
International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

187

Effective Decomposing Approach for Historical XML Documents

Ming Shien Cheng
 1

, PingYu Hsu
2
 and MinTzu Wang

3

1, 2,3
Department of Business Administration, National Central University

1
984401019@cc.ncu.edu.tw,

2
pyhsu@mgt.ncu.edu.tw,

3
93441024@cc.ncu.edu.tw

1
Department of Industrial Engineering and Management,

Ming Chi University of Technology
1
mscheng@mail.mcut.edu.tw

3
Department of Information Management,

Technology and Science Institute of Northern Taiwan
3
mtwang@tsint.edu.tw

Abstract

Recently, XML is widely used as the de facto standard for data representation and

exchanging in Internet. In 2006, office application groups such as OpenOffice.org and

Microsoft office both adopted XML as the main data storage format. Historical XML

documents often have tiny differences between versions, but are stored individual independent

space, so the abilities for efficient storing historical office documents are become a growing

issue. This paper introduces an efficient way to decompose multi-version XML documents and

store effectively for advanced retrieving. Not only effective storage space but also keeping the

integral of original documents is the characteristic of our research. It minimizes the change

of data content and structures when transmute historical XML documents. For enterprises,

the approaches of our research can manage electronic documents in proper way and all

messages in document were preserved to reuse.

Keywords: OpenOffice.org, XML, Historical document, Storage structure

1. Introduction

Recently the preservation of the electronic document has become an important issue

for government organizations and enterprises; especially it needs to consider the

difference between different office software of having various operating systems (OS),

brands or versions, as well as the compatibility among them that shall be solved in

advance. In 2006, two world-leading players of the office software, OpenOffice.org and

Microsoft Office, have coincidently launched the data storage method with adopted the

Extensible Markup Language (XML)[11] as the main body, and then XML has

gradually become a standard format. XML is featured in with extensibility,

structuralization and verifiability, which cannot be restricted by computer platforms and

programming languages; therefore, it has become one of those formats that

recommended by World Wide Web Consortium (W3C)[16] Based on the features of

XML, the office software, such as OpenOffice.org and Microsoft Office, have

developed to make enterprises’ document to have the uniform format in order to

achieve the goal of properly managing, delivering, preserving and processing these

electronic documents.

Impress is a presentation tool of the OpenOffice.org, even it is belonged to a part of

the office software, it is not supported enterprises’ daily business operations, but

mailto:pyhsu@mgt.ncu.edu.tw
mailto:mscheng@mail.mcut.edu.tw

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

188

includes the meeting report and product presentation. Most presentation documents

have showed high similarity among individual versions with only making slight

adjustment in contents or the order of layout; therefore, the utilization of storage space

is very inefficient, and the management of files has become complicated in the future.

Thus, the purpose of this study is to make use of the open storage framework for

XML documents to develop the algorithm that can process the multi -versions of

presentation documents and seek for the storage method with high efficiency. In

addition to save the storage space of document, it shall also be able to maintain its

integrity.

In this XML study, the researcher has introduced the concept of threshold value for the

first time. For the previous researches on processing the text or structure storage, the scope of

data is restricted frequently. Thus, when there are more document formats that carried out the

processing are based on XML, the processing standards will be definitely different in

compiling and editing different electronic documents. Therefore, the application of threshold

value can greatly increase the flexibility of document storage with responding to different

requirements.

2. Literature Review

This Section will explore and discuss relevant literature on the research objective of this

study. Firstly, it will introduce Impress presentation software of OpenOffice.org, and then it

will explore the storage structure of XML document from many relevant literatures, including

the version control.

2.1. XML Open Storage Structure

XML had been promoted by Unicode Consortium [15] and used to support the

comprehensive natural languages. At the same time, XML is also one of the international

standards that passed ISO certification [12, 18]; hence, it has become a optimal medium for

the data exchange. Usually, XML will be compared with HTML. In the current network

environment, there are more and more web pages that wrote by XML, thus, as compared with

HTML, there are some dissimilar characteristics of [7]:

XML is extensible without restricting to the fixed tags.

XML is emphasized on the meaning of data rather than the presentation of data.

The syntax definition of XML document shall be correct format (well-formed) and legal

(Formally validated); thus, it shall conform to the definitions of XML Standards [18],

including a copy of XML document can only have a root element, and the initiated tag of the

nested structure shall have the respond termination tags.

2.2. Relevant Exploration of XML Document Storage

The design purpose of XML is to transmit and store data; thus, when most of XML

document are processing, including the document modification, increase and delete and

random access of nodes, and we called these actions were “Parsing”. There are two methods

of Parsing: one is the Document Object Model (DOM) [17] and the other is Sequential

Access XML Parser API (Simple API for XML, SAX) [13]. The framework of DOM is a

standard that established by W3C, it has featured with the independence from languages and

platform. When parsing the XML document, transform the elements, attributes and texts of

the document into a tree structure and store in the memory. Each node shall be regarded as an

individual object and included the embedded value which can be operated programmers; in

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

189

addition, a clear structure and easily understand will be its advantage. For SAX, it is a set of

techniques that regarded XML document as the streaming interface, when downloading XML

files with the sequential processing methods, and it will access the document with using the

commands that set by programmers. However, it cannot be modified or accessed at will, as

compared with DOM for using the tree structure to store in memory and occupied several

folds of storage space for the original document, SAX is able to access any XML document

regardless of its size, the designer’s self-build model showed that when it only needs part of

XML document, SAX will save even more storage space.

[10] has also proposed the version control of XML, it will take the source XML data with

based on the edit-based method to dismantle; however, this method needs to divided each

element of this document into an individual object; however, the recover cost is too huge,

thus S. Y. Chien et al. have proposed the usefulness-based clustering, which duplicated the

storage in other pages. Even this process will be consumed some storage space, it still can

make the recovering speed to become more efficient. However, this method is unable to solve

the basic issue about controlling the traditional versions. And, to achieve the simplified

storage space, it needs to dismantle the document of the source data into a minimum unit of

each element, even it has increased the storage space with the clustering method to accelerate

the recovering speed; however, the simplification of the primary space that still needs to be

consumed more processing cost, thus, it showed an inefficient flexibility of processing

document.

As for the latest literature about processing the historical version, they have emphasized on

the combination with the data mining [4, 5, 6], within the ever-changing environment, XML

data will be different by following different versions, data structures and texts will also be

changed dynamically. Then, made use of the algorithm that similar to Apriori [8] and FPG [3]

to mining the commonly changing part of the substructure of XML document [6]. From the

dynamic XML version document to extract the slight change in time, and by means of these

information to conduct the future forecast and application; and [5] thought that by following

with the changes in versions, it will be existed a similar model among those substructures of

XML document, as known as FCSPs, and it can sort out the longest FCSPs, from the

resemble FPG algorithm; [4] has defined the changed substructure by following the changed

version as the FRACTURE, then adopted the Level-wise and Divided-and-Conquer methods

to mine the longest FRACTUREs; in addition, the mined result can be used to the future

applications, such as the index or clustering, etc., of XML.

The recombination of this document is a area that received less researches [9], or only

proposed those methods that shall be conducted the recombination but without any basis. Till

the thought that made by [2], when querying the document, it shall show the necessary result

of such user at last; therefore, it has to indicate any node and regard such node as the root

node to conduct the document recombination on the stored data that adopted the relational

database with using the sequential coding pattern, as well as increasing the querying

efficiency.

3. Algorithm

The basic assumptions of processing documents in our study: texts simplification;

unnecessary parsing with aiming at the grammar issues; different versions being pretty

identical to each other; only saving the different part of each version to preserve integrity.

3.1. Data Structure

The data structure is mainly composed of the coding techniques and cooperated with the

threshold value to divide such document, and then preserve it in the form of matrix; among

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

190

which, the access of original data is adopted SAX [13] to conduct the sequential access, and

the coding has maintained the parent-son relationship for the tree structure, and conducted the

processing in accordance with this basis [1].

3.2. Documents Processing Algorithm

Algorithm is mainly divided into 3 parts: f_list, XSS and Data_recovery algorithm.

3.2.1. f_list Algorithm

Figure 1. Example of Impress Presentation XML Document Structure

As showed in Figure 1, the introduction of the threshold value concept, firstly, calculate

the splitting value for document tags; among which indicated the displayed texts, and English

alphabet indicated the name of tags, if the names of tags are identical to each other, but their

added attributes are different, then they shall still be regarded as the same tags. Then, such

document has 12 tags, assumed A tags =t1, B tags =t2,…,L tags =t12.Splitting value indicated

that the level of tags for splitting such document. Therefore, as for the splitting value of the ith

tag, its formula will be

)()(

)(

i
tS

i
tC

i
tC

i
f




, C (ti) is the total sum of ith tag, and S (ti) is

the total amount of sons and grandsons for
it . Among which, the text will be regarded as a

tag. For example, E tags’ total amount is 3, and the total sum of its sons and grandsons tags

will be 63; thus, the splitting value of E tags will be f5=3/(3+63)=1/66=0.0455. If taking E

tags to be the splitting point of this document, then such article can be divided into 4 parts, the

sub-tree is composed of tags A, B, C and D, and 3 sub-trees that used E tags as the root

elements. As for the splitting value of tags is greater than 0.35 的 tags, it has a power

splitting capability, but it is easily to split articles into very scrappy; for example, the tag K’s

f11=13/29=0.4482, tag L’s f12=4/8=0.5. If taking tag K or tags L as the splitting point, thus the

document processing will cause a burden on such system, thus, we chose to enter the

threshold value into the system, which needs to be entered into
min and

max

respectively; among which, 10 maxmin   , for different types of document, it needs

to decide the threshold value while the first version entering into the system. Among which,

min is the lower limit of the threshold value, that can remove those tags without splitting

capability. max is the upper limit of the threshold value; however, establish the suitable upper

limit that can avoid articles from spilt too scrappy. Therefore, if it assumed to set the upper

and lower limits for the threshold value 25.0max  and 025.0min  , and then the calculated

splitting value is shown as follows:

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

191

Table1. Tags Splitting Value

Tag Splitting Value Tag Splitting Value

A (t1) 0143.0
70

1
691

1 1 


f

G (t7) 5.0 7 f

B (t2) 1
1

1
01

1 2 


f
 H (t8) 1176.0 8 f

C (t3) 0147.0
68

1
671

1 3 


f

I (t9) 2195.0 9 f

D (t4) 0149.0
67

1
661

1 4 


f

J (t10) 2813.0 10 f

E (t5) 0455.0
66

3
633

3 5 


f
 K (t12) 4482.0 11 f

F (t6) 1270.0
63

8
558

8 6 


f

L (t13) 5.0 12 f

Tag’s splitting point is conformed to the threshold value, and tags are E, F, H and I, and the

original XML document can be split into the sub-tree as follows:

Figure 2. XML Document Sectional Split

Thus, the detailed f_list algorithm is shown as follows:

f_list algorithm (Find Splitting Tags)

Input: (1) 1v (Version one of XML document)

(2) The threshold of splitting(
maxmin , (10 maxmin  )

Output: Splitting tags of XML document

Scan 1v and T={t1, ,…,tn} // T are the set of V1’s all tags //

For each tag ti in T

 Count C(ti) and S(ti)

)()(

)(

ii

i
i

tStC

tC
f




IF
maxmin   if

THEN add ti to F // ti is the splitting tag, and F is the set of all ti which splitting

value match the threshold //

End if

Next

Sort F by splitting value ascending order into f_list

3.2.2. XSS Algorithm

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

192

Makes use of the f-list algorithm to compute the splitting point for such type of XML

document, and it is a pre-operating for the XML Storage Structure (XSS). XSS algorithm is

adopted the splitting point for the f_list of XML document, and continuously carry out the

splitting process on XML historical version document, XML document as shown in Figure 3,

if assumed the splitting point is tags <category>and<book>, then such part of XML can be

split as follows:

Figure 3. Take <category> and <book> to be Splitting Points

The selection of splitting point and threshold value will be the confirmation for the degree

of easy modification of document; thus, when the upper limit of the threshold value is bigger,

then the splitting degree of word paragraph will become more detailed. After processing such

document, it will conduct the unique Paragraph coding for those word paragraphs that split

out of each document, and then record the parent relationship with such word paragraph, and

the relationship chart of this section, as shown in Figure 4:

Figure 4. Joining Word Paragraph Coding

Tag <bookstore> is the root element of such XML document; therefore, its texts coding is

1, and since it is a root element, thus the field of ParentCode will be null, likewise,

paragraph<category type="architecture” >’s texts coding is 2, and since such paragraph is the

nested structure for the <bookstore> tags; thus, its parent paragraph will be coding

1<bookstore>, and so forth to complete coding. This relationship table of paragraph will be

the import value of XSS algorithm. Before starting the algorithm processing, it has firstly

conducted the transformation, to transform Parent Code into the matrix of subparagraph

coding, and the reasons are as follows:

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

193

Figure 5. Another Possible Cutting Situation of XML Document

Assumed the relationship table that dissolved from the original XML document as shown

in the Figure 5, then, coding 7 and 8 have the same text contents, in order to achieve the high-

efficient simplified XML document, the coding 8 will be removed; however, when

conducting the document recover, the information of such word paragraph will be no longer

appeared. Thus, after the paragraph relationship table imported XSS algorithm, it needs to

transform the subparagraph coding matrix firstly. Assumed ry indicated every word

paragraph, thus rcy and rfcy are the corresponding coding and parent paragraph coding for ry;

for example, r2 is <category type="architecture” >, and rc2=2 and rfc2=1 are the

corresponding codes. After transformed the subparagraph coding table into a matrix, as

shown in Table 2, in such matrix, rccx,y indicated the subparagraph coding, yx, are

indicated the horizontal coordinates and vertical coordinates respectively, values of y shall be

corresponding to the word paragraph of the paragraph relationship table; for example, r5 is

<category type="art">, thus rcc1,5 =6, and its first word subparagraph is r6, likewise, rcc2,5 =7,

rcc3,5 =8. If such word paragraph is leaves node, which meant, except parent paragraph, that it

never have the subparagraph, as shown in Table2.

Table 2. Transformation of Subparagraph Texts Coding

Sub Convert (vi)

For each rv in vi paragraph relation table where it hasn’t converted

Using rcv and rcv to generate Child Code Matrix

If any rv doesn’t have child then

rcc1,v is empty

End if

Next

End Sub

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

194

After transformed the subparagraph coding into a matrix, r7 =r8=<book name="Art in the

21st century">.., by means of the XSS algorithm processing, r8 word paragraph and its

corresponding coding will be cleared out, but the document’s information has not lost yet, and

it only needs to change rcc3,5=8 into rcc3,5=7. Thus, during the period of document recovery,

it still can express the information of three word paragraphs of r5.

Before carrying out the XSS algorithm, firstly define R is an assembly set that formed by

r1~ ry-1. Set R is the text comparing basis of comparing with ry. Where RCCy={ rcc1,y ,rcc2,y

,…..rccx,y}, and RCCRCC y  ; therefore, XSS algorithm is shown as follows:

XSS algorithm (XML Storage Structure)

Input: v1, v2, v3 …. vn (paragraph relation table of history version of XML document from

f_list splitting

Output: XML Storage Structure (XSS)

Call Sub Convert (vi)

 For each rcc1,v which is empty

 Compare rv with R set

 If rv matches any rv-n |n:1<=n<y then

Find rccx.k = rcv

Modify rccx.k to rccv-n

End if

 Next

 For each rcc1.v which is not empty

 For each colx in Child Code Matrix

 If rv = rv-n | n:1<=n<y and

{ rccm.v , rccm.v-n } |m=1~x, rccm.v , rccm.v-n then

 Find rccx.k = rcv

Modify rccx.k to rccv-n

 End if

 Next

 Next

End if

Clear every rv, , rcv, , and rfcv and rccm.v | m=1~x which rcv is not root number and rcv doesn't

exist in RCC

For example, as shown in Table 3, since the parent paragraph coding of these two word

paragraphs have null value, thus it indicated that there are two documents; among which, at

the time when XML document of v1 has initially entered into the system, the word paragraph

r7 of coding 7 will be deleted by adopting the algorithm processing. After document of v2

entered the system, firstly, it shall split the XML document of v2 by using splitting point

f_list, and store the split document, together with its texts coding paragraph relationship table

into the system, as shown in the left bottom of Table 3. Among which, difference existed in 3

points for these 2 versions when comparing Version 1 and Version 2. Changes similar to r22

that can be called as the structural variation. Changes of r23 are the revisions of texts, and r25

is indicated the movement of word paragraph, which moved from the first nested structure of

the original <category type="art"> to the third, but there is no such correction or modification

made for the text contents.

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

195

Table 3. When Version 2 Document Entering the System

By means of the data explanation, it begins to enter the algorithm of XSS. After

document entered the system, it will immediately call up the subprogram, Transform (v2), the

newly added subparagraph coding matrix as shown in Table 3. When starting the

simplification process to the word paragraph of v2, it shall be split into 2 parts, the first part is

that when the subparagraph coding rcc1.v of the word paragraph ry is null value, as shown in

the above figure, r20, r21, r23, r24 and r25, conducted the comparison with these word

paragraphs and the set of Ry = { r1 , r2 …ry-1 }, r20 will compared with r1 , r2 …r19 for texts, if

those compared results are different to each other, then it can regard such word paragraph as

the newly added part of the historical version, or the part that has been modified or revised,

such as r23; if the compared results are matched, such as r20 is identical to r3, then search the

texts coding “20” of r20 under the subparagraph texts coding, and changed such subparagraph

texts coding into the texts coding “3” of r3, namely rcc1,19=3; at the same time, as for the

moving part of texts, such as r25, since its texts have not yet changed or modified, thus, the

compared results are identical to each other; therefore, according to the same method,

rcc3,22=3 will be changed into “6”, and v2 is changed as shown in Table 4.

Table 4. Step 1: When
yrcc ,1

 is a Null Value

After comparison, when rcc1,y equals to null value, it can enter to the second part, rcc1,y not

equals to the null value, as r18, r19 and r22in the above figure, the texts comparing methods are

also as abovementioned; however, except the same methods for texts, the subparagraph texts

coding shall be totally identical, such as r19 and r2, their texts are identical to each other, as

well as rcc1,19 = rcc1,2 and rcc2,19 = rcc2,2; therefore, it can be showed that there is no change in

structure or text, and it can look for the subparagraph coding “19” and change into the coding

“ 2” of r2.

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

196

Through Step 1 and Step 2, it can immediately found the repeated part out of v1 and v2 in

XML document, if it needs to achieve the structural simplification, it only needs to make each

word paragraph coding rcy not become the root word paragraph, or when the subparagraph

texts coding is not appeared, delete the data for entire row, including ry, rcv , rfcy, and

rccm,y|m=1~x, , and only retain the newly added part and changed/ modified part. The

completely simplified XXS is shown in Table5.

Table 5. Simplified XSS Structure

3.2.3. Data_recovery Algorithm

The main purpose of the texts structure for XSS is to retain and preserve the information of

the original XML historical document, except for that the repeatedly appeared part can be

deleted as well with simplifying the storage space for such document. When we need the

information of this document, it can be then presented immediately; therefore, it needs to

develop algorithm to recombine the words and paragraphs. Continuously make use of the

XSS structure in Table 5 to describe the process of document recovery. If users need the

Version 2 XML document, he/she shall enter the version number j=2 into the system, through

the algorithm to determine the coding of Version 2 root word paragraph; in this example, it

will be rc18=18 and using the recursive method to process rc18. Since the texts coding of the

subparagraph is represented by matrix, thus, it will be adopted the Depth-First Search (DSF)

method to recover the document.

When entering rc18 into the recursive algorithm, firstly to process the first subparagraph

texts coding , the conditions of determination have the following 2 steps sequentially: first

step, to recombine word paragraph into the document, such as when rc18=18, duplicate and

store <bookstore> into the XML file; in addition, transmitting the first word subparagraph

coding rc1,18=2 into its own recursive algorithm, and concurrently store the r2 word

paragraph<category type="architecture">, and so forth. The second step is to determine

whether rccx,y is a null value or not; if so, just exit the recursive algorithm then. Among which,

the null value has indicated two meanings, one is indicated the searching that has completed

to the leaves word paragraph, as rcc1,23 in 0. Another situation has completely searched all

subparagraph texts coding, such as rcc3,18 , rcc4,22,. Data_recovery algorithm is shown as

follows.

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

197

Data_recovery Algorithm (XML document recompose)

Input: XML Storage Structure (XSS)

Selected historical XML document version number j

Output: Original XML document vi

Main ()

Find vi root number rcv

Recursive (rcv)

Return vi

Function Recursive (rcv)

For each colx

 paragraph_n = ccx..v

 Copy and store r.v into XML document when entering function

 If yxrcc , then

 Exit for

 End if

 Recursive (paragraph_n)

Next

4. Empirical Analysis

This section is mainly composed of 2 major parts: first part is to describe the data-oriented

slides image file of the OpenOffice.org Impress presentation; and the second part is to

analyze the results and data that came from those experiments.

4.1. Experiment Design

The data of this experiment is the slides that used to make presentation of OpenOffice 2.0

in Centrum der Büro-und Informationstechnik (CeBIT) on March 2006, the document

contents included graphs, difference in font sizes, color usage, hyperlink and animation

layout, and the total page number is reached to 37 pages, which is identical to the slide

quantity of common presentation. Since the languages is German, thus, in order to make it to

be easily understand, this experiment has transformed the original Germany version Impress

document into the English version [15]; in addition to make such translation, the rest parts of

this presentation have not yet changed and maintain the framework of the original document.

Besides, in order to increase the document’s variability, selected 102 key words from those

articles and randomly changed key words to assist in yielding different versions document.

4.2. Experiment Result and Analysis

Since the source data is only one part existed, thus it shall use the simulative methods to

create different versions. Among those possible causes of yielding different versions, the

presenter’s preference will be different for each other, thus it cannot be simulated; and

another factor is that the continuously increased page number while preparing the

presentation slide file; as a result, based on such assumption to design the Experiment 1.

Experiment 1: Continuously Increasing Page Number for Each Version Document

Experiment Description: when simulating the users with compiling document, the process

of gradually increasing the contents for such presentation. Since it only has a copy of the

original text with a total page number is 37; therefore, it assumed that the OpenOffice Impress

of v1 only has 8 pages, and this part that may not changed ever will be completed in advance;

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

198

therefore, v1 is contained the first 4 pages and ending 4 pages of the original document. Each

version will be increased one page more than the previous one; thus, v30 is the original

content, and the experimental result is shown as in Figure 6.

Figure 6. Document Pages Number Increasing Storage Space, Simplify and
Recovery Time

Analysis on experimental result: the original storage space with accumulated 30 versions is

2298.87 KB, and if use the example of 0.015-0.25 to make explanation, in v10,, it may

possibly save about 54% of storage space, and v20 will be about 59%; after completed 30

versions, it can be simplified about 62%; thus, the document will be saved more space

(storage) by following the evolution of versions. Among which, the upper curved graphs

showed that when the storing the original document contents, it shall have the non-preset

effectiveness; such as the changes in font sizes and colors, and the increase in animation, etc.,

they will be made definition in XML, when increasing 1 page, except the storage of page, it

still needs to contain the definition space for the special effect; in addition, when using the

XSS algorithm to process, it will delete the repeated effect definition between versions, and

the degree of upper curved will be slowed down, and the more versions will make more

optimal rate of simplified space.

In addition to compare with the original file and the storage space after used the algorithm

to make process, at the same time, the threshold value may also be changed as well, and then

inspect whether there is any difference in the usability of space or not, as shown in Figure 6,

the threshold values of the rhombus points are among 0.015-0.05; comparatively, the

presentation document is adopted “pages” as the standard of minimum division. 0.015-0.15

are based on the “text boxes”, sphere points are around 0.015-0.25, which is indicated the text

of each line, or namely the item sign, Bullet, as the minimum division standard. From the

figure, there is only 0.1 for the difference in the upper limit of the threshold value, but the

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

199

result will be greatly different. When changed the value of upper limit from 0.05 into 0.15,

the improved efficiency will be more and the efficiency of its original simplification is not

reached 50%. In this experiment, it has assumed that the version document is belonged to the

increasing pattern, there is no change in document’s contents, but the page number is

increasing by the method of inserting page.

As for the time comparison, since the most original un-processed documents that don’t

need time to conduct the simplified and recovered storage space; therefore, it assumed that

consumed zero second. Within the different threshold values for other lines, and the time that

system consumed for processing, and this experiment increasing version document,; thus,

when the upper limit of threshold value is bigger, then the number of word paragraphs of such

version will be divided into a bigger number then. In addition, when carrying out the

simplification for the structure, it will be consumed more computing capability of computer.

Experiment 2: Continuously Pages Number Decreasing for each Version Document

Experiment Description: In Experiment 1, it has assumed within an extreme condition,

when presenter is increasing 1 page for each version to simulate the data; therefore, in

Experiment 2, it will be adopted the same data, but within another extreme condition. At this

moment,
1v is the original version, and

2v is 1 page less than
1v , and so forth, the

30v will

only have 8 pages, and contents will be identical to
1v in Experiment 1, as well as under

different threshold values, it will effected the simplified document. Experiment result is

shown in Figure 7:

Figure 7. Document Pages Number Decreasing Storage Space, Simplify and
Recovery Time

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

200

Experimental Result Analysis: as compared with Experiment 1, its graphs showed a

concave down trend, the reason is that since the definition of format effectiveness has become

less and less, after processed by using algorithm, the identical definition (repeated) will be

deleted, thus the concave down trend will be promptly mitigated. Taking the same standards

threshold values from 0.015-0.25 to compare Experiment 1 with Experiment 2, both of them

will be saved about 62% of storage space after stored 30 versions; therefore, it can verify that

such algorithm is applicable to the increasing or decreasing conditions among versions, and

the simplification of document will be maintained.

The time of simplification will be displayed in opposite direction to the increasing version,

since the number of versions is bigger, the data is less, and then the computing capability of

simplified space that has consumed is efficient; moreover, the time of recovering document

will be maintained within one second with slightly fluctuation, but it is still within the

acceptable scope.

Experiment 3: Pages Number is Increasing and Replacing Texts with Key Words

Experiment Description: in the aforesaid experiment, it has simulated the single situation

only; therefore, the Experiment 4 will simulate the situation that will be occurred more

frequently everyday – by following the versions, users may have also increased the pages

number, as well as modified the original text contents at the same time. Therefore, as for the

data simulation, it will adopt the method of inserting 1 page into each version, that is, 8 pages

for v1, and 37 pages for v30, as to the modification of the previous/ original text contents, it has

also adopted the method of replacing with 10, 20 and 40 key words, respectively, to complete

30 historical versions document in order to inspect the coexistence for these two situations.

Since in Experiment 1 and Experiment 3, regardless of pages number increasing or replacing

key words, the threshold value 0.015-0.25 has an excellent ratio of saving the space; thus, this

experiment is divided on the basis of the threshold value, as shown in Figure 8.

Figure 8. Pages Number is Increasing and Replacing Key Words for Storage
Space, Simplify and Recovery Time

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

201

Experiment Result Analysis: as shown in aforesaid figure, it can find out an interesting

phenomenon. When increasing the number of replacing key words from 10 to 20, and the

storage space of file has increased a margin as same as increasing the number from 20 to 40;

thus, it may changed back to the original words or phrases at the end of the process; thus, the

systems needs to maintain the first time it appeared and to simplify the repeated part.

Therefore, the trend of such phenomenon can be roughly seen, when replacing more key

words, or there are more versions, and increasing repeated part; then the saved space is more

efficient. As compared with the time that will be identical to the aforesaid experiment, the

time of simplification will be depended on the number of data for such version, and its

recovery time will maintain stable.

Experiment 4: Document Recovery

Experiment Description: this experiment is attempted to present that even after completed

the simplification of document, the remained information is still able to make response at all

time. This experiment is constructed at the threshold value 0.015-0.25 and replacing with 40

key words, which used to verify whether it would be recovered or not. The eighteenth page of

v22 and the first page of v10 can be randomly selected and recovered as the screen as follows:

Figure 9. Recover the eighteenth Page of v22

Experiment result (1): through the eighteenth page of v22 as shown in Figure 10, after

recovered, it included the ground colors, titles and the text inside the text boxes that will

remained the size of the original version, as well as the setting of animation. The title of the

original source presentation document [14] is The Factor “Man”, after randomly replaced 40

key words through the entire document, and the contents of this page have not been changed,

but the title has replaced to The Occasion “Man”; therefore, from the screen of this

experiment result (1), when recovering document, it has also maintained the information of

the original document, and after compared the replaced document with the original

document, there is no difference between them at all.

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

202

Figure 10. First Page of Recovered v10

Experiment result (2): as compared the version document of v10 with the original source

document [14], the title of OpenOffice.org 2.0 in Enterprises has not been replaced yet;

however, the contents, carries and delivers of another text box have been replaced, and

replaced business with occupation. In addition, in this experiment, the result, color, font,

animation of the recovery document can be normally presented. As compared with the

original v10, the result will be identical to each other, loyally presented the version of replaced

key words; thus, it has verified that those experiment are successful.

5. Conclusion and Future Research Suggestions

5.1. Conclusion

In this study, it has practically adopted the OpenOffice.org Impress presentation document

to carry out the experiment, and utilize algorithms to simplify the contents of XML files in

Impress. From those experiments to simulate the time when presenters making the slides, the

situation of continuously increasing and deleting the document; however, under the condition

of continuously changing in the structure of XML document, if it can reach to 30 versions,

then it can save about 62% storage space. In addition, it is assumed that users have

continuously changing the key words or sentences of the document, it can be clearly

expressed even the scope of modifying key words is increased; however, the storage space

may still be able to reach an excellent level. At last, it has conducted the Experiment 3 which

has conformed to the actual situation, even its changing scope of the document is the

maximum, and algorithms still can acquire identical part from files to make simplification.

From those experiments we can understand that the establishment of threshold value, and

make users to flexibly use the storage space, in accordance with each document with various

topics, to establish different threshold values to optimize the storage space.

In the last experiment of this study, by means of integrating 30 versions of Impress

presentation document into a single system, it can not only express to practically recover the

historical document, but also conduct the optimal management to documents:

1. To respond to enter the era of great amount of electronic document exchange, this system

can be sued to preserve the XML document that may be developed in an exponential

growth in the future, and meanwhile, it can also slow down the rapid development in the

future.

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

203

2. The trend of future document storage will be intended to change from strenuousness into

lightness; as usual, the situation of files spreading will cause the maximum damage to the

company; thus, well-processed the document storage; at the same time, documents can be

integrated for the future management and application, including the authorized

administrator of document who can modify contents only. For example, when a company is

modifying its name, it can be made one-time correction in such system.

5.2. Example of Practical Applications

In addition to apply to simplify storage space, it also can be developed to be the future

business models: homogeneity of information integration

1. Integration of Homogenous Data: even the current experiment result has showed in the

Impress presentation document with a same topic, it still can simulate the practical

possibility that can save about averagely 55%~70% of storage space; however, if it can

focused on the presentation document with different topics in the future, since the similar

structure and includes the identical definition of formats, thus it can promote to integrate

those presentation document of various sequence with setting one threshold value.

2. Integration with Homeomorphous Data: In OpenOffice.org, except Impress, documents

that conformed to ODF format storage, including the Writer word processing, Calc

Spreadsheets calculation modules. In the future, all documents that conformed to XML

format can be integrated to make document management to be more easily.

3. Recover Point Mechanism: it is the automatic storage mechanism of office document.

Usually, in the production process, since the consideration of documents’ storage space for

systems, it may only automatically make one or two versions storage space; and, if any

damage occurred, then those document will be invalid as well; therefore, it will make use

of the automatic storage mechanism that proposed by this study, and set the time interval of

carrying out the storage process to the document for once every 5 minutes. As a result,

except for greatly decreasing the storage space, the information can be maintained for the

document within every different time interval of storage.

4. Similarities Inspection: the storage system of this study can be the database for inspecting

the promotion of plagiary in the future, since the behavior of document plagiary is usually

reedited the contents of different pages in the document, or only changed the key words.

However, these procedures will be difficult to implement manually. Therefore, it has only

regarded the document as the historical version which may be involved in plagiary, if the

document simplification of the Version 2 is high, then it may indicated that we can

reasonably suspect the document of Version 2 which has the suspicion of plagiarizing

Version 1.

5.3. Future Research Suggestion

The processing of storage space in the future that shall not be restricted to texts only,

graphs may frequently appeared around us, and the structure of graphs may possibly evolved

in the future; for example, the chemical molecular bonding, etc. When the graph needs to be

stored, these version-evolved graphs in the space of computer memory is complicated and

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

204

useless, but they will be preserved as the historic message; therefore, if this method can be

promoted to graphs, and recorded the parent-son and evolving relationships for such

combination that will make graph to be well-managed as well.

In the practical conditions, as for those industries that will extremely focus on their storage

space, such as the retail business or manufacturing industry that needs bulk sales and

purchase the components and parts, in order to be well-stored the transaction data, those

factors cannot store the most detailed data into the database, but needs to regularly adopt the

tape to make such storage. It will take a large quantity of time for the sequential access

process when responding historic data; however, most of the historic data are similar and only

the time points of occurrence are different. Thus, in the future, it only needs to use database to

store the transaction data, and further it can be developed as a tool of data analysis in order to

help with the business competitiveness as well.

References

[1] 林昌正，「多 XML文件整合萃取工具之研究」，國立中央大學，碩士論文，民國 97年。

[2] Chebotko, D. Liu, M. Atay, S. Lu and F. Fotouhi, “Reconstructing XML subtrees from relational storage of

XML documents”, Proceedings of the Second IEEE International Workshop on XML Schema and Data

Management (XSDM05), in conjunction with ICDE05, Tokyo, Japan, (2005) April.

[3] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without candidate generation”, In Proc. 2000 ACM-

SIGMOD Int. Conf. Management of Data (SIGMOD’00), Dallas, TX, (2000) May, pp. 1–12.

[4] L. Chen, S. S. Bhowmick and L. T. Chia, “FRACTURE-Mining: Mining Frequently and Concurrently

Mutating Structures from Historical XML Documents”, Elsevier Science Journal: Data & Knowledge

Engineering, vol. 59, Issue 2, (2006), pp. 320-347

[5] L. Chen, S. S. Bhowmick and L. T. Chia, "Mining Maximal Frequently Changing Subtree Patterns from

XML Documents", In Proceedings of the 6th International Conference on Data Warehousing and Knowledge

Discovery(DaWaK), Zaragoza, Spain, (2004), pp. 68-76.

[6] L. H. Rusu, W. Rahayu and D. Taniar, "Mining Changes from Versions of Dynamic XML Documents",

KDXD 2006, LNCS3915, (2006), pp. 3-12.

[7] M. P. Papazoglou and P. M. A. Ribbers, “e-Business: Organizational and Technical Foundations”, John

Wiley & Sons, Forthcoming, (2005).

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, In Proc. 1994 Int. Conf. Very

Large Data Bases (VLDB’94), Santiago, Chile, (1994) September, pp. 487–499.

[9] R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik and J. F. Naughton, “Recursive XML schemas, recursive

XML queries, and relational storage: XML-to-SQL query translation”, in: Proc. of the ICDE Conference,

(2004), pp. 42–53.

[10] S. Y. Chien, V. J. Tsotras and C. Zaniolo, “Efficient schemes for managing multiversion XML documents”,

VLDB J., vol. 11, no. 4, (2002) December, pp. 332–353.

[11] Extensible Markup Language (XML) http://www.w3.org/xml/

[12] International Organization for Standardization. Available from http://www.iso.org/iso/home.htm

[13] Megginson Technologies: Simple API for XML. Available from

http://www.megginson.com/downloads/SAX/

[14] OpenOffice.org 2.0 in Enterprises. English version. Available from

http://www.ba.ncu.edu.tw/dmerplab/CeBIT_OOo_En.odp

[15] Unicode in XML and other Markup Languages, “Unicode Technical Report#20”. Available from

http://unicode.org/reports/tr20/tr20-6.html

[16] World Wide Web Consortium. Available from http://www.w3.org/

[17] W3C’s Document Object Model (DOM). Available from http://www.w3.org/DOM

[18] W3C’s Extensible Markup Language (XML) 1.0 (Fourth Edition). Available from

http://www.w3.org/TR/REC-xml/

http://www.w3.org/xml/
http://www.iso.org/iso/home.htm
http://www.megginson.com/downloads/SAX/
http://www.ba.ncu.edu.tw/dmerplab/CeBIT_OOo_En.odp
http://unicode.org/reports/tr20/tr20-6.html
http://www.w3.org/
http://www.w3.org/DOM
http://www.w3.org/TR/REC-xml/

International Journal of Control and Automation

 Vol. 5, No. 3, September, 2012

205

Authors

Ming-Shien Cheng received the MS degree from the Management Sciences

Department of Tamkang University, Taiwan in 1988. He is a lecturer at the

Industrial Engineering and Management Department at the Ming Chi

University of Technology and a doctoral student in the Business

Administration Department at National Central University in Jhongli, Taiwan.

Her research interests include data mining, database management and

ERP applications in business domains. His papers have been published

in LNCS.

Ping-Yu Hsu is a Professor and the department head of Business

Administration at the National Central University in Jhongli, Taiwan.

Ping-Yu received his PhD in Computer Science from UCLA, USA. He

also works as the secretary-in-chief of the Chinese ERP association. His

research interest focuses on business data applications, including data

modeling, data warehousing, data mining, and ERP applications in

business domains. His papers have been published in IEEE Trans on

Software Engineering, Information Systems, Information Sciences,

Computers and Operations research and various other journals.

Min-Tzu Wang received the MS degree from the Computer &

Information Sciences Department, University of Oregon, USA. She is a

lecturer at the Information Management department at the Technology

and Science Institute of Northern Taiwan and a doctoral student in the Business

Administration department at National Central University in Jhongli, Taiwan.

Her research interests include data mining, information retrieval, E-commerce,

M-commerce, and ERP applications in business domains. Her papers have

been published in LNCS and various other journals.

International Journal of Control and Automation

Vol. 5, No. 3, September, 2012

206

