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Abstract 

A tri-axial HTS power cable has been proposed and developed to reduce the number of 

HTS wires because it has copper shield instead of HTS shield. However, it has a drawback 

which is an inherent imbalance problem due to an asymmetry configuration in the cable. 

The authors designed a 22.9 kV/50 MVA class tri-axial HTS cable. The inherent imbalance 

problem of the three-phase currents in the tri-axial HTS power cable has been minimized 

through the adjustment of pitches and radii of each layer. An FEM analysis program and a 

power system analysis program were used to analyze the characteristics of the designed tri-

axial HTS power cable. The AC loss and magnetic characteristics of the designed cable were 

analyzed according to magnitude of operating currents. The design results of the tri-axial 

HTS power cable are discussed in detail. 
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1. Introduction 

High temperature superconducting (HTS) power cables have been intensively developed as 

potential cables for urban areas because of extremely low power loss and compactness 

compared with conventional copper cables [1]. Most of the developed HTS cables have been 

a coaxial design, which requires several layers of HTS wire to compose not only the forward 

superconducting path, but a superconducting return path so that external magnetic fields are 

virtually eliminated. To obtain three phases, three single-phase cables can be arranged 

adjacently in three separate cryostats or triangularly in a single cryostat [2].  

The configuration of tri-axial has a noteworthy material advantage because the external 

magnetic fields are small due to the vector sum of the three current-carrying phases; 

therefore, it is possible to eliminate the need for a superconducting return path of each phase 

and to reduce the amount of HTS wire by half. Also, the total area of cryogenic surface is 

reduced in the tri-axial configuration, thereby reducing the cryogenic system capacity 

required to adequately cool the cable. These material and cryogenic advantages, coupled with 

its compact size, could make the tri-axial cable an interesting prospect for power utilities with 

an expanding power capacity and limited space of power corridors [3]. However, there is an 

inherent imbalance in the three-phase currents in the tri-axial cable due to differences in radii 

of the three concentric phases. The imbalance of the currents causes additional loss and a 

large leakage field in the cable, and deteriorates the electric power quality [4]. 
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In this paper, several basic parameters of the tri-axial HTS cable, such as radius of each 

layer, insulation thickness, and the amount of HTS wire, are designed. To resolve the inherent 

imbalance in the three-phase currents, inductances and capacitances of the tri-axial HTS cable 

were calculated by electromagnetic formulas. To model the induced shield and phase 

imbalance currents, an equivalent electric circuit was modeled for the simulation using power 

system computer aided design/electromagnetic transient including DC (PSCAD/EMTDC). As 

a result, the tri-axial HTS cable core was designed and its AC loss and electro-magnetic 

characteristics were analyzed using finite elements method (FEM) software. The design 

results of the tri-axial HTS cable are compared with the same class triad co-axial HTS cable 

and the effectiveness of the tri-axial HTS cable is discussed in detail. Compared with the triad 

co-axial HTS cable of 22.9 kV, 50 MVA [7], the designed tri-axial HTS cable core has the 

advantage of using only 56% of the number of HTS wires because the HTS shield doesn’t 

exist. 

 

2. Design of the Tri-axial HTS Power Cable 
 

2.1. Design Parameters 

The 22.9 kV/50 MVA class tri-axial HTS cable is designed for power grid application. As 

shown in Figure 1, the tri-axial HTS cable consists of a single phase conductor layer per 

phase with the YBCO HTS wire which has 4 mm width and 0.2 mm thickness and a shield 

layer with the copper wire. The operating current of each phase in the tri-axial HTS cable is 

1260 Arms and the designed DC critical current of each phase is 2800 A at the 77 K, 

respectively. The designed basic parameters are shown in Table 1. In this design, a different 

critical current of HTS wire in each phase is used for the balance of the critical current in each 

phase. 
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Figure 1. Cross-section of the Tri-axial HTS Cable Showing the Three-phase 
HTS Conductor Layer and the Copper Shield 
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Table 1. The Basic Parameters of the Tri-axial HTS Cable 

Parameters Value Parameters Value 

Voltage / Capacity 22.9 kV / 50 MVA Insulation thickness 4 mm(PPLP) 

Operating current 1260 Arms Radius of each phase 15 / 19 / 23 mm 

DC critical current 2800 A@77 K,    

self-field 

Number of wire 22/ 28/ 34 

HTS wire YBCO wire / 

RABiTS type 

Critical current of 

each wire 

127 / 100 / 82 A  

@77 K 

Gap between wires 0.2 mm Twist pitch 340 / 220 / 145 mm 

 

2.2. Cable Inductances & Capacitances 

When the tri-axial HTS cable is sufficiently short to be approximated by an impedance 

circuit, the impedance of the cable is mostly the reactance components. For this reason, if the 

reactance of each phase is the same, current distribution of the cable is balanced. However, it 

is hard to equalize the reactance of each phase because reactance of each phase depends on 

the structure and twist pitch of the cable. The inductances of the tri-axial HTS cable consist of 

two components by tangential and axial magnetic fields. The external inductance caused by 

tangential fields is due to the magnetic flux external to the phase conductor. The internal 

inductance caused by axial fields is due to the magnetic flux internal to the phase conductor. 

The resulting self-inductances per unit length, Lself, were found by calculating the enclosed 

magnetic field energy of each phase. 
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where, rs is the shield radius, ri is the each phase radius, μ0 is the permeability of free space, 

and Lpi is the twist pitch of each phase. 

The mutual-inductances between an inner layer i and an outer layer j, Mij, were found by 

calculating stored magnetic field energy between two phases. 
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where, i and j are not equal, ai and aj are direction of twist pitch of each phase. 

The capacitances of the tri-axial HTS cable between phases are determined by the structure 

of the cable as shown in Figure 2(a). The phases are denoted by a, b, and c from the center to 

the outside. The outermost copper shield layer is grounded. The phase radii are denoted by ra, 

rb, rc, and rs, respectively. In such a structure, the phase a potential is screened 

electrostatically from the phase c and the copper shield by way of the phase b; on the other 

hand the phase b potential is screened electrostatically from the copper shield by way of the 

phase c. The capacitances of the cable can be shown in Figure 2(b), (c). The capacitances of 

the cable were found by calculating the partial capacitance between phases. 
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where, ri is the radius of the inner phase, rj is the radius of the outer phase, ε0 is the 

permittivity of the free space, and εr is the relative permittivity of the dielectric material. 
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       (a)                          (b)                      (c) 

Figure 2. (a) The Structure of the Tri-axial HTS Cable; (b) the Partial 
Capacitance of the Tri-axial HTS Cable; (c) the Working Capacitance of the Tri-

axial HTS Cable 
 

3. Simulations and the Results 
 

3.1. Equivalent Circuit Model 

The tri-axial HTS cable was modeled with a lumped-constant circuit to analyze the 

imbalance of three-phase currents using PSCAD/EMTDC. The equivalent circuit model 

consists of a three-phase voltage sources, three inductances, three capacitances, and a 

50 MW load. This circuit is analyzed to confirm the variation of line to line voltage and 

three-phase current along cable length in steady state when the cable is connected to a 

three-phase balanced source with an effective line to line voltage of 22.9 kV. The 

imbalance of three-phase currents is about 0.09% and the imbalance of three-phase line 

to line voltage is about 0.03% on the load side at 10 km length. 

 

 
(a)                                                       (b) 

Figure 3. (a) The Current Imbalance of the Tri-axial HTS Cable; (b) the Line to 
Line Voltage Imbalance of the Tri-axial HTS Cable 
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3.2. Equivalent Circuit Model 

The tri-axial HTS cable core was modeled to analyze the AC loss and electro-

magnetic characteristics using COMSOL multiphysics. Approximation of the Maxwell 

equation in the H-field model of the COMSOL was used to consider non-linear electric-

current density (E-J) characteristics of a superconductor. As shown in Figure 4(a), the 

model is a quarter of a symmetrical model of the cable and a detailed model of the 2G 

YBCO HTS wire. The magnetic fields of the cable are a circular orientation relati ve to 

a cross-section of the each phase and the HTS wires as shown in Figure 4(b). According 

to magnitude of operating current, the AC loss of the tri -axial HTS cable is shown in 

Figure 4(c). 

 

 
(a)                           (b)                                              (c) 

Figure 4. (a) The Quarter of a Symmetrical Model of the Tri-axial HTS Cable (b) 
the Magnetic Field Analysis Result of the Tri-axial HTS Cable; (c) the AC Loss 

of the Tri-axial HTS Cable 
 

4. Conclusions 

In this paper, a tri-axial HTS cable was designed to consider the voltage level and power 

capacity of the cable. Inductances and capacitances of the cable were calculated to resolve the 

inherent imbalance in the three-phase currents. The designed cable has the imbalance ratio of 

the three-phase currents about 0.09% in the case of the 10 km length cable but this imbalance 

ratio is negligible in a distribution class power system. When a transport current is rated 

operating current, the AC loss of each phase is 0.041 W/m, 0.374 W/m, and 0.439 W/m, 

respectively. 

Compared with the triad co-axial HTS cable of 22.9 kV, 50 MVA, the designed tri-axial 

HTS cable core has the advantage of using only 56% of the number of HTS wire because the 

HTS shield of each phase is not required for the tri-axial HTS cable. The tri-axial HTS cable 

is economically feasible because of the amount of HTS wires used as compared with other 

types of HTS cable. Using this design results, the tri-axial HTS cable core will be fabricated 

and tested in the near future. 
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