max min
min max

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ( ) sin( ) 0

2 2

c c c c
c t t c c

 
    . 

By defining two fuzzy sets, we can obtain the following fuzzy response system that exactly 

represents the nonlinear equation. The fuzzy Rössler chaotic response system is described as 

follows. 

If 1x  is iM , then 

 i iA B x x u  (42) 

where  1 2 3

T
x x xx ,  1 2

T
u uu , 

 1

0 1 1

1 0

0

A a

b d

  
 


 
  

, 2

0 1 1

1 0

0

A a

b d

  
 


 
  

, and 1 2

0 0

1 0

0 1

B B

 
 

 
 
  

. 

We assume that  1x d d   with 25d  , and the membership functions are designed as 

1
1 1

( )1
( ) 1

2

c t x
M x

d

 
  

 
, 2 1 1 1( ) 1 ( )M x M x  .  

The TSF is defined as 

 
0

t
q pd    s e e  (43) 

where  1 1 1diag  ,  70 70 70diag  , 9p  , and 5q  . By defining two fuzzy 

sets, we can represent the FTSF. The fuzzy s  is given as follows. 

If e  is 0le , then 

 
0

t

l dt    s e e .  (44) 

where   

 01

1 1 1

3 3 3

T

 
  
 

e , 02

0.05 0.05 0.05

3 3 3

T

 
  
 

e , 01 1e , 02 0.05e ,  

  1 0.7 0.7 0.7diag  , and  2 3.5 3.5 3.5diag  . 

The fuzzy s  is given as follows. 
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If e  is 0le , then 

 
l   s e e  (45) 

The membership functions are shown in Figure 3. The fuzzy state-feedback controller is 

given as follows. 

If 
1x  is 

iM  and e  is 0le , then  

 , 1,...,4j jk h j  u s e . (46) 

 

0

1

e

  e

0.05 1
 

Figure 3. The membership function of e  

  

In the adaptive T-S fuzzy classical sliding-function controller, the sliding function is 

defined 

 1
0

t

d     S e e .  (47) 

The initial states of the drive and response systems are   ˆ 0 1 0
T

x  and 

 0 0 0
T

x , respectively. In the response system, we choose 2 1 2 1( )
cos( )

2 2

c c c c
c t

 
  , 

1 4.5c  , 2 7.7c  , 0.34a  , 0.4b  , and in the drive system we choose ˆ sin( )
2

a
a a t  , 

ˆ sin( )
2

b
b b t   , 2 1 2 1

ˆ ˆ ˆ ˆ( )
ˆ sin( )

2 2

c c c c
c t

 
  , 1

1 1
ˆ sin( )

2

c
c c t  , 2

2 2
ˆ sin( )

2

c
c c t  , and this is 

regarded as the parameter mismatch and parameter uncertainty. By choosing 10   and 

1  , jM  and Q  can be obtained from (40) using the MATLAB LMI toolbox. Then, the 

feedback gain can be obtained from 1

j jK M Q . The matrix Q  is listed as follow: 
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Figure 4. Curves of adaptive gains h  and k  
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Figure 5(a). The trajectories of the drive (solid line) and response (dashdot line) 
system under the proposed AFTSFC 
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Figure 5(b). The tracking errors of the drive and response systems under the 
AFTSFC (solid line) and the AFSFC (dashdot line) 
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0.0350 0.0020 0.0013 0.2854 0.0203 0.0154

0.0020 0.1277 0.0005 0.0112 0.6062 0.0011

0.0013 0.0005 0.0738 0.0035 0.0017 0.3673

0.2854 0.0112 0.0035 4.3546 0.0635 0.0613

0.0203 0.6062 0.0017 0.0635 3.7970 0.0016

0.0154 0

Q

  

 

 




 

 .0011 0.3673 0.0613 0.0016 2.9721

 
 
 
 
 
 
 
 

  

. 

Using the adaptive law (25) and (23), we can obtain k  and h  at 100sect   as follows: 

  
0.4351 14.2464 0.0723

0.2308 0.0784 10.6531
k

 
  

 
, 

3.7535 88.4688 0.7610

2.9223 0.7035 84.8910
h

 
  
 

. 

The curves of the adaptive gains h  and k  are shown in Figure 4. The trajectories of the 

drive and response systems under the proposed AFTSFC are shown in Figure 5a. The 

tracking errors of the drive and response systems under these two controllers are shown in 

Figure 5b. 

 

3.2. Example 2 

The unified chaotic drive system is described as follows [6]. 

 ˆˆ ˆAx x   (48) 

where    1 2 3
ˆ ˆ ˆ ˆ

T
x x xx ,  1

1

ˆ ˆ(25 10) 25 10 0

ˆ ˆ ˆ28 35 29 1

ˆ8
0

3

a a

A a a x

a
x

 
   
 

    
 

 
 

, with  ˆ 0 1a . 

By defining two fuzzy sets, we can obtain the following fuzzy response system that exactly 

represents the nonlinear equation. The fuzzy unified chaotic response system is described as 

follows. 

If 1x  is iM , then 

 i iA B x x u  (49) 

where  1 2 3

T
x x xx ,  1 2 3

T
u u uu ,  1 2 1 1 1B B diag  , 

 1
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8
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8
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a
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. 

The membership functions are designed as 

  1
1 1

1
( ) 1

2

x
M x

d

 
  

 
, 1

2 1

1
( ) 1

2

x
M x

d

 
  

 
. 
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We assume  1x d d  , with 30d  . 

In this example, the TSF is defined as (43), and the FTSF is given as (44). The membership 

functions are shown in Figure 3. The fuzzy state-feedback controller is given as (46). In the 

AFSFC, the classical sliding function is defined as (47). The initial states of the drive and 

response systems are  ˆ 2 2 1
T

  x  and  2 2 6
T

x , respectively. The parameters of 

the response system are held at 0.5a  , the parameters of the drive system are changed as 

ˆ sin( )
2

a
a a t  , and this is regarded as a parameter mismatch. By choosing 10   and 1  , 

jM  and Q  can be obtained from (40) using the MATLAB LMI toolbox. Then, the feedback 
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Figure 6(a). The trajectories of the drive (solid line) and response (dashdot line) 

system under the proposed AFTSFC 
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Figure 6(b). The tracking errors of the drive and response systems under the 

AFTSFC (solid line) and the AFSFC (dashdot line) 
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gain can be obtained from 1

j jK M Q . The matrix Q  is listed as follow:  

0.2114 0.0304 0.0004 0.6287 0.0446 0.0008

0.0304 0.0544 0.0001 0.0337 0.2138 0.0009

0.0004 0.0001 0.0808 0.0005 0.0001 0.3278

0.6287 0.0337 0.0005 2.9645 0.4769 0.0077

0.0446 0.2138 0.0001 0.4769 2.5755 0.0117

0.0008

Q

  

   

  






0.0009 0.3278 0.0077 0.0117 2.6895

 
 
 
 
 
 
 
 

   

. 

Using the adaptive law (25) and (23), we can obtain k  and h  at 20sect  as follows: 

34.9170 18.9624 0.7862

13.1810 43.9672 1.8051

0.5179 1.0966 10.6436

k

 
 

 
 
  

, 

38.2662 16.0026 0.4764

13.5941 73.1674 0.2819

0.3942 0.9418 56.1254

h

 
 


 
  

. 

The trajectories of the drive and response systems under the proposed AFTSFC are shown 

in Figure 6a. The tracking errors of the drive and response systems under these two 

controllers are shown in Figure 6b. 

 

3.3. Example 3 

In this example, a Rössler system and unified system are employed as the drive and 

response chaotic systems, respectively. The proposed approach is then employed to realize 

the synchronization. The Rössler drive system is described as equation (41), while the fuzzy 

unified response system is described as equation (49). 

In this example, the TSF is defined as (43), and the FTSF is given as (44). The membership 

functions are shown in Figure 3. The fuzzy state-feedback controller is given as (46). The 

membership functions are shown in Figure 3. In the AFSFC, classical sliding function is 

defined as (47). The initial states of the drive and response systems are  ˆ 0 1 0
T

x  and 

 10 10 10
T

   x , respectively. In the drive system, we choose 
0.34

ˆ 0.34 cos( )
2

a t  , 

0.4ˆ 0.4 cos( )
2

b t  , 2 1 2 1
ˆ ˆ ˆ ˆ( )

ˆ cos( )
2 2

c c c c
c t

 
  , 1

4.5
ˆ 4.5 cos( )

2
c t  , 2

7.7
ˆ 7.7 cos( )

2
c t  , 

and in the response system, we choose 0.5a  , and this is regarded as a parameter mismatch. 

By choosing 10   and 1  , jM  and Q  can be obtained from (40) using the MATLAB 

LMI toolbox. Then, the feedback gain can be obtained from 1

j jK M Q . The matrix Q  is 

listed as follow: 

 

0.2114 0.0304 0.0004 0.6287 0.0446 0.0008

0.0304 0.0544 0.0001 0.0337 0.2138 0.0009

0.0004 0.0001 0.0808 0.0005 0.0001 0.3278

0.6287 0.0337 0.0005 2.9645 0.4769 0.0077

0.0446 0.2138 0.0001 0.4769 2.5755 0.0117

0.0008

Q

  

   

  






 

0.0009 0.3278 0.0077 0.0117 2.6895

 
 
 
 
 
 
 
 

   

. 

Using the adaptive law (25) and (23), we can obtain  k  and h   at  100sect   as follows: 
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241.6422 7.5790 19.0857

 17.1752 105.5087 0.4741

17.6141 1.4347 58.0472

k

 
 

 
 
  

, 

36.9122 15.0133 0.6964

11.6987 71.2306 0.7384

0.3164 0.7429 56.0396

h

 
 


 
  

. 

The trajectories of the drive and response systems under the proposed method are shown in 

Figure 7a. The tracking errors of the drive and response systems under these two controllers 

are shown in Figure 7b. 
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Figure 7(a). The trajectories of the drive (solid line) and response (dashdot line)  
system under the proposed AFTSFC 
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Figure 7(b). The tracking errors of the drive and response systems under the 
AFTSFC (solid line) and the AFSFC (dashdot line) 

 

In all examples, the performance indices of the corresponding controller are tabulated in 

Table 1. By referring to Figures 5, 6, and 7, it can be seen that the proposed approach is able 
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to drive the system states of the parameter mismatch response to follow those of the drive 

system with a sufficiently small tracking error. With a comparison to Figures. 5, 6, 7, and 

Table 1, one can conclude that the synchronization performance of the proposed AFTSFC is 

superior to that of the AFSFC. 

 

Table 1. The performance indices 

Example Index AFTSFC AFSFC 

Example 1 

Rossler chaotic 

system 

IAE 0.1044 0.6633 

ITAE 2.9424 33.8469 

Example 2 

Unified 

chaotic system 

IAE 1.5460 5.6271 

ITAE 10.5731 42.8223 

Example 3 

Two different chaotic 

systems 

IAE 1.1223 3.2742 

ITAE 20.6167 99.3325 

  
0

IAE= ( )
ft

e t dt , 
0

ITAE= ( )
ft

t e t dt . 

 

4. Conclusions 

In this paper, we have developed the AFTSFC for synchronization of parameter mismatch 

chaotic systems. The combined scheme is shown to have the merits of these approaches. This 

control algorithm is designed on the basis of the Lyapunov stability criterion, which can be 

applied to two chaotic systems subject to parameter mismatch and two different chaotic 

systems. The proposed method is shown to have the following two characteristics. First, the 

presented scheme can drive the system tracking error to become sufficiently small. Second, 

the adaptive scheme deals with the parameter uncertainty and parameter mismatch of the 

chaotic systems. The effectiveness and validity of the AFTSFC are demonstrated by computer 

simulations, and the proposed control can achieve a satisfactory synchronization performance. 

There are some studies still to be done in the near future. First, a non-singular terminal 

sliding-mode controller and a non-singular terminal sliding-function controller can be 

developed for chaotic systems. Second, a discrete-time terminal sliding-function controller 

can also be developed. Final, the performance of the controller can be improved to achieve 

asymptotic convergence without chattering. 
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