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Abstract 

We present an area-efficient dynamic fault-handling approach to achieve high 

survivability for DSP circuits. Fault detection, isolation, and recovery are performed using 

discrepancy information derived from the existing functional throughput by reconfiguring one 

of the N + 1 Reconfigurable Partitions (RPs) to replicate each of the N modules in succession. 

This differs significantly from the conventional approaches that heavily rely on static 

temporal/spatial redundancy and sophisticated error prediction/estimation techniques. The 

principal space complexity metric is the additional physical resources utilized to support the 

underlying fault-handling mechanism where a single RP can check the health of multiple 

distinct functional blocks, by leveraging the property of dynamic partial reconfiguration. We 

demonstrate this approach by implementing a video encoder’s DCT block with a Xilinx 

Virtex-4 device and also numerically simulating a Canny Edge Detector.  

 

Keywords: Fault-resilience, dynamic partial reconfiguration, FPGAs, autonomous 
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1. Introduction 

With the advent of 20nm CMOS device technology and the emergence of nano-scale 

devices and vertical interconnect technology, permanent failure and aging effects can 

become more prominent in both logic and interconnect resources [1-3]. Error-resiliency 

and self-adaptability of future electronic systems are subjects of growing interest [5 -7]. 

In particular, a DSP device is survivable if it can continue its operation in the pr esence 

of failures, perhaps in a degraded mode with partially restored functionality [8]. For 

DSP devices implemented with reconfigurable digital fabric, its survivability can be 

achieved in various ways. Offline testing methods rely on taking the DSP devi ce out of 

operation, diagnosing the faulty resources and avoiding those resources in the 

configured design. However, this method is less practical for real -time systems with 

specific timing deadlines. On the other hand, online testing methods, such as online 

Built-in Self-Test (BIST) techniques typically involve pseudo-exhaustive input-space 

testing in order to identify faults, while functional testing methods check the fitness of 

the datapath functions as they are utilized [9]. Because reconfigurable hardware fabric 

has been widely used as a platform for modern DSP applications such as image/video 

coding, cryptographic algorithms, and speech processing [10-12], FPGA technology 

offers a suitable platform for researching survivable DSP architectures. A 

comprehensive overview of the metrics for fault tolerance is provided in [13].  
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Traditionally, survivable systems employ resolution phases such as Fault Detection, Fault 

Isolation, and Fault Recovery. For example, the Concurrent Error Detection (CED) setup, a 

popular redundancy based fault-detection method, either realizes two concurrent replicas of a 

design [14], or two diverse duplex datapaths to avoid common mode faults. Although with 

costs of area and power overhead, CED achieves very low fault detection latency. A Triple 

Modular Redundant (TMR) FPGA-based system [15, 16], on the other hand, utilizes three 

instances of a datapath module, whose outputs become the input to a majority voter. In this 

way, a TMR system is able to mask its faults in the output if distinguishable faults occur 

within one of three modules. However, such approach incurs an increased area and power 

requirements 3-fold that of the uniplex configuration. In our approach, we employ dynamic 

redundancy to isolate and recover from faults. 
 

2. Amorphous Slack (AS) Fault-Handling Methodology 

To achieve fault-handling operation, we propose an Amorphous Slack (AS) 

technique to time-multiplex the processing regions for different functions and compare 

their outputs with those from the active modules in the logic datapath. A discrepancy 

between the outputs of two modules results in them remaining in the Suspect pool, 

whereas the agreement marks them as Healthy after the evaluation window elapses. 

This diagnosis procedure runs concurrently with DSP processing, without decreasing 

signal processing throughput. Each processing slack can check multiple distinct 

functional blocks, therefore being area efficient, by leveraging the FPGA’s inherent 

property of reconfiguration. 

We consider a typical signal processing application which can be pipelined into 

multiple stages to accelerate the throughput. Consider a Functional Element (FE) which 

can be partitioned into multiple PEs. Some of the PEs operate as Reconfigurable 

Checker Elements (RCEs) for discrepancy checking purposes while others are kept in 

the throughput datapath for computation purposes. The total number of checker 

elements, designated as slack denoted by Ns, available for comparison purposes can be 

varied depending upon input signal characteristics, area margin, and power budget. 

These RCEs can either be spares reserved at design-time, temporarily vacated PEs 

during runtime, or part of another FE performing some other task of lower priority. The 

term Reconfigurable Slack (RS) [17] is used for the PEs corresponding to the first two 

cases. Algorithm 1 is used for fault isolation purpose in a core containing N PEs. Upon 

identifying faulty PEs, their functionality is assigned to healthy PEs which may either 

be slacks reserved at design time or some PEs computing lower priority-functions. In 

case of a DCT, the DC-coefficient computation function is more significant than AC-

coefficients computing functions since the DC-coefficient contains the most content 

information about a natural image. 

The AS fault handling scheme identifies the faulty PE(s) by employing the RCE(s) as 

follows: Once fault is detected, the health of all the PEs in the processing datapath is 

suspected. Thus, step-1 of Algorithm 1 initially labels all PEs as Suspect. An entry Ф i= 

1 in a vector Ф of length (N +Ns) stands for faulty nature of the PE i, Фi= 0 for healthy 

PEi, and Фi= x for suspected PEi. The vector Ф is used to maintain a record of proven 

healthy PEs. Initially, the set containing tested and verified fault -free healthy PEs is an 

empty set (ϕ) as labeled in step-2. The RCE can either be the blank PEs available in the 

system, some low-priority PEs, or PEs temporarily decommissioned from another FE. 

Initially, the RCE (or multiple RCEs) is reconfigured with the same functionality as that  

of the most important functional PE, for example, the module for computing DC-

coefficient (step-3 and step-5). The location of a faulty PE is detected by performing 
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the discrepancy check in an NMR arrangement (step-6). In case of a Dual Modular 

Redundancy (DMR) arrangement, a faulty status of one of the two modules, and a 

faulty status of more than N-2 modules in case of an NMR arrangement result into 

Suspect state of every instance. Therefore, we proceed to reconfigure the RCE with the 

second priority function and so on (step-3). Once an agreement between two modules 

over a complete evaluation window is observed, the two modules are declared as 

Healthy and their fitness state is updated (step-6). The identification of a healthy RCE 

implies that we do not need to reconfigure the PEs as checkers further. A healthy RCE 

can be used to check the fitness of all the modules (step-11). The discrepancy of a 

suspected module in pair with a healthy module reveals its Faulty nature. On the other 

hand, an observed discrepancy between suspected modules does not provide any 

information and keeps them marked Suspect. If a Healthy RCE is not identified in the 

first iteration even after reconfiguring with all of the functions in the datapath, it is 

moved to the next PE, and so on (step-9). Upon the completion of fault isolation, the 

priority functions are moved to the Healthy PEs, achieving recovery.  

 

Algorithm 1: Fault Isolation Algorithm 

 

Require: N, Ns 

Ensure: Ф 

1: Initialize Ф=[x x x … x]
T
, i=1 

2: while ({k| k∈Ф, k=0 } = ϕ) do 

3:    Designate PEs as checker(s) ; (N+1)≤s≤(N+ Ns) 

4:    while (i ≤ N) do 

5:     Reconfigure RCE(s) with the same functionality as PE i 

6:     Perform N-Modular Redundancy (NMR) majority voting  

         to identify at least one healthy RCE, Фi ← 0 for PEi  

         which shows no discrepancy then go to step-11, Фi ← x  

         otherwise 

7:     i ← i+1 

8:     end while 

9:     Move the RCE by updating N=N-Ns , Re-initialize i=1 

10: end while 

11: Use a healthy RCE to check all other PEs 

 

 

3. Experimental Results 
 

3.1. Case Study-1: Video Encoder 

An example of the video encoder in a faulty scenario is presented in  Figure 1. The 

faulty situation of PE1 and PE4 is examined here. The healthy nature of the RS makes it 
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possible to isolate the faulty PE in the first iteration in which two reconfigurations are 

involved. As soon as the RS output is compared with PE2 which is healthy, the RS is 

identified as healthy. As the faulty PE1 was performing an important function, that is, 

the computation of the DC coefficient, therefore a healthy PE is assigned to this 

functionality. Figure 1 illustrates that the quality of signal in terms of Peak Signal to 

Noise Ratio (PSNR) is better in case of an encoder with fault handling capability than 

that of a baseline encoder even operating at a lower Quantization Parameter (QP) value.   
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Figure 1. PSNR of recovered frames of a video sequence 
 

3.1.1. Verilog design of the DCT core 

The floating-point values of the DCT kernels matrix are represented by fixed-point 

values as given by hex numbers in Figure 2. Each floating point value is represented by 

a 12-bit fixed-point number, thus a total of 96 bits are used to specify each kernel. Then, 

each kernel is stored inside a PE inferred from Verilog code in Figure 3. The Multiply 

Accumulate (MAC) operation is synthesized by using Xilinx DSP48 elements. The 

sign-bit of the 21-bit dot-product result is replicated to get a 32-bit 2’s complement 

representation. This 32-bit value from a PE’s output represents a DCT coefficient. For 

8x8 DCT mode, an array of 8 PEs operates in parallel on a row in 8 input pixels to 

produce the results of 1
st
 stage of DCT operation. The result of 1-D DCT is written into 

a transposition memory. The 2
nd

 stage of DCT is performed by the same array of PEs, 

yet with column-wise reading format of those values written by the 1st stage into the 

transposition memory. 

 

`define DCTWIDTH 32 

`define PIXWIDTH 12 

`define N 8 //DCT mode 

`define start contrin[0] 

`define write contrin[1] 

`define read contrin[2] 

`define ready controut[0] 

`define KERNELDC 96'h2D4_2D4_2D4_2D4_2D4_2D4_2D4_2D4 //DC 

`define KERNEL0 96'h3EC_353_239_0C8_F38_DC7_CAD_C14 //AC0 
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`define KERNEL1 96'h3B2_188_E78_C4E_C4E_E78_188_3B2 //AC1 

`define KERNEL2 96'h353_F38_C14_DC7_239_3EC_0C8_CAD //AC2 

`define KERNEL3 96'h2D4_D2C_D2C_2D4_2D4_D2C_D2C_2D4 //AC3 

`define KERNEL4 96'h239_C14_0C8_353_CAD_F38_3EC_DC7 //AC4 

`define KERNEL5 96'h188_C4E_3B2_E78_E78_3B2_C4E_188 //AC5 

`define KERNEL6 96'h0C8_DC7_353_C14_3EC_CAD_239_F38 //AC6 

Figure 2. Parameters.v file to specify DCT core's parameters 

 

`include "parameters.v" 

module mac_0( 

     input [`PIXWIDTH-1:0] din, 

   input start, 

   input clk, 

   input res, 

   output [`DCTWIDTH-1:0] dout, 

   output ready 

   ); 

//////////////////////////////////// 

reg [95:0] c; 

reg [95:0] dctM = `KERNEL0; 

////////////////////////////////////// 

reg [3:0] count; 

always @(posedge clk or posedge res) 

if (res) count<=0; 

else if (start) count<=0; 

else if (count==(`N+2)) count<=count;//stop 

else count<=count+1;  

////////////////////////////////// 

always @(negedge clk or posedge res) 

if (res) c <= 0; 

else if (start) c <= dctM; 

else if (count>0) c <= {c[83:0],12'h000}; 

else c<=c; 

/////////////////////////////////////  

reg  [`DCTWIDTH-1:0] acc;//accumulator 

always @(posedge clk or posedge res) 

if (res) acc <= 0; else if (start) acc <= 0; 

else if (count<`N) acc <= acc + { {(`DCTWIDTH-

12){c[95]}},c[95:84]}*{{(`DCTWIDTH-`PIXWIDTH){din[`PIXWIDTH-1]}},din}; 

else acc <= acc; 

wire [21:0] dout_rounded; 
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assign dout_rounded=acc[31:10]+1'b1;//Round Half up by adding 0.5 

assign dout={ {11{dout_rounded[21]}},dout_rounded[21:1]}; 

assign ready=(count==(`N+1))?1:0; 

endmodule 

Figure 3. Verilog code to infer a MAC-based processing element 
 

3.1.2. Hardware implementation using Xilinx ISE Design Suite: System Edition 

Version 14.3 

While the design has been implemented using Xilinx 14.3 system edition [18-21], the 

implementation details can be found in [22] for Xilinx ISE 9.2 development tools. The 

DCT hardware core is interfaced with the on-chip processor contained in Xilinx Virtex-

4 device through a Xilinx General Purpose Input/Output (GPIO) core. The GPIO core 

communicates to the processor via Xilinx LogiCORE Processor Local Bus (PLB). Table 

1 lists the static and dynamically reconfigurable components of the hardware design 

implementing an H.263 video encoder. A processor-based system is instantiated in 

Xilinx EDK design environment. The static as well as partial reconfiguration (PR) 

design is synthesized in Xilinx Integrated Synthesis Environment (ISE). Then, the 

netlist files are imported into Xilinx PlanAhead to floorplan and implement the design. 

The input videos are stored on a compact flash in Xilinx ML410 development board as 

shown in  

Figure 4. The reconfiguration status updates are communicated to a desktop 

computer via a serial port.  

 

Table 1. Static and dynamic components of the design 

Design Module Name Purpose 

Static 

System i PowerPC, RS232, SystemACE, DDR2_SDRAM, DCT_GPIO, 

BUFG Buffers to drive internal clocks signals 

DCM 
Digital Clock Manager to generate clocks for DDR2, DCT core, 

and configuration controller 

ICAP_VIRTEX4 Internal Configuration Access Port 

config_ctrl Configuration controller 

blockram Block-RAM to hold configuration bitstreams 

dct_contr. Controller to generate signals for the DCT core 

dct_p2s Parallel to serial module 

muxdata 
MUX to multiplex data to the input of PEs array from either 

DCT_GPIO core or transposition memory 

TransMem A dual port transposition memory 

ICON,VIO,ILA ChipScope debugging cores 

Dynamic PE_Array 
MAC_DC, MAC_AC0, MAC_AC1, MAC_AC2, MAC_AC3, 

MAC_AC4, MAC_AC5 MAC_AC6 
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Figure 4. Xilinx ML410 development board to evaluate the proposed 
adaptive reconfiguration flow for video encoder application 

 

3.2 Case Study-2: Edge Detector 

The sustainability of edge detecting applications is desirable in harsh operating 

environments. A Canny edge detector [23-24] is popular for image-processing due to its 

enhanced edge detection capability. Therefore, we evaluate the behavior of faults in a 

Canny edge detection module. For this purpose, as shown in Error! Reference source 

not found.5(a), a 5×5 Gaussian Kernel is used for smoothing phase of the detector. We 

employed a distributed architecture where the convolution operation is performed by 

multiple PEs to accelerate the performance of the edge detection. Error! Reference 

source not found.5 illustrates the qualitative result of fault-handling for an image in 

the dataset available online [25]. 

 

Figure 5. Gaussian kernel and qualitative results of the edge detector with 
fault-recovery capability 

 

4. Conclusions 

A fault handling mechanism using Amorphous Slack is introduced, which has advantages 

of continuous throughput with small degradation and low area overhead. Dynamic partial 

reconfiguration is used with hardware modularity to provide autonomous capability for 

survivable systems. Experiments with video coding/image processing applications indicate 

that fault resilience is achievable in an area efficient manner using Amorphous Slack. 

(a) Gaussian Kernel for smoothing (b) Original 

image 

(c) Edge detection by a 

faulty detector 

(d) Edge detection after 

fault recovery 
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