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Abstract 

In this paper, we propose a design method of the tracking and controlling 

AUV(autonomous underwater vehicle) that has wide range of velocity. The state feedback 

controllers are designed according to determined surge speed and then a fuzzy controller is 

designed in a way that the outputs of the state feedback controller are combined by the surge 

speed of AUV, so that when the surge speed changes, the AUV control becomes stable. By 

simulation using Matlab/Simulink, the performance of the proposed controller is shown to be 

efficient. 
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1. Introduction 

Recently, the demand for AUV (autonomous underwater vehicle) is growing steadily 

with the development of the marine material and for the military purposes. REMUS [1], 

MAYA [2], STARFISH [3], and ISiMI [4] are representative AUVs of USA, India, 

Singapore, and S. Korea, respectively.  

And there have been many researches about the various methods of controlling 

AUVs, where assume the constant velocity of AUV using state feedback control [5] or 

regard the variation of velocity as disturbance using sliding mode control  [6]. But, there 

will be disadvantages in implementing various tasks if we operate only in the constant 

velocity in the marine status where the many unseen variables make a big effect. Thus, 

there will be need for a design of the controller that can cope with the change of the 

velocity over the endurable level of disturbance. 
 

 

Figure 1. Appearance of AUV 
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Authors are implementing an AUV [7] using GPS, IMU, DML and the depth sensor 

to measure the location and the posture of the underwater robot. It has 4 rudders and 1 

thruster to control the movement as shown in the Figure 1. 
 

2. Designing AUV Controller 
 

2.1. The Linear Model for Depth Control of AUV 

With notations and the values of the variables in [1], when surge speed is constant, 

the depth system of AUV is linearized into the linear system [8, 9] with 4 status 

variables as Eq. (1), where , , ,w q z   and 
s  represent heave, pitch rate, depth, pitch 

angle, and the elevating angle of stern, respectively. U is the surge speed and 

0d d d dw q z     . 

 
1

78.5 1.93 0 0 66.6 43 9.67 0 0 0.15

1.93 8.33 0 0 30.7 6.87 0 5.77 1.03

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0 0

e e

U

x x
U


       

     
  

      
     
     
     

  

 

[ , , , ]T

e d d d dx w w q q z z         

 

     

(1) 

Here, 
dz  represents the target depth of AUV and the assumption of  0dz   is satisfied 

when the targeted depth is given as the step function. Assuming the velocity of AUV as  

1.2 /m s , 2.4 /m s ,  and 3.6 /m s  respectively, we have three linear models. 

By the pole placement technique, we set every pole on the left half plane of complex 

number plane as Table 1 for stability.  Since the control system using computer is a 

discrete time system using 0.1 second of sampling time, the corresponding pole position 

in discrete time domain is computed by 
** s Tz e , where T is the sampling time and set 

to 0.1 sec. 
 

Table 1. State Feedback Controllers for Fixed Surge Speed 

Surge 

(m/s) 

Continuous time 

controller Desired pole(
*s ) Desired pole(

*z ) 

1.2 1( ) ( )s et Kx t     ( 0.5, 0.5, 2, 4)      (0.95,0.95,0.82,0.67)  

2.4 2 ( ) ( )s et Kx t    ( 0.7, 0.7, 3, 6)     (0.93,0.93,0.74,0.55)  

3.6 3( ) ( )s et Kx t    ( 1.2, 1.2, 2, 6)     (0.89,0.89,0.82,0.55)  

 

To get the feedback gains in discrete time domain, system Eq. (1) is converted by 

using Matlab. By the pole placement again, we have the discrete time controller with 

T=0.1 as Table 2. 
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Table 2. Discrete Time State Feedback Controllers for Each Surge Speed 

Surge (m/s) 
Discrete time 

controller 
 State feedback gain, K 

1.2 1( ) ( )s ek Kx k    [ 3.90  3.51  0.89  3.82 ] 

2.4 2 ( ) ( )s ek Kx k    [ 0.89  1.39  0.41  2.78 ] 

3.6 3( ) ( )s ek Kx k    [ 0.24  0.64  0.22  1.67 ] 

 

2.2 The Linear Model for Steering Control of AUV 

Then surge speed is constant, the movement of the AUV on the horizontal plane can 

be linearized as the linear system having 3 status variables as Eq. (2), where , ,v r   and 

r  represent sway speed, yaw rate, and the rudder angle, respectively.  We assume that 

0d d dv r    . 
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Figure 2. Steering Angle Error by Line of Sight Algorithm and Depth Error 
 

The desired steering angle is computed by the line of sight algorithm in Figure 2, and 

it is given by  

tan(( ) / ( ))d r rarc y y x x    . 

Through the same procedure, we have three discrete time state feedback controllers 

as Table 3 and Table 4. 
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Table 3. State Feedback Controllers for Fixed Surge Speed 

Surge 

(m/s) 

Continuous time 

controller Desired pole(
*s ) Desired pole(

*z ) 

1.2 1( ) ( )r et Kx t    ( 1.1, 1.1, 5)     (0.90,0.90,0.61)   

2.4 2 ( ) ( )r et Kx t    ( 2.2, 2.2, 6)     (0.80,0.80,0.55)  

3.6 3( ) ( )r et Kx t    ( 3.2, 3.2, 9)    (0.73,0.73,0.41)  

 

 

Table 4. Discrete Time State Feedback Controllers for each Surge Speed 

Surge (m/s) 
Discrete time 

controller 
State feedback gain, K 

1.2 1( ) ( )r ek Kx k    [3.3117  4.3174  4.1515 ] 

2.4 2 ( ) ( )r ek Kx k    [1.5831  1.3876  2.2333 ] 

3.6 3( ) ( )r ek Kx k    [1.0140  0.8298  1.7339]  

 

2.3 Application of the Fuzzy System 

We configure the membership function of surge speed as Figure 3, where linguistic 

variables LS, MS, and HS represent low speed, medium speed, and high speed, 

respectively. 
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Figure 3. Fuzzy Membership Function 
 

The input of the fuzzy system is the surge speed and the output is the rudder angle 

and the stern angle of the AUV. The purpose of the fuzzy system is to broaden the 

range of surge speed successfully managed by the given control scheme. The fuzzy 

rules are  

1R  : IF surge is LS THEN s  is 1s  and r  is 1r   

2R  : IF surge is MS THEN s  is 2s  and r  is 2r   

3R  : IF surge is HS THEN s  is 3s  and r  is 3r   
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Using singleton fuzzifier, center average defuzzifier, and sum-product inference, the 

output becomes  
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where jw  is the fitness value for the j-th rule. 

 

3.   Simulation 

The simulation is performed by using the MATLAB/Simulink. The proposed 

controller is the discrete system of 10Hz, and ode45 is used as the translator for the 

simulation. In the measurement of the directional velocity and angular velocity of the 

AUV, we include random noise between 0.005 /m s , 15 / s  , and assume the 

maximum operating speed of the rudders and sterns is 60 / s  within 40  .   

The whole composition of the state feedback controller where the fuzzy theory is 

applied is as in the Figure 4. We assume that the torque is maintained at –0.543Nm.  To 

illustrate the performance of the proposed controller dramatically, we add sine wave 

disturbance to the propulsion which varies between 1.5m/s and 4m/s. 
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Figure 4. The Composition of the State Feedback Controller and the Fuzzy 
System 

 

Figure 5 is the result of the simulation that designate the points (0, 0, 0) (20, 0, 0) (40, 

20, 5) (40, 40, 10) (20, 40, 5) (0, 0, 0), when the change the velocity is between 1.5 m/s 

and 4m/s. We can see that the AUV passes through all the targeted points and returns 

back to its original place. The directional velocity of AUS is shown in Figure 6, and the 

surge speed is between 1.5 m/s and 4 m/s.  
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Figure 5. AUV’s Moving Route              
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Figure 6. AUV’s Directional Speed 
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Figure 7. The Angle of Rudder and Stern 
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The controlled angle of rudder and stern granted to the AUV is as in the Figure 7. We 

can see that it is operated within the scope of 40°. Figure 8 is the magnified stern 

angle, where the dotted lines are the output of the state feedback controller before 

passing through the fuzzy controller, and the solid line is the output of the fuzzy system.  

Figure 9 and Figure 10 are the control results for other way-points that show the 

feasibility of the proposed control scheme. 

 

 

Figure 8. The Output of each Controller 
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 Figure 9. Zig-zag Trajectory of AUV 
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Figure 10. ‘8’-shape Trajectory of AUV 
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For the comparison with other controller, a PD controller, a state feedback controller 

for a typical surge speed with 4 states, and a sliding mode controller are chosen. The 

way-points are (0, 0, 0), (0, 30, 0), (0, 50, –10), (20, 50, –10), (20, 0, –10), (40, 0, –10), 

(40, 50, –10), (60, 50, –10), (60, 0, –10), (80, 0, –15), (80, 50, –15), (100, 50, –10), 

(100, 0, –5), (0, 0, 0) to make a zig-zag trajectory. 

The control output of the PD controller for the depth control is designed using the 

depth error and its pitch error, and for the steering, using the yaw angle. They are  

3.0 0.5 7.0 0.0s z ze e e e                                                             (4) 

z de z z  ,  
de      

 

2.0 0.5r e e            (5) 

de     

and its control result is shown in Figure 11, where some of the way-points are 

approached by a few rotation around them. The control output of a state feedback [5] 

for the AUV is 

3.4411 2.2215 0.4922( ) 1.9826s dw q z z                    (6) 

3.2880 4.1813 3.4995( )r dv r                                (7) 

and its control result is shown in Figure 12.  And the control output of a sliding mode 

controller [10] for the AUV is 

0.8773 1.6005 0.0645 0.0563tanh(10 )r d zw z                 (8) 

0.6996 0.1457( ) 0.6996z dq z z        

 

3.1150 0.8415 0.4755 0.2871tanh(10 )s d xyv r                        (9) 

0.0164 0.5610 0.8277( )xy dv r       

and its control result is shown in Figure 13. Figure 14 shows the control result of the 

proposed controller.  Figure 15 is the control efforts for each controller. 

 

 

Figure 11. Trajectory of PD Controller      
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Figure  12. Trajectory of State Feedback Controller 

 

   

Figure 13. Trajectory of Sliding Mode Controller 

 

 

Figure 14. Trajectory of Fuzzy Controller 
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Figure 15. Steering Control Effort of each Controller 
 

4. Conclusion 

We designed the status feedback controller for the pursuit of the way-points of the 

AUV, and in order to broaden the operating speed, we configured some different 

feedback gains according to the surge speeds by the pole placement technique in 

discrete time domain. And then, in order to schedule appropriate gains, we added the 

fuzzy system. 

Matlab/Simulink simulation showed that the AUV passed through all the targeted 

points within the range of 1m error by the proposed controller. 
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