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Abstract 

This paper deals with the determination of the optimal state observer gain matrix for 

discrete-time linear systems. In this way, it has been shown that an improved optimal gain is 

reached by minimizing a quadratic criterion formulated as a quadratic output feedback 

control of the observation error system. 

The gradient matrix operation is applied to the Lagrangian function in order to obtain 

necessary conditions, for minimizing the proposed criterion, to perform the optimal gain 

matrix. It has been shown, by Lyapunov stability theory, that this optimal gain ensures the 

asymptotic convergence of the observation error towards zero. 

The necessary and sufficient conditions are presented by coupled discrete Lyapunov 

equations which resolution, by a proposed numerical algorithm, allows the calculus of the 

optimal observation gain. 

The importance of the proposed criterion for the synthesis of the state observer has been 

illustrated through numerical simulation study of the state observation of a robot with flexible 

link which has highlighted the effectiveness of the developed method in relation to that 

optimizing the dual system. 

 

Keywords: State observer design; Optimal control; Output feedback control; Flexible link 

robot 
 

1. Introduction 

In the literature, the continuous-time control and observation have a strong theoretical 

background. However, a large class of continuous-time systems is in fact computer 

controlled. In these cases information about the system (measurements) are only available at 

specific time instances and control law can only be changed at these time instances. Hence, it 

is important to synthesis these laws for the class of discrete-time systems [1, 2]. 

However, in many real world engineering applications, the knowledge of the system state 

is often required not only for control purpose but also for monitoring and fault diagnosis. In 

practice however, the measurements of the system state can be very difficult or even 

impossible, for example when an appropriate sensor is not available or economically viable 

[3, 4, 5, 6]. Model-based state estimation is a largely adopted strategy used in order to cope 

with this important problem. Typically a state estimation is provided by means of an observer 

whose inputs are the inputs and the outputs of the system and the outputs are the estimated 

states. Note that the structure of an observer is based on the mathematical model of the 
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considered system. Therefore, the accuracy of the state estimation depends on the accuracy of 

the used mathematical model and the quality of the employed measurements. 

Indeed, the theory of state observers for linear systems has been one of the most active 

research areas over the past decades and has become matured through extensive studies. 

Various approaches, such as transfer-function, geometric, algebraic, singular value 

decomposition, have been successfully proposed. The application of state observer theory can 

be found in a wide range of different fields. However, the observer theory ensured only the 

convergence of the observation error without limiting the gain matrix in order to make this 

problem practical [7, 8, 9]. 

Moreover, several methods are used for the determination of the observer gain matrix, such 

that the asymptotic stability of the error is ensured, as the poles placement technique [10, 7], 

the algebraic Lyapunov equation method [11, 12], the linear matrix inequality (LMI) 

approach [13, 14, 15, 16] and the optimization of a quadratic criterion [17, 18]. 

However, the quadratic criterion considered in the literature is constructed up on a dual 

system and so it does not express the real performances of the synthesized observer, even it is 

leading to satisfactory results. 

In this paper we have also considered the optimal state observer gain determination to 

propose an optimization criterion which has a direct signification and interpretation regarding 

to the desired observer. Thus, this optimal gain is calculated from the gradient resolution of 

the designed Lagrangian function in order to obtain necessary conditions for minimizing such 

criterion. 

A comparative study between the known criterion constructed on a dual system and the 

proposed one using the state observer is curried out on a physical system constituted by a 

robot with flexible link to show up the developed improvement. 

Indeed, the robot with flexible link is a multivariable dynamical system where many 

variables are not measurable and its parameters are most often imprecisely known. For these 

reasons more often optimal state observers and estimation approaches are necessary for the 

control of such process [4, 19]. 

An outline of this paper is as follows: the optimal gain determination based on the dual 

system is presented in section 2. Section 3, is devoted for the proposed method for direct 

observer gain optimization. In section 4, an illustrative example of a robot with flexible link is 

presented to highlight the performances of proposed approach. 
 

2. Optimal Gain Determination using Dual System 

We consider the class of discrete-time linear dynamical systems described by the following 

state equations 

  
1k k k

k k

x Ax Bu

y Cx

  



          (1) 

where k  is the discrete-time index, 
n

kx   is the state vector, 
p

ku   is the input 

vector, 
m

ky   is the output vector and  ,A B  and C  are constant matrices of appropriate 

dimensions. 
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We assume that the pair  ,A C  is observable. Then, the state observer for the discrete-

time linear system (1) may be written as follows 

  
1 )ˆ ˆ

 
ˆ(

ˆ ˆ

k k k k k

k k

x Ax Bu L y y

y Cx

   








        (2) 

with ˆ n

kx   the observed state vector of kx  and 
n mL   the observer gain matrix to be 

determined. 

The state observer (2) is characterized by the gain matrix L  such that the observation error 

given by 

  ˆ
k k ke x x             (3) 

converge exponentially towards zero. 

The dynamics of the reconstruction error is expressed by the following equation 

  1 ( )k ke A LC e             (4) 

Among the technique of the matrix gain determination one can use the optimization of the 

quadratic criterion J   

  
0

( )T T

k k k k

k

J e Qe u Ru




           (5) 

with 
n nQ   the symmetric positive semi-definite matrix and 

m mR   the symmetric 

positive definite matrix. 

For the dual discrete-time linear system [18] 

  1k k ke Ae Bu             (6) 

where 
TA A  and 

TB C . 

The minimization of the quadratic criterion J  leads to: 

 the predictor-observation gain matrix 

  
1( )T T

p p pL AP C R CP C             (7) 

where 
n n

pP   is the symmetric positive definite matrix solution of the following discrete 

Riccati equation 

  
1( ) 0T T T T

p p p p pAP A AP C R CP C CP A P Q           (8) 

 the corrector-observation gain matrix 

  
1( )T T T T

c c cL AP A C R CAP A C            (9) 

where 
n n

cP   is the symmetric positive definite matrix solution of the following discrete 

Riccati equation 
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1( 0)T T T T T T

c c c c cAP A AP A C R CAP A QC CAP A P       (10) 

The drawback of this technique is that the quadratic criterion J  which has been minimized 

has no direct physical interpretation regarding to the observation error. 

In what follows we propose a new formulation of the optimization criterion which 

expresses the desired observer performances regarding to the error dynamical equation. 

 

3. Optimal Gain Determination using Direct Method 

The state observation error (4) can be described by the following dynamical system 

  

1k k k

k k

k k

e Ae

L

Ce



 



  


 
 

        (11) 

The system (11) expresses an output feedback control problem of the discrete-time linear 

system of order n  with n  dimensional input vector k  and m  dimensional output vector 

k . 

The proposed output feedback control problem scheme can be optimized by minimizing 

the following quadratic criterion defined by 

 
0

0

  

( )

( )

T T

k k k k

k

T T T

k k

k

J e Qe R

e Q C L RLC e

 








 

 




       (12) 

with 0TQ Q   and 0TR R  . 

For the state observer, the minimization of the quadratic criterion J  can be interpreted as 

looking for a compromise between the minimization of observation error represented by the 

term 
T

k ke Qe  and the minimization of the observer gain L  written in the term 
T

k kR  . 

Using the solution of the equation (11), the equality (12) can be written as 

     0 0

0

( ) ( )k kT T T T

k

J e A LC Q C L RLC A LC e




        (13) 

where 0e  is the initial condition of the observation error. 

The above expression can be put in the following form 

  0 0 0 0{ }T TJ e Pe trace Pe e         (14) 

where    
0

,( ) ( )k kT T T

k

P A LC Q C L RLC A LC




     symmetric positive definite 

matrix, satisfies the following discrete Lyapunov equation 
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      0
T T TA LC P A LC P Q C L RLC          (15) 

The dependency of the optimal solution on the initial condition 0e  can be removed by 

considering that 

  0 0( )T

nE e e I          (16) 

with (.)E  the average value. 

Then, the expected value of the quadratic criterion J  of the cost function (14) is simply 

evaluated as follows 

  { } { }J E J trace P         (17) 

Thus, that may have appeared to be a dynamical problem (11) is now formulated as a static 

quadratic criterion (17) which is minimized with respect to the observation gain matrix L  and 

the symmetric positive definite matrix P  subject to the constraint (15). 

To obtain the necessary conditions for minimizing the quadratic criterion J  with respect 

to matrices L  and P  with the constraint (15), we can apply the gradient matrix operations to 

the Lagrangian 

      , , { [ ]} { }TT T TL P trace A LC P A LC P Q C L RLC trace P           (18) 

where 
n n  is a matrix of Lagrange multipliers may be selected symmetric positive 

definite. 

By using gradient matrix operations [20], [21], the necessary conditions for ,L P  and   to 

be optimal are given by 

 

   

     

     

, , 2 2 0

, , 0

, , 0

T T

T

T T T

L P RLC C P A LC C
L

L P A LC A LC I
P

L P A LC P A LC P Q C L RLC


      




       




  







    







  (19) 

From the first equation of system (19), we get the optimal observation gain matrix as 

follows 

     
11 T TL R P PA C C C


          (20) 

In order to prove the asymptotic stability of the proposed form of the observation error 

(11), we look for a quadratic positive definite Lyapunov function defined by 

  ( ) T

k k kV e e Pe          (21) 

with P  the ( )n n  symmetric positive definite matrix solution of the third equation of 

system (19). 
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Then, we have the difference between the Lyapunov function candidates (21) for two 

consecutive time instants along any trajectory of (11) as follows 

  

1

1 1           

   

( ) ( ) ( )

        [( ) ( ) ]

k k k

T T

k k k k

T T

k k

V e V e V e

e Pe e Pe

e A LC P A LC P e



 

  



  





     (22) 

Using the third equation of the system (19), (22) becomes 

  ( ) ( )T T T

k k kV e e Q C L RLC e          (23) 

where L  is the ( )n m  optimal observation gain matrix given by equation (20), the matrices 

Q  and R  defined by (12) are such that 0TQ Q   and 0TR R  . Then, the term 

T TQ C L RLC  is positive definite. 

Therefore, the difference of the quadratic Lyapunov function, given in (23), is 

characterized by 

  ( ) 0kV e           (24) 

for all 0ke  . 

From the above development, we can conclude that the observation error given by system 

(11) is asymptotically stable in the sense of Lyapunov stability theory. 

Notice that to determine the optimal observation gain matrix L  and the symmetric positive 

definite matrix P , it is clear that the three equations of the system (19) are coupled and can be 

written in the following form 

  

   

     

     

1
1

1

2

3

, , :

, , : 0

, , : 0

( ) T T

T

T T T

F L P L R P PA C C C

F L P A LC A LC I

F L P A LC P A LC P Q C L RLC


    

      

      









  (25) 

Then, to solve this system (25), it is important to use an iterative algorithm. The proposed 

iterative algorithm is developed as follows 

 

Iterative Algorithm 

 

1. Initialize : Set   1n  : 

Select 0Q  , 0R   and 1L  such as 1( ) 1A L C   , where 1( )A L C   is the 

spectral radius of 1( )A L C . 

2. n
th
  iterative:  

 Using this value of nL  and the resolution of the discrete Lyapunov equation 

3( , ) 0n nF L P  , we obtain the value for nP . 
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 With nL  and the resolution of the discrete Lyapunov equation 2( , ) 0n nF L   , we 

get n . 

 Update 1nL  , for the obtained values nP  and n , with the relation 1 1( , , )n n nF L P  . 

3. 1n n  : 

      Repeat the step 2  for 1n n   to obtain the optimal values. 

4. Terminate: 

Stop the algorithm if 1n nP P  ‖ ‖  (  is a prescribed small number used to check 

the convergence of the algorithm). 

So, for 1,2,...n  , we have 

nP  is found from the discrete Lyapunov equation 3( , ) 0n nF L P  , 

n  is found from the discrete Lyapunov equation 2( , ) 0n nF L   , 

1nL   is found from 1 1( , , )n n nF L P  . 

 

3. Numerical Example 

To illustrate the availability and the efficiency of the proposed discrete-time linear optimal 

state observer design, we consider the system of a single link robot with a revolute elastic 

joint rotating in a vertical plane which is modelled by [4], [19], [22]: 

  

( )

( ) sin( )

m m

m
m m l m

m m m

l l

l
l l l m l

l l l

F KK
u

J J J

F K Mgh

J J J



 

   

 

    



    











  








                 (26) 

Where m , m , l  and l  are the motor angular displacement, the angular velocity of the 

motor, the link angular displacement and the angular velocity of the link respectively. mJ and 

lJ  are the inertia of the motor and link respectively, 2h  and M  represent the length and 

mass of the link, mF  and lF  are the viscous friction coefficients, K  is the elastic constant, g  

is the gravity constant and K  is the amplifier gain. The control u  is the torque delivered by 

the motor. 

The nonlinear state representation (26) is linearized around the operating point 

0 / 3l   , then we can express the linear time invariant model of the robot with flexible 

link as follows 
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1 1

2 2

3 3

4 4
0

1

2

3

4

0 1 0 0
0

0

0 0 0 1
0

0 ( ) 0

1 0 0 0

0 1 0 0
 

m

m m m

m

l
l

l l l l

x xFK K
K

J J Jx x
J u

x x

x xFK Mgh K
cos

J J J J

x

x
y

x

x





 
  

             
       
      
                

 

 
 

        




















 

              (27) 

with   1 2 3 4

T T

m m l lx x x x     . 

The performances of the proposed discrete-time linear optimal state observer with the 

optimal gain obtained by the proposed iterative algorithm, compared to the dual optimal one, 

was investigated by simulation for the discrete-time model of the flexible link robot 

discretized with the zero order hold at the sampling time 0.05eT s  and characterized by the 

following numerical parameters: 

 

Table 1. Parameters of the Flexible Link Robot 

Parameter Numerical value 

K  1.8 /Nm rad  

K  0.8 /Nm V  

mJ  3 237.9 10 Kgm  

lJ  3 294.6 10 Kgm  

h  0.15m  

M  0.21Kg  

mF  347.3 10 / /Nm rad s  

lF  0 / /Nm rad s  

 

In the following, the procedure for the optimal state observer and the dual optimal one for 

discrete-time linear system are presented. For the computation of the observation gain matrix 

L , we select the same parameters, for the three design state observer approaches, 

40.5*Q I  and 40.5*R I . 

(i) Optimal gain matrix obtained by resolution of the dual system: 

 the optimal predictor-observation gain matrix: 

0.1175 0.0364

1.6126 0.8185

0.5787 0.0215

0.6361 0.8276

pL

 
 


 
 
 
 
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 the symmetric positive definite matrix obtain with the optimal predictor-observation 

gain matrix: 

0.1793 0.1138 0.0622 0.1205

0.1138 6.2765 0.7617 1.3203

0.0622 0.7617 0.7818 0.2850

0.1205 1.3203 0.2850 1.3946

pP

 
 


 
 
 

  

 

 the corresponding optimal quadratic criterion: 

  8.6323pJ   

 the optimal corrector-observation gain matrix: 

0.1583 0.0602

1.1753 0.7452

0.4912 0.1550

0.1550 0.7432

cL

 
 


 
 
 
 

 

 the symmetric positive definite matrix obtain with the optimal corrector-observation 

gain matrix: 

0.1753 0.2003 0.0792 0.0301

0.2003 5.5160 0.5877 0.3726

0.0792 0.5877 0.7456 0.0775

0.0301 0.3726 0.0775 0.8716

cP

 
 


 
 
 

  

 

 the corresponding optimal quadratic criterion: 

7.3085cJ   

 

(ii)   Gain matrix obtained by the proposed direct method: 

In the objective to minimize moreover the quadratic criterion J , one uses the observation gain 

matrix given by the dual system as initial stabilizable solution. We obtain with the iterative 

algorithm resolution, after 10N   iterations: 

 

 the optimal observation gain matrix: 

0.0531 0.1981

0.0929 0.1131

0.8391 0.2027

0.8194 0.9492

optL

 
 


 
 
 
 
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 the symmetric positive definite matrix: 

2.0084 0.0405 0.4364 0.4966

0.0405 0.0317 0.0693 0.0119

0.4364 0.0693 1.5426 0.3736

0.4966 0.0119 0.3736 1.2452

optP

  
 


 
  
 
   

 

 the corresponding minimal quadratic criterion: 

4.8278optJ   

 

The performances of the proposed optimal state observers loaded by the optimization of 

the dual system and the proposed direct optimization, tested by numerical simulation, are 

shown in figures 1 to 4 which depict the evolution of the actual and the observed state 

variables of the studied flexible link robot: the motor angular position m , the motor angular 

velocity m , the link angular position l  and the link angular velocity l . 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

1.5

2

Time(s)


m

Linear model for a flexible link Robot

Proposed optimal observer

Optimal preducteur-observer

Optimal correcteur-observer

 

Figure 1. Actual and Observed Angular Position m  of the Motor 

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

4

Time(s)


m

Linear model for a flexible link Robot

Proposed optimal observer

Optimal preducteur-observer

Optimal correcteur-observer

 

Figure 2. Actual and Observed Angular Velocity m  of the Motor 
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-1
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0
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1

1.5

Time(s)


l

Linear model for a flexible link Robot

Proposed optimal observer

Optimal preducteur-observer

Optimal correcteur-observer

 

Figure 3. Actual and Observed Angular Position l  of the Link 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5
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0

0.5

1

Time(s)


l

Linear model for a flexible link Robot

Proposed optimal observer

Optimal preducteur-observer

Optimal correcteur-observer

 

Figure 4. Actual and Observed Angular Velocity l  of the Link 

 

It appears, from these simulations, that the optimal state observers for the dual discrete-

time linear system allow a well reconstruction of the actual states. It can converge rapidly 

towards the state variable of the flexible link robot. The same graphics show the evolution of 

the observed state variables generated by the proposed direct optimization method. It's clear 

that this observer allows the reconstruction of the actual flexible link robot state variables 

with a remarkable superiority compared to the optimal state observers with dual system. 

Indeed, the high performances of the proposed optimal state observer with the direct 

optimization method show the improvement leaded by the use of the proposed iterative 

algorithm permitting the calculus of the optimal gain matrix. 
 



International Journal of Control and Automation 

Vol. 5, No. 3, September, 2012 

 

 

76 

 

4. Conclusion 

Optimal state observer design for a class of discrete-time linear systems has been studied in 

this paper. The discrete-time linear optimal state observer is based on the determination of an 

optimal observation gain matrix derived by minimizing a proposed quadratic criterion 

characterized, in a new formulation, by a quadratic output feedback control problem of the 

observation error system. This criterion is expressed regarding to the performances of the 

state observer, and it bypasses the drawback of the actually used criterion which optimizes the 

dual system of the observation error. 

It has been shown from the simulation results that the state observers allow the 

reconstruction of the unmeasurable state variables of the flexible link robot, but with a 

remarkable superiority of the optimal state observer derived by the proposed direct 

optimization method with respect to the optimal observers for the dual system. 
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