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Abstract 

    In this paper, a sliding mode-PID control approach is proposed for  free-floating space 

manipulator. Free-floating space manipulator has nonlinear dynamics and interactions 

between the manipulator and the spacecraft. In this paper, dynamic of space manipulator 

system is presented by dynamically equivalent manipulator (DEM) model. DEM is a  fixed-

base manipulator and its dynamics behavior under any control law is identical to dynamics 

behavior of space manipulator. Using sliding mode-PID control, sliding mode controller and 

PID controller properties are applied to the control system. In this case, high control gain 

leads to reduction of reaching time but increment of oscillation. Therefore fuzzy logic can be 

used as an intelligent approach in order to tune PID-like sliding surface gains. Simulation 

shows satisfactory results in tracking and error cancellation. 

 

       Keywords: Space manipulator, Free-floating, dynamically equivalent manipulator, sliding 

mode-PID control 

 

1. Introduction 

    Space manipulators have various applications in spacecraft and satellite missions, including 

assemblage, maintenance and repair. In free-flying space manipulators, Using reaction wheels 

and jets, inertia parameters of dynamic model of space manipulator can be linearly 

parameterized. But attitude control fuel consumption of reaction wheels and jets increases 

through motions on the spacecraft [1]. In order to conserve fuel or electrical power free-

floating system is proposed. In free-floating approach, the base rotation due to the movements 

of joints has to be considered. Dubowsky and Torres [2] proposed disturbance map concept in 

order to minimize the base rotation. Since the manipulator and the base in the space 

manipulator system have complicated dynamics and nonlinear interactions, therefore control 

issue is a big problem. Papadopoulos and Dubowsky [1] showed that any control algorithm 

that can be applied to conventional fixed-base manipulators can be applied to space 

manipulators where exact knowledge of inertia parameters is available. Exact knowledge of 

the inertia parameter always is not available. In this paper, dynamic of space manipulator is 

presented by dynamically equivalent manipulator (DEM) model [3]. Using DEM model, this 

complicated structure maps to a fixed-base manipulator. In this model, dynamic and 

kinematic properties of space manipulator are preserved and dynamic equations can be 

linearly parameterized. Parlaktuna and Ozkan [4] applied an adaptive control method to space 

manipulator using DEM model. In this approach, unknown parameters such as mass and 

inertia tensor parameters are estimated by adaptive methods. In DEM model, uncertainty 

problem leads to unstable behavior. In order to handle uncertainties sliding mode control is a 
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good choice. In sliding mode control as a robust approach, sensitivity to structured 

uncertainties and disturbances near sliding surface is an important issue, causes accuracy 

reduction and error increment. Considering space environment conditions, versatile and 

precise performance of space manipulator is a necessity. In this case, sliding mode control 

with other control method can be used to improve control system performance. Sliding mode 

controller whit PID-like sliding surface is one of these methods. Consequently, a hybrid 

sliding mode-PID control is proposed in order to use properties of both. Using high sliding 

surface gains leads to reaching time reduction but oscillation increases. Therefore, PID-like 

sliding surface gains is tuned by an on-line fuzzy approach. Fuzzy sliding mode-PID control 

as a robust and intelligent approach leads to smooth result with zero error. On the other hand, 

parametric uncertainties problem of model and disturbances can be handled entirely by this 

control approach. 

    This paper is organized as follows: Section 2 presents dynamic of free-floating space 

manipulator and DEM model. In Section 3, sliding mode-PID controller as a hybrid control is 

presented. PID gains are tuned by fuzzy approach in Section 4. Simulation result is shown in 

Section 5. Finally, conclusions are presented in Section 6. 

                         

2. Space Manipulator Dynamic and DEM Model    

    Consider a system with n-DOF rigid manipulator mounted on a free-floating base, as 

shown in Figure 1. Space manipulator system includes an n-link manipulator and its base. The 

base of space manipulator is denoted as link 1, the links of the manipulator as links 2 through 

n+1. 

 
Figure 1. Free-floating space manipulator system 

 

    In Figure 1, ( , , ) are Z-Y-Z Euler angles representing the orientation of the space 

manipulator’s base, Ji is the joint connecting (i-1)th link and ith link, 
i  is the rotation of the 

space manipulator’s ith link around joint Ji . Co is the space manipulator’s total center of 

mass, Ci is center of mass of space manipulator’s ith link, li is vector connecting Co to Ci, ui  is 

the rotation axis of Ji. 
 

 

Figure 2. Coordinate frame attached to the space manipulator’s links 
 

Frames 1, …, and  n+1 are the coordinate frames  attached to the center of mass of each 

space manipulator’s link, as shown in Figure 2. Li is vector connecting Ji to Ci ,  Ri is vector 

connecting Ci  to Ji+1. Assuming no external forces and torques act on the space manipulator, 

its center of mass Co remains fixed in inertial space and can be selected as the origin of the 

inertial coordinate frame. The total kinetic energy of the system can be written as  
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where i is the translational velocity of the center of mass of the ith link, 
o

iR  is the rotation 

matrix that describes the coordinate frame i relative to frame o, ωi angular velocity of Ci, Ii is 

inertia tensor of  ith link. The DEM is a real fixed-base robot which can be physically built 

and experimentally used for studying the dynamic behavior of space manipulator. Assuming 

zero gravity, the system is not acted upon by any gravitational forces, therefore the potential 

energy is equal to zero, and the Lagrangian is equal to the kinetic energy. Vector of 

generalized coordinates are considered as 
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Therefore Lagrangian equation is written as 
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where Qi is generalized force corresponding to the generalized coordinate qi 

 

0iQ  ,         i=1,2,3 

                                                                                                                                                         
                                                                                                                                                                 (4)

 

3 iiQ   ,    i=4,5,…,n+3 

and τi is the torque exerted on the ith  joint. Substituting (4) into (3), dynamic equation of  

space manipulator is obtained as 


....

),()( qqqCqqM                                                                                                                    (5) 

where 
)3()3()(  nnRqM is inertia matrix, 

)3(
..

),(  nRqqqC is vector of the Coriolis and 

centrifugal forces, τ  is torque acting upon the joints of the space manipulator. Free-floating 

space manipulator can be mapped to a fixed-base manipulator that its first joint is passive 

spherical joint, so-called dynamical equivalent manipulator model. In this model, dynamic 

and kinematic properties of space manipulator are preserved. As in Figure 3 is shown DEM 

coordinate frames are parallel to the corresponding frames of the space manipulator and its 

base coincides with the total center of mass of the space manipulator. 

    In Figure 3, the axis of the space manipulator’s ith joint is parallel to the axis of the DEM’s 

ith joint. The displacement of each of the DEM’s joints during motion is identical to the 

displacement of the corresponding space manipulator joint. 
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Figure 3. Space manipulator and its corresponding DEM 
 

As in Figure 4 is shown, in DEM coordinate frames are respectively attached to the center 

of mass of the DEM links. In Figure 4, (
' ,

' ,
' ) are Z-Y-Z  Euler angles representing the 

orientation of the DEM’s passive spherical joint,  J΄i is the joint connecting the DEM’s (i+1) 

th link and ith link,  i
'  is the relative rotation of the DEM’s link around joint J΄i,, lci  is the 

vector connecting J΄i to C΄i , ω΄i  is the angular velocity of C΄i.  
 

 

Figure 4. Fixed-base robot manipulator with a passive spherical joint at the 
base 

 
Assuming zero gravity, the potential energy is equal to zero, and Lagrangian is equal to 

kinetic energy, and written as [3] 
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where  m΄i  is the mass of the DEM’s ith link, ω΄i   is the angular velocity of C΄i . The vector of 

generalized coordinates for DEM are considered as 
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and  Lagrange equation is written  as 
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where 
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therefore dynamic equation of  DEM is obtained as      
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where
 ]...000[ 1
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''
 n is the torque exerted on the DEM’s joints.  

)3()3('' )(  nnRqM  is inertia matrix,  )3(
.
'

.
''' ),(  nRqqqC  is vector of the Coriolis and 

centrifugal forces. In  Eq (10),  )( '' qM is symmetric and positive-definite matrix. Also 

)( '' qM  and )( '1' qM


are uniformly bounded. Dynamic and kinematic parameters of space 

manipulator can be mapped to DEM, and written as 
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    In this model, mapping uncertainties including in masses (dm΄i), links’ length (dWi) , 

location of center of mass (dlci) and inertia tensor (dI'i) due to error in mi, Li , Ri  and Ii are 

considered in the dynamic model of DEM. Therefore, dynamic equation estimation is written 

as 

'
.
'

.
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..
''' ),()( 



qqqCqqM       
(12) 

 
    The DEM is dynamically equivalent to the space manipulator. In the other  words, if  

exerted torque on the space manipulator’s joints is equal to exerted torque  on  the  DEM’s  

joints, starting from equal initial condition, DEM’s joints and space manipulator’s joints track 

similar paths ( i.e., if )()( ' tt   and )()( 0

'

0 tqtq   then )()( ' tqtq  ). 

   

3. Sliding Mode- PID Controller 

    In order to minimize error and modify tracking, PID controller, as a capable and simple 

control approach in transient and steady state can be used in designing of sliding mode 

controller to improve stability and performance of system. dq '
 is considered as desired joint 
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displacement. Control law τ is designed so that joint displacement 
'q tracks the desired 

trajectory. Tracking error is defined by 
 

''' qqe d                                                                                                                                         (13) 

    In order to benefit by PID control approach in the sliding mode control, a PID-like sliding 

surface is considered as  
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and  sliding condition  is given as 
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where η is a positive constant.   

    For good tracking, states have to reach to sliding surface and remain on it, and sliding 

condition guaranteed, consequently error becomes  zero. Therefore, control law is designed so 

that system stability is satisfied according to lyapunov  conditions.  Dynamic of system can be 

rewritten based on sliding surface as 
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    Considering the sensitive and complicated  dynamic of space manipulator system and 

sliding condition, control law is designed according to system model  as  
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Remark 3.1: avoiding oscillation, entries of 3 are considered very small. 

Remark 3.2: In order to eliminate the input chattering problem the sgn(S) is replaced by the 
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where δ is boundary layer.                                

Remark 3.3: k2 has to be considered such that  

       , ),(2 ifiik         1,...,2,1    ,),(22  niiikdiagk                                                   (22)  
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and 
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Lyapunov function for system is proposed as 
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where 
)1()1(  nnRR is adjustable positive-definite matrix. It is considerable that R is identity 

matrix. Therefore, lyapunov function of system is written as 
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Control law has to satisfy lyapunov stability conditions written as below 
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where 1 , 2 , 3 , k1 and  k2 can be selected such that 
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where μ is a positive constant. 

 

4. Fuzzy Tuning of Sliding Mode-PID Controller 

    High gain is used for tracking improvement, reduction of controller sensitivity to model 

uncertainty, external disturbances rejection and reaching time reduction. Despite having these 

preferences, using high gain leads to oscillation increment. Therefore, PID gains are tuned by 

fuzzy intelligent approach. In fuzzy approach, PID gains are tuned such that error reduces and 

states approach sliding surface. In the other words, fuzzy sliding mode-PID is a doubled 

approach in order to improve performance and stability. In order to simplify gains tuning, 

they can be normalized between 0 and 1 as   
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 where min gains and max gains are considered properly. Integral and  derivative  time  const-  

ants are respectively defined by 
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Assuming relation  between integral and derivative time constant as below 
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Membership functions for errors and gains can be considered as shown in Figures (5), (6) and 

(7). The gains are logically tuned according to error and error derivative. Domains of 

variation of )(' te  and )(
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 MM ee and ],[
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 MM ee , respectively. If error is big and 

error derivative is small then KPN is big, KDN is small and α is small. If error is small and error 

derivative is big then KPN is small, KDN is big and α is big. The gains are formulated by using 

product inference engine, singleton fuzzifier,  and center average defuzzifier.  Therefore   the  

gains are written as 
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 are respectively the center of membership functions of KPN, KDN 
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 Fuzzy rules are selected such that transient response and steady state response improve.  

 

 
 

 

 
 

Figure 5. Membership functions for (t)e '
 and (t)e

.
'

 

 

 
Figure 6. Membership functions for KPN and KDN 

 

              
Figure 7. Membership functions for α 

 

Fuzzy rules for gains tuning are given as 
 

Table 1. Fuzzy rules for KPN   tuning (N=49) 
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Table 2. Fuzzy rules for KDN   tuning (N=49) 

 
 

Table 3. Fuzzy rules for α  tuning (N=49) 

 
 

5. Simulation Result 

    In this section, a 2-DOF space manipulator has been supposed which according to DEM 

model, a fixed-base manipulator with three joints is obtained such that first joint is passive 

spherical. Therefore, results are considered for two active joints. Kinematic and dynamic 

parameters of the space manipulator present in Table 4. Corresponding parameters of the 

DEM present in Table 5. 

 

Table 4. Dynamic parameters of  2-link space manipulator 
 

 

 

 

 

Ii(kg.m
2
) mi(kg) Ri(m) Li(m) link 

0.4 4 0.5 - base 

0.1 1 0.5 0.5 2 

0.1 1 0.5 0.5 3 
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Table 5. Dynamic parameters of  3-link DEM 

 

 

 

 

 
Dynamic equation of 2-link space manipulator is written as  
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Corresponding dynamic equation of 2-active joints DEM with three links is written as 
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    In simulation 2 , k1 and R have been considered identity matrices. Also 1 , 3 with small 

entries and k2 are considered as 
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    Membership functions for error and error derivative are Gaussian ( Variance = 0.3 and   

]1,1[],[ ''  MM ee , ]1.1[],[
.
'

.
'  MM ee ). The min and max gains are considered as 

below     
KP2min=1, KP2max=2, KD2min=1, KD2max=3, α2min=1, α2max =3, KP3min=1, KP3max=2, KD3min=1, 

KD3max=3, α3min=1, α3max =1. 

    Gains fuzzy estimates are shown in Figure 8. 

 

     
      (a) second entry 

  
       (b) third entry 

Figure 8. Gains fuzzy estimates  for (a) second and (b)  third entries of sliding 
surface 

Ii(kg.m
2
) mi(kg) lci(m) Wi(m) link 

0.4 4 0 0.333 1 

0.1 1.8 0.333 0.750 2 

0.1 1.2 0.417 0.917 3 
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Desired trajectory dq  is considered as unit step, sinusoidal (0.3+0.2sin(0.1t)) and unit 

pulse.  Joint angle trajectories are shown in Figure 9. 

 

 
Figure 9. Joint angle and desired joint angle (unit step, sinusoidal and unit 

pulse) trajectories  for (a) joint 2 and (b) joint 3 
 

The rest of simulations are for step signal as desired trajectory. Tracking error are shown  in  

Figure 10. Control signals as exerted torque are shown in Figure 13. 
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Figure 10. Joint angle error for (a) joint 2 and (b) joint 3 
 
           

 
Figure 11. Exerted torque on (a) joint 2 and (b) joint 3 

 
Second and third entries curve of sliding surface vector are shown  in Figure 12. 

               

 
Figure 12. (a) Second entry and (b) third entry curve of sliding surface vector 

 
    It has been mentioned that joint 2 and joint 3 are active and first  joint is passive spherical 

joint,  therefore, lyapunov function is defined by 
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Lyapunov function and lyapunov function derivative curve are shown in Figures 13 and 14 

respectively.  
 

 

Figure 13. Lyapunov function curve 
 

 

Figure 14. Lyapunov function derivative curve 
 

Control system performance in the presence of unit step disturbance in 20th second on 

exerted torque is assessed as shown in Figure 15. 
 
 

        

 

Figure 15. Disturbance rejection in (a) joint 2 and (b) joint 3 
 

6. Conclusions 

In this paper, an effective control approach has been proposed to improve performance and 

handling of uncertainties for free-floating space manipulator. Considering complicated 

dynamic of the space manipulator, it is big challenge to design a control approach to achieve 

desired performance. In this paper, space manipulator’s dynamic has been mapped to a fixed-

base manipulator’s dynamic, so-called dynamically equivalent manipulator (DEM). Proposed 

controller benefits from preferences of PID control and sliding mode control. In addition, to 
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achieve more smooth response fuzzy approach has been used to tune the PID gains. Control 

law has been designed so that error cancellation, good state trajectory tracking and lyapunov 

stability conditions are satisfied. Simulation result shown that control system has proper 

performance. 
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