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Abstract 

This paper proposes a class of General Piecewise-Affine (GPWA) AutoRegressive 

eXogenous (GPWARX) models for nonlinear black-box identification. A GPWARX model is a 

weighted sum of GPWA basis functions. In n-dimensions, a GPWA basis function is defined 

over n+2 polyhedral regions, which are pairwise directly adjacent in the domain space. The 

geometrical structures of GPWA basis functions provide the GPWARX models with stronger 

representation capability and higher approximation efficiency in estimation of nonlinear 

systems than the other canonical PWA functions. Benchmark nonlinear identification 

examples are illustrated to show that GPWARX models have better estimation accuracy than 

HHARX and BPWARX models with the same number of parameters and using the same 

parameter identification algorithm. 
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1. Introduction 

Piecewise-affine (PWA) functions provide an attractive black-box model structure 

for system identification. The class of PWA models has universal approximation 

capability for nonlinear dynamic systems [1, 2]. This suggests a systematic way of 

using well-developed linear technologies to solve nonlinear problems. PWA functions 

can describe hybrid systems, which consists of both continuous and discrete dynamics 

[3-5]. Therefore, many analysis, synthesis and control techniques for PWA systems can 

be generalized to hybrid systems [6-12].  

It is a challenging task to identify PWA models from a set of input-output data. PWA 

models are defined by local affine functions and polyhedral domain partitions. 

Therefore, PWA identification algorithms require fitting two sets of parameters: 

coefficient vectors of local affine functions and parameter matrices of affine 

inequalities, which define polyhedral regions in the domain.  

PWA model identification can be formulated as a mixed integer nonlinear program 

(MINLP) problem. Global optimal solutions are feasible for small-scale or some 

medium-scale problems. Problem scale is defined by the number of sampling data and 

the number of polyhedral regions in a PWA model. A typical medium-scale problem 

may have 20-30 sampling data scatter into several polyhedral regions.  The main idea of 

most PWA identification algorithms is developing computationally efficient approaches 

to build suboptimal PWA models of high quality. PWA identification approaches can be 

classified into two categories: direct and indirect method.  
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Direct method identifies local affine functions and domain partitions directly. This 

method requires fitting all the parameter vectors of local hyperplanes and parameter 

matrices of polyhedral regions. Typical direct methods include the clustering-based 

method [13], the bounded-error method [14], the Bayesian method [15] and the 

algebraic method [16]. Direct methods can deal with general PWA systems, including 

discontinuous systems. Their high performances in computational efficiency have been 

shown in many applications [17].  

Wider applications of direct methods are limited by descriptional and computational 

complexities of PWA models. Due to the combinatorial natural, the number of 

parameters to describe a PWA system may be an exponential function of the number of 

independent variables. In addition, functional evaluation of PWA models defined over 

polyhedral regions might be too computationally intensive to run in real time.  

Indirect methods are developed based on the concept of PWA basis function 

expansion [18-26]. A PWA function is represented with a weighted sum of PWA basis 

functions. Note that a PWA function over many polyhedral regions may be described by 

a small number of PWA basis functions. Indirect method is an efficient way to deal 

with description and evaluation complexities of continuous PWA systems. 

 Indirect methods require identifying the weights and parameter vectors of PWA 

basis functions. This problem is addressed by formulating a criterion function and 

minimizing it through numerical optimization methods. Then the performances of 

indirect PWA identification algorithm are implicitly specified by the number of PWA 

basis functions, which is denoted as model size.  

Canonical Piecewise-Affine (CPWA) representation theorem provides a theoretical 

basis to design PWA basis functions and determine the size of PWA models. The 

CPWA representation theorem is developed based on the concept of minimal 

degenerate intersection (MDI). The MDIs are geometrical objects, which are elementary 

“building blocks” of PWA functions’ polyhedral partitions in the domain. The 

superposition of MDIs can generate all types of domain partitions of continuous PWA 

functions. Mathematically, by defining a PWA function over a MDI as basis function, a 

weighted sum of these basis functions can describe any continuous PWA system.  

In [26], it is proved that a PWA function over a MDI can be mathematically 

represented by an absolute-value function of n nesting levels. A PWA function with n 

variables can be expressed by a weighted sum of no more than n-nesting absolute-value 

functions. Unfortunately, the nested absolute-value functions usually have implicit 

functional forms. This limits the use of nested absolute-value functions in building a 

general PWA model structure.  

In [2, 21, 27], a class of CPWA functions are developed using absolute-value 

functions as basis functions. A CPWA function is a sum of an affine function and one 

or more absolute values of affine functions. The CPWA functions can approximate 

continuous functions arbitrarily well. Hinging Hyperplane (HH) functions is essentially 

another form of the CPWA functions [8, 18, 21]. The class of absolute-value functions 

does not have a universal representation capability for general PWA functions with n 

variables. This limits their approximation efficiency in estimation of nonlinear systems. 

It implies that a nonlinear system may require an approximate CWPA function with a 

big number of absolute-values functions.     

In [30], a PWA basis function (BPWA) representation is proposed, which describes a 

subset of continuous PWA function with a linear combination of BPWA basis 

functions. In n dimensions, a BPWA basis function is the maximum or minimum of n+1 

affine functions. In [21, 27], Wen, Wang, Jin and Ma developed the PWA Basis 
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Function AutoRegressive eXogenous (BPWARX) models and found successful 

applications in nonlinear identifications and function approximation. In [31], a 

parameter space decomposition theorem is developed for BPWA functions. It is proved 

that any BPWA function has a decomposed parametric representation, in which the 

algebraic and geometrical parameters can be identified separately. A recursive 

algorithm is developed to identify the BWPARX models from the input-output data.  

The class of BPWA functions has a universal representation capability with a simple 

and explicit functional form. However, they may have low representation efficiency. A 

BPWA basis function is defined over a single MDI. According to BPWA representation 

theorem, the number of MDIs in a PWA function specifies the size of its BPWA 

representation, i.e. the number of basis functions. Note that the approximation accuracy 

of BPWA functions is implicitly determined by the number of MDIs. A BPWA function 

defined over larger number of MIDs gives a smaller approximation error. Therefore, 

BPWARX models may have low approximate efficiency, because they might require a 

big model size to estimate nonlinear systems. 

In 2011, Wen and Ma develop a General PWA (GPWA) representation theorem [32]. 

This theorem provides a uniform theoretical framework for many known CPWA 

models. It is proved that the geometrical structures of domain partitions determine the 

representation capability of different classes of PWA basis functions. The GPWA 

representation theorem shows that an ideal identification algorithm should be developed 

based on identifying the geometrical structures of PWA functions in the domain space. 

This paper proposes a GPWARX model using the GPWA representation theorem. A 

class of GPWA basis functions is proposed, which are defined over n+2 MDIs in n 

dimensions. A modified Guass-Newton algorithm [27] is used to build a GPWARX 

model from input-output data. The performance of GPWARX models is supported by 

two benchmark examples of nonlinear dynamic identification.  

The organization of this paper is as follows. The preliminary knowledge on CPWA 

representation is given in Section 2. Section 3 reviews CPWA models and CPWA 

approximation theorems. In Section 4, GPWARX models are introduced, and numerical 

simulation results are illustrated in Section 5. Section 6 gives a brief concluding 

remark. 
 

2. Preliminaries  

This section provides the preliminary knowledge on the PWA functions and the 

CPWA representation theorem.  

Definition 1. Assume that ΓR
n
 be a compact set. Assume further that there is a 

finite family of nonempty polyhedral regions Ri, such that 

1
ˆ ˆ,m

i i p qR R R p q                                                             (1) 

where ˆ
iR  is the interior of region Ri, Φ denotes an empty set, and p, q{1,···,m}. A 

function P(x):Γ→R is said to be piecewise affine if  

( ) T

j jP x x R                                                          (2) 

where ( 1)1[1 ] , , jM nT T n

j jx R H R 
    , and " "  denotes component-wise inequality. 

The sets  

{ | 0}, 1, ,j jR x H j s                                                       (3) 
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form a polyhedral partition of the x-space. Here Rj is called as a region and T
θj the 

corresponding local affine function.  

In order to measure the complexity of a PWA function, the CPWA representation 

theorem introduces the concept of MDIs.  

Definition 2 
[25] 

In R
n
, an intersection of two regions, which is an (n-1)-dimensional 

affine manifold, is said to be a first-order intersection S
(1)

. An affine manifold of 

dimension n-k in R
n
 is a kth-order intersection S

(k)
, if it is the intersection of two or 

more affine manifolds of S
(k-1)

 

 ( ) 2 ( 1)

1

k k

i iS S 

                                                          (4) 

An affine manifold ( )k
S  is called a minimal degenerate intersection (MDI), if it is 

formed by the smallest possible number of ( )l
S ’s for all 1 l k  .  

The MDIs are the basic “building blocks” of general CPWL functions. They can be 

used to define the geometrical relationships of different polyhedral regions in the 

domain space.  

Definition 3 Two regions are directly adjacent if the intersection forms a first -order 

MDI.  

Definition 3 can be clarified by the domain partition in 2 dimensions as shown in 

Figure 1. Figure 1(a-c) consists of directly adjacent regions only, because each couple 

of two regions intersects with a first-order MDI. In Figure 1 (d), the regions OAB and 

OCD are not directly adjacent, because OAB∩OCD=O is a second-order degenerate 

intersection. There are three regions in Figure 1 (c) and four ones in Figure 1 (d). Both 

domain partitions are defined a second-order degenerate intersection, i.e. point O. 

Figure 1 (c) defines a MDI, which is the simplest domain partition that defines a 

second-order degenerate intersection. Here the simplest domain partition implies that it 

has the minimum number of regions.  

 

 

Figure 1. Domain partition of: (a) absolute-value function; (b) hinge 
function; (c) PWA basis function; (d) PWA function with dis-adjacent 

regions 
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3. PWA Approximation Theorem 

3.1. PWA Models 

Consider the nonlinear system  

( ) ( ( )) ( )y t P x t t                                                                (5) 

where x(t)R
n
 is the regression vector, y(t)R is the measured output, ε(t)R is the 

error term, and P(x) is a PWA function. When the regression vector φ(t) consists of 

previous inputs and outputs 

( ) [1, ( 1), , ( ), ( 1), , ( )]T

a bt y t y t n u t u t n                                (6)         

the system is defined as a PWARX system [20].  

Rewrite P(x) into a basis function expansion, we have  

1

( ) ( )
M

T

m m

m

P x B x  


                                                  (7) 

where Bm(x) is a basis function with λmR, m=1,···,M. Typical examples of basis 

functions are absolute-value function a(x), hinge functions h(x) and PWA basis function 

b(x). In R
n
, analytical expressions of basis functions are formulated as follows:  

( ) | |Ta x                                                                       (8) 

 1 2( ) max ,T Th x                                                      (9) 

 1 1( ) max , ,T T

nb x                                                  (10) 

It should be noted that the number of affine function in a BPWA basis function is 

specified by the dimensions of domain space. By comparison, the absolute-value 

functions and hinge functions are constructed by 2 affine functions. Figure 1(a -c) 

visualizes the domain partitions of the absolute-value functions, hinge functions and 

BPWA basis functions in 2 dimensions. The domain space is partitioned into two 

directly adjacent regions for an absolute-value functions and a hinge function. Note that 

two regions only define one first-order MDI. This limits the representation capability of 

the absolute-value functions and hinge functions in high dimensional space.  

The domain of a BPWA basis function contains n+1 pairwise directly adjacent 

regions in n dimensions. It defines a single n-dimensional MDI. This is the simplest 

domain partition with universal representation capability. Figure 1(c) shows the domain 

partition of a 2-dimensional BPWA basis function. Point O defines a second-order 

MDI. The order of O will be reduced by one, if any one region is removed from the 

domain partition as shown in Figure 1(c). Therefore, a 2-dimensional BPWA basis 

function can be used as an elementary “building block” to represent any continuous 

PWA function with two variables.  

Figure 1(d) consists of regions that are not directly adjacent. It implies that this 

domain partition can be further decomposed into a superposition of simpler domain 

partitions defined by BPWA basis functions. Denote P(x)=P(x|1,2,3,4) as a PWA 

function defined over a domain partition shown as in Figure 1(d). Using the 

decomposition algorithm in [30], we can get  

     1 11 12 13 2 21 22 23| , , | , ,P x P x P x        
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where P1(x|11,12,13) and P2(x|21,22,23) are BPWA basis functions defined over 

domain partitions shown in Figure 1(c).   

 

3.2 PWA Approximation Theorem 

Definition 1
[18]

: A function f(x), xC is sufficiently smooth if the following integral 

is finite: 
2 ˆ|| || | ( ) |f d                                                   (11)        

where ˆ ( )f   is the Fourier transform of f(x) and C is a compact set in R
n
. 

Lemma 1
[18,21]

: Let f(x) be a sufficiently smooth function. Then there must exist a 

cB>0, such that for any positive integer M, there exist M basis functions Bm(x) and 

coefficients λmR, such that  

2

1

|| ( ) ( ) ||
M

T B
m m

m

c
B x f x

M
  



                                              (12)   

where Bm(x) denotes an absolute-value function am(x), a hinge function hm(x) or a PWA 

basis function bm(x) with 1, ,m M .                   

 Lemma 1 shows that the absolute-values functions, hinge functions and PWA basis 

functions can approximate sufficiently smooth nonlinear functions arbitrarily well. 

However, these three classes of basis functions have different approximation efficiency, 

because they have different representation capabilities. Here the approximation 

accuracy denotes the number of parameters in a PWARX model required for a given 

approximation accuracy.   

The hinge functions have the same representation capability with the absolute-value 

functions. Those two classes of basis functions can be formulated as the minimum or 

maximum of two affine functions. The absolute-value functions and hinge functions 

only cover a small subset of continuous PWA functions, i.e. the functions that fulfill the 

so-called consistent variation property [22]. Therefore, they can not efficiently 

approximate the PWA functions with the boundary configurations that break the 

consistent variation property. Accordingly, a huge number of hinge functions are 

required to achieve desired estimation accuracy. The resulting HHARX models may 

involve very large number of parameters in real identification settings. This conclusion 

is also valid for the class of absolute-value functions.  

The class of BPWA functions covers all continuous PWA functions defined over a 

single degenerate intersection. Note that PWA functions are generally defined over 

many degenerate intersections and a PWA basis function generates a single MDI. 

Theoretically, a lot of BPWA basis functions are required to describe a PWA function 

over many degenerate intersections. Therefore, the resulting BPWARX model may have 

low representation efficiency, because they might contain a large number of parameters. 

 

4. GPWA Representation Model 

4.1 GPWA Basis Function 

Definition 4 In R
n
, a continuous PWA function  

  ,1 , 1( ) min 0,max , ,T T

m m ng x                                                (13) 
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is defined as a GPWA basis function, if regions Ri, i=1,···,n+2 are pairwise directly 

adjacent in the domain space.  

From a geometrical point of view, a GPWA basis function g(x) is defined over a 

compact domain structure, in which each couple of its regions is directly adjacent, and 

each group of n regions forms an nth-order MDI. Note that (n+1) affinely independent 

points spans an n-dimensional hyperplane. A g(x) is a direct extension of an affine 

function, because its domain partition is spanned by n+2 points in general position. A 

set of n+2 points in general position means that any set of n+1 points span an n-

dimensional hyperplane.   

From a mathematical point of view, a g(x) realizes the maximum parametric degree 

of freedom in n+2 affinely independent points. In R
n
, n+2 points 2

1{ }n

i i ix y 

  at most offer 

(n+1)(n+2) degree of freedom. This is equal to the number of coefficient parameters 

in n+2 affine functions of a g(x). Therefore, a GPWA basis g(x) realizes the upper 

bound of the degree of freedom in n+2 points. It is the most complex PWA function 

specified by n+2 points in general position. Therefore, the class of the GPWA basis 

functions is the most complicated CPWA functions, which can be used as the 

elementary “building blocks” of general PWA functions.  

The class of GPWA basis functions is defined over a particular geometrical structure, 

which enables them with universal representation capability and high approximation 

efficiency in nonlinear black-box modeling. 

Figure 2 visualizes the surface plot of a GPWA basis function with 2 variables. The 

corresponding domain partitions are shown in Figure 3. It is easy to see that any two 

polyhedral regions are directly adjacent to form a first-order MDI, e.g. 

OAC ABC AC  , and each group of three regions intersect at a second-order MDI, e.g. 

OAC ABC OAB O   . 

 

 

Figure 2. Surface Plot of a GPWA Basis Function in 2 Dimensions 
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Figure 3. Domain Partition of GPWA Basis Function in 2 Dimensions 
 

4.2 GPWA Approximation  

    Lemma 2
[32]

 Let P(x) be a continuous PWA function. Then there must exist a 

GPWA function  

1

( ) ( )
M

T

m m

m

p x g x  


                                                 (14) 

such that  

  ( ) ( ), nP x p x x R                                        (15) 

where gm(x) is a GPWA basis function. 

Theorem 1: In R
n
, any continuous function on a compact domain can be 

approximated to an arbitrary precision by a GPWA function.  

Proof. Because of the theory of spline functions, any continuous nonlinear function 

can be approximated arbitrarily well by a PWA function. It is stated in Lemma 2 that 

any continuous PWA function has a GPWA representation. The class of GPWA 

functions is a universal model set for all continuous functions.  

Theorem 1 presents the theoretical basis to use the class of GPWA functions to 

approximate continuous nonlinear functions. If the nonlinear functions satisfy the 

sufficient smooth condition, the approximation accuracy can be estimated by the 

number of GPWA basis functions.  

Theorem 2: Let f(x) be a sufficiently smooth function. Then there must exist a 

positive real cG>0, such that for any positive integer M, there exist M basis functions 

gm(x) and coefficients λmR, such that  

2

1

|| ( ) ( ) ||
M

T G
m m

m

c
g x f x

M
  



                                                (16)   

and  

G Bc c                                                            (17)   

where gm(x) is a GPWA basis function with m=1,···,M.           

Proof. A BPWA basis is defined over a single MDI, while a GPWA basis is over n+1 

MDIs. It is easy to see that a BPWA basis function is essentially a special case of 
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GPWA basis function. Then similar error bound as (12) is obtained for a sufficiently 

smooth function i.e.  

2

0

1

|| ( ) ( ) ||
M

T G
m m

m

c
g x f x

M
  



                                               (18) 

Note that the BPWA functions with M basis functions are a proper subset of the 

GPWA functions with M basis functions. The error bound cB/M in (12) is also a looser 

upper bound for the BWPA functions in (17), i.e. cG ≤cB.  

The GPWARX models have a stronger approximation capability than both the 

HHARX and BPWARX models. They can get higher estimation accuracy than the other 

two models with the same number of parameters in nonlinear identifications. Therefore, 

the GPWARX models present a more suitable model structure, because they can 

efficiently approximate the geometrical structures in the domain space of general PWA 

functions. 
 

5. Numerical Examples 

Example 1: Consider the following Agrawal bioreactor benchmark problem in 

nonlinear identification and control [33, 34]. This problem is described by the following 

discrete-time equations  

 2

2

( )

1 1 1 1 2

( )

2 2 2 1 2

2

1

( 1) ( ) ( ) ( ) ( )[1 ( )]

1
( 1) ( ) ( ) ( ) ( )[1 ( )]

1 ( )

( ) ( ) ( )

x t

x t

x t x t x t u t x t x t e

x t x t x t u t x t x t e
x t

y t x t u t



 







      

   

        
  

  


                  (19) 

with β = 0.02 and τ = 0.48. The states x1(t) and x2(t) are dimensionless quantities and 

only x1(t) is measurable.  

The input is a multi-step signal with steps of 400 time units and a random magnitude 

between 0 and 0.6 from a uniform distribution. A set of 30000 data samples is 

generated, where the first 20000 samples are used for identification and the rest for 

validation. The input-output data sets are re-sampled at 1/50. Then 400 data samples are 

available for identification. The regression vector is ( ) [1 ( 1) ( 2) ( 1) ( 2)]Tt y t y t u t u t          .        

The model’s performance is evaluated by the Variance-Accounted-For (VAF), i.e.  

ˆ( ( ) ( ))
max 1 0 100

( ( ))

var y t y t
VAF %

var y t

 
    

 

                                    (20) 

where var(·) denotes the variance of signals, y(t) and ˆ( )y t  are the system and model 

output, respectively.  

Three models are used to generate the one-step-ahead predictions of the system. 

Figure 4 shows the outputs of the real system and the GPWARX model after 2000 

circles of iterations. By comparison, Figure 5 demonstrates the simulation results of the 

HHARX and BPWARX model with roughly the same number of parameters.  

The modified Gauss-Newton algorithm [27] is used to build GPWARX, BPWARX 

and HHARX models. Table I summarizes the predicted results of different models. 

Here M and I denote the number of basis functions and training epochs. NB is the 

number of parameters in each “basis function”, and N denotes the total number of 
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model parameters. In this example, the GWARX model has a VAF value of 99.4%, 

which is larger than the HHARX model (97.6%) and BPWARX model (98.8%). The 

former model has better prediction accuracy than the latter two models.  

Table 1. Comparison of Approximation Accuracies 

 M NB N I VAF 

GPWARX Model 10 42 430 2000 99.4% 

BPWARX Model 14 31 448 2000 98.8% 

HHARX  Model 34 12 442 2000 97.6% 

 

 

Figure 4. True (solid) and Predicted (dashed) Outputs using GPWARX 
Model 

 

 

Figure 5. True (solid) and Predicted Outputs using HHARX Models (dash 
dotted) and BPWARX Model (dotted) 
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Example 2: Consider another nonlinear benchmark system described in the state-

space form [35, 36]  

 

 
 

 

2 2( ) ( )
1 2

8

1
1 22

1

3

2 2 2 1 2

1 2

1 2

2 1

( )
( 1) 1 sin ( )

1 ( )

( )
( 1) ( )cos ( ) ( )

1 ( ) 0 5cos ( ) ( )

( ) ( )
( )

1 0 5sin ( ) 1 0 5sin( ( ))

x t x t

x t
x t x t

x t

u t
x t x t x t x t e

u t x t x t

x t x t
y t

x t x t




  
    

 



   
   


 

   

            (21) 

To generate identification data, the system is excited with a random input signal u(t), 

uniformly distributed on the interval [-2, 2] with 1 200t  . The validation data set is 

generated with the input  
( ) sin(2 10) sin(2 5),1 200u t t t t        

The regression vector used is  

( ) [1 ( 1) ( 2) ( 3) ( 1) ( 2) ( 3)]Tt y t y t y t u t u t u t               

   Figure 6 and Figure 7 show one-step-ahead predictions of the real system and three 

PWA models. Table II lists the simulation results and the models’ parameters. It is easy 

to see that the GPWARX models obtain much better prediction accuracy than the 

BPWARX and HHARX models.  

Table 2. Comparison of Approximation Accuracies 

 M NB N I VAF 

GPWARX Model 20 56 1140 3000 93.4% 

BPWARX Model 26 43 1144 3000 89.4% 

HHARX  Model 76 14 1144 3000 87.5% 

 

 

Figure 6. True (solid) and Predicted Outputs using GPWARX Model 
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Figure 7. True (solid) and Predicted Outputs using HHARX Models (dash 
dotted) and BPWARX Model (dotted) 

 

6. Conclusions 

This paper proposes a class of GPWARX models for nonlinear system identification. 

Geometrical structures of GPWA basis functions provide the GPWARX models with 

stronger representation capability and higher approximation efficiency than the other 

canonical PWA models. Numerical simulation results demonstrate that GPWARX 

models obtain higher precision in the estimation of nonlinear systems than HHARX and 

BPWARX models with the same number of parameters and using the same parameter 

identification algorithm. 

The class of GPWA functions has a global and compact functional form. They offer 

an alternative model structure to conventional nonlinear  models. GPWA models can 

find many applications in nonlinear/hybrid system identification and control. For 

example, GPWA functions can describe any continuous PWA system dynamics, which 

are used in the framework of explicit model predictive control (eMPC). The eMPC 

reformulates the online optimization in a model predictive control (MPC) into a multi-

parametric program problem. The optimal control action is calculated off -line as 

explicit functions of the state and reference vectors. The online computational time of 

conventional MPC can be reduced to the microsecond-millisecond range. The eMPC 

can extend the application domain of MPC into fast sampling systems.  

It is shown in [37] that redundant parameters may be introduced into GPWA models, 

which are identified using a modified Gauss-Newton algorithm from a set of input-

output data. Therefore, it is a promising research direction to develop a model reduction 

algorithm for the class of GPWA functions. This algorithm can generate a reduced 

GPWA model with smaller number of parameters for a given approximation accuracy. 

Further researches in this direction are being performed.  
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