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Abstract 

This article presents a new structure for solving global positioning system (GPS) outages 

for long periods without requiring any prior information about the characteristics of the 

inertial navigation system (INS) and GPS. Kalman filter (KF) is widely used in INS and GPS 

integration to present a forceful navigation solution by overcoming the GPS outage problems. 

However, KF is usually criticized for working under predefined models and for its 

observability problem of hidden state variables, sensor dependency, and linearization 

dependency. Therefore, this article proposes a dynamic adaptive neuro-fuzzy inference system 

(DANFIS) to predict the INS error during GPS outages based on the current and previous 

raw INS data. The proposed integrated system is evaluated using a real field test data. The 

performance of the proposed technique is also compared with the traditional artificial 

intelligence (AI) technique and KF. The results showed great improvements in positioning 

and especially in velocity for MEMS grade IMU and for different length of GPS outages. 
 

Keywords: Global Positioning System (GPS), Inertial Navigation System (INS), Dynamic 

Adaptive Neuro-Fuzzy Inference System (DANFIS), Vehicular Navigation 
 

1. Introduction 

Most of the modern vehicular navigation systems depend on the global positioning system 

(GPS) that is capable of providing a reliable position and velocity information. Unfortunately, 

GPS reliability requires a direct line of sight between the receiver and the satellite with 

minimum four satellites. This restriction may affect the accuracy of the system, since a GPS 

signal may be lost when moving around obstacles, in a canopy, between large building and 

tree lined streets [1].  

On the other hand, navigation systems, in particular inertial navigation systems (INSs) 

have become important components in different military and civil applications. However, the 

INS accuracy degrades overtime due to the unbounded positioning errors caused by the 

uncompensated gyro and accelerometer errors affecting the INS measurements. Also it is well 

known that low-cost MEMS INS systems have much faster degradation than other types of 
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inertial measurement unit (IMU) [2, 3]. Therefore, to obtain very accurate outputs at all 

frequencies, the INS should be updated periodically using external measurements. To achieve 

this goal, INS measurements are integrated with GPS measurements to provide a navigation 

system that has superior performance in comparison with either a GPS or an INS stand-alone 

system. GPS and INS both can be used for wide range of navigation functions. Each has its 

strength and weaknesses as illustrated in Table 1. 

The GPS/INS integration is usually carried out through Kalman filtering (KF), which 

represents one of the best estimation techniques for augmenting signals from short-term high 

performance systems with reference systems exhibiting long-term stability. However, it still 

has many drawbacks. It requires a dynamic model for both INS and GPS errors, since it is 

usually difficult to set a certain stochastic model for each inertial sensor that works efficiently 

in all environments and reflects the long-term behaviour of sensor errors. In addition, there 

are several significant drawbacks such as sensor dependency, linearization dependency, and 

observability problems which are discussed in more detail in [5, 6].  

 
Table 1: Comparison between INS and GPS Systems [4] 

 
 

Last decade has shown an increasing trend in using artificial intelligence (AI) to integrate 

the GPS with INS system. A variety of neural network methods have been introduced to 

integrate the GPS and INS [7]. In addition, [8] use dynamic neural network to increase the 

accuracy of prediction during GPS signal loss, however, neural network have some problems, 

such as their black-box nature, the lack of knowledge representation power, selection of the 

proper structure and size to perform the required real-time implementation [4, 9, 10].  

Moreover, radial basis function (RBF) neural network was developed by [11] to fuse data 

from GPS and INS systems. The advantages of using RBF networks because it can overcome 

the problem of choosing the appropriate number of neurons in their hidden layer, as they are 

dynamically generated during the training phase to achieve the desired performance. But they 

didn’t consider the factors that affect the performance of the system during real-time 

implementation since it requires extended processing time and most important is that it 

required to perform the learning phase completely without any interruption since it generate 

the internal neurons during this phase and hence any interruption will cause failing to 

construct the INS error model required for correcting the INS output during the GPS signal 

loss. 

In addition, hopfield neural network (HNN) was developed by [12] for estimating GPS/ 

INS error state and relaxes the assumptions made by the Kalman filter. However, it requires 

very large memory capacity since it is a recurrent neural network (RNN), thus it is time 

consuming for retrieving the stored learning parameters. Thus it can not be considered for real 

time implementation.  
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Adaptive neuro-fuzzy inference system (ANFIS) was applied for fusing GPS/INS data to 

work in real time [4, 7, 10, 13, 14]. The main objective of all previous integration techniques 

is to model the INS algorithm required to predict the instant INS error during GPS signal loss. 

All of the previous AI methods are utilized to model the INS error through relating the instant 

INS error to the instant INS data without taking into account the effect of past INS data. 

Moreover, the limitations of implementing ANFIS in real time are the difficulty of optimizing 

the INS error model depending on the instant INS data alone that may reduce the capabilities 

of real time implementation which results in poor navigation solutions during long GPS 

outages. 

In this paper a novel dynamic ANFIS (DANFIS) model is presented through taking into 

account the trend of the previous INS data to be able to predict the instant INS error 

depending on the instant and previous INS data. Thus, it provides a reliable navigation 

solution during long GPS signal loss. 

This paper is organized as follows: Section 2 describes the proposed dynamic adaptive 

neuro fuzzy inference system and its structure. Section 3 illustrates the methodology and the 

GPS/INS model architecture. The results obtained and discussion of the proposed dynamic 

intelligent navigator is given in Section 4. Finally, the conclusions from the results achieved 

are given in Section 5.   

 

2. Dynamic Adaptive Neuro-fuzzy Inference System 

Different interpretations for the fuzzy IF-THEN rules result in different mappings of the 

fuzzy inference engine while requiring a fuzzifier and defuzzifier to constitute a useful fuzzy 

logic system. Jang [15] proposed a neuro-fuzzy system utilizing the Sugeno FIS method 

through combining the explicit knowledge representation of FISs with the learning 

capabilities of the artificial neural network (ANN) in a complementary hybrid system called 

adaptive neuro-fuzzy inference system (ANFIS). This system is a universal approximator that 

is capable of uniformly approximating any complex and nonlinear function to any degree of 

accuracy utilizing a set of input and output data. 

A dynamic ANFIS (DANFIS) is basically an ANFIS network that consists of multi-input-

single-output (MISO). DANFIS can be utilized to build the conceptual intelligent GPS/INS 

navigator. In fact, it consists of two main parts: static ANFIS structure and memory elements. 

The memory can be represented by a shift register that have the ability to holds the previous 

INS position and velocity data samples.  

The use of the shift register with the static ANFIS leads to the dynamic ANFIS as 

suggested by [16-19] since they use a static neural network with memory elements to produce 

the dynamic neural network (DNN) that can be used in different applications such as 

classification and identification. Therefore, the static ANFIS is transformed into the dynamic 

ANFIS since the shift register used at the ANFIS input presents a short-term memory. The 

number of neurons in the input layer for the ANFIS is equal to the number of the shift register 

elements. Figure 1 shows the dynamic ANFIS including the shift register used in this 

structure. 
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2.1 ANFIS Structure 

The main advantage of using a hybrid intelligent system like ANFIS, over other classical 

filtering algorithms is its ability to deal with noise exists in the input data in dynamic 

environments. This intelligent system not only combine the learning capabilities of a neural 

network but also incorporate reasoning by using fuzzy inference by enhancing the capability 

of the system for prediction. The goal of ANFIS is to find a model or mapping correctly the 

inputs (raw input values) with their associated targets (predicted values) [4, 15]. 

The most useful class of defuzzifier is the center average of the form: 


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Where M is the number of fuzzy IF-THEN rules, while yj is the center of fuzzy set fj, that 

is, a point in the universe of discourse V at which μFi(y) achieves its highest value, and μFi(y) 

is given by a product inference engine, since the product operator retains more information 

than MIN operator when implementing the fuzzy AND because the last scheme only preserve 

one piece of information whereas the product operator compose of n-pieces. Also, using 

product operator normally provides a smoother output surface, a desirable attribute in 

modeling and control systems. 

Hence, equation (1) becomes: 
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where n is the number of input linguistic variables. 

In order to develop training algorithm for this fuzzy logic system, the functional form of  

μFi(xi) must be specified. The bell-shaped membership function, based on the normal 

distribution of the grades of the membership, would be used, since this function is 

differentiable and can be applied when using the back propagation learning algorithm, i.e. the 

membership function can be given by the following equation [20, 21]: 
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where im and i are, respectively, width and center of the bell shaped function of the i
th
 input 

variable. 
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Figure 1. The Architecture of the Dynamic Adaptive Neuro Fuzzy Inference 
System Network 

 

Now from equation (2) and equation (3) the overall function of fuzzy logic system can be 

obtained: 
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This equation represents a fuzzy logic system with center average defuzzifier, product 

inference rule, singleton fuzzifier, and bell shaped membership function. Wang [22] shows 

that this fuzzy logic system is universal approximator (i.e. able of uniformly approximating 

any nonlinear function to any degree of accuracy). 

Equation (4) can be embodying as a feed-forward neural network (NN) as exposed in 

Figure 1. This connectionist model adopted in Figure 1 mixes the approximate reasoning of 

fuzzy logic into a neural network structure. 

With five-layered structure of the proposed connectionist model, the basic purposes of the 

nodes in each layer would be defined as below: 

Associated with each node in a typical neural network is an integration function which 

serves to fuse information or activation from the other nodes. 

This function 
1

iX provides the net input of the i
th
 node in layer l. A second action taken by 

each node is to output an activation value as a function of its net input: 

))(()(
11

kXgkO ii                                                                                                                  (5) 

where g(.) represents the activation function. 

The functions of the nodes in each layer of the fuzzy-neural network can be summarized as 

follows [23]: 

 

1) Input Layer 

The unique function of these nodes in this layer is just transmits their input values directly 

to layer2: 

nn xXxXxX 
1

2

1

21

1

1 .....,,,                                                                                       (6) 

11

ii XO                                                                                                                                   (7) 

where i=1,2,...,n and n is the number of the input linguistic variables. 

 

2) Antecedent Layer 

The output from this layer is described by: 

)(
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                                                                                                                       (8) 

where Xi
2
 is the input to node i in layer2 and Fi is the linguistic label assigned to fuzzy set 

(small, large, etc.). 

From equation (3), equation (8) becomes: 



























 


2
2

2
exp

ij

iji

i

mX
O


                                                                                                 (9) 

where ij and ijm are the width and center of the bell-shape function of the i
th
 input of the j

th
 

rule, respectively. 

 

3) Rule Layer 

The magnitude of the output from each node in this layer is dictated by the firing strength 



International Journal of Control and Automation 

   Vol. 5, No. 3, September, 2012 

 

 

7 

 

of a rule. With the proposed scheme (i.e. equation (4)), the rule nodes perform the fuzzy 

product operation; Therefore: 


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n
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where Xij
3
 denotes the i

th
 input to node j in layer 3. 

 

4) Consequent Layer 

From this layer, the upper node sums all outputs from the rule layer with action strengths 

(yj) and the lower node sums those with unity strength, as shown: 
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where N and D represent, respectively, the numerator and denominator of equation (4). 
 

5) Action Layer 

Only one node exits in this layer. Here the actual output would be pumped out the net, 

D

N
Oxf  5)(                                                                                                                    (13) 

2.2 Adaptive Fuzzy System Training Algorithm [10, 22] 

Based on the idea of the error back propagation algorithm, the objective is to obtain a fuzzy 

logic system f(x), in the form of equation (4), which minimizes the error function shown 

below: 
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      where P is the number of outputs and dj(k) is the j
th
 desired output (target) at time k. 

Without losing of generality, the multi input single output (MISO) fuzzy logic system was 

considered in this paper. A multi output system can always be decomposed into a set of single 

output systems, therefore for P=1, equation (14) is reduced to: 

 2)k(d))k(x(f
2

1
)k(E                                                                                         (15) 

     Referring to equation (4), if the number of rules in the proposed fuzzy system is M, then 

the difficulty becomes training the parameters yj, mij, and σij such that E(k) is diminished. 

According to the back propagation training algorithm, the iterative equations for training the 

parameters yj, mij, and σij are: 



International Journal of Control and Automation 

Vol. 5, No. 3, September, 2012 

 

 

8 

 

31
))())((()()1( jjj O

D
kdkxfkyky                                                                    (16) 













 


2

2

)(

)(
)))(()(())())(((2)()1(

ij

iji

j

j

ijij

mkX
kxfkykdkxf

D

Z
kmkm


                              (17) 













 


3

22

)(

))((
)))(()(())())(((2)()1(

ij

iji

j

j

ijij

mkX
kxfkykdkxf

D

Z
kk


                                 (18) 

     where η is the learning rate. Equations (16), (17), and (18) perform an error back 

propagation procedure. 
 

3. Methodology  

The anticipated DANFIS for integrating INS with GPS systems establishes separate 

modules along the x, y, and z axes for position and along north, east, and down direction for 

velocity to predict the INS errors and to connect the GPS outages periods during GPS signal 

loss. Solving the GPS outage problems is the primary goal of integrating the GPS with INS. 

An additional goal of this paper is to solve this problem using a method suitable for real-time 

implementation. Therefore, the INS data will be divided into a number of frames. A certain 

length of 100 second is defined for each frame called a window. Therefore, the training phase 

will be conducted after gathering 100 samples of INS data instead of sample by sample. If the 

GPS signal loss is detected, the dynamic intelligent navigator will be switched to the 

prediction mode. This mode relies on the previously stored learning parameters to predict the 

INS error for the entire period of the frame, even though the period of signal loss is less than 

the defined window size. At the end of each frame, the dynamic intelligent navigator will 

evaluate the availability of the GPS signal before processing the next frame. The system will 

switch to the learning mode if the GPS signal is available.   

        

3.1 DANFIS Architecture 

Six separate DANFIS network is established to model both the position and velocity 

components in the three directions. The reliability of the proposed INS error models will be 

achieved through using hold out cross validation technique with a non-overlapping temporal 

window size of 100 second. During the updating mode as shown in Figure 2 the DANFIS 

networks for position and velocity components are trained using both the GPS and INS data 

to construct an empirical model related to the instant INS error for the instant and previous 

INS data samples for position and velocity respectively. The INS error (desired output) is 

computed during the GPS availability through subtracting the INS components from the 

corresponding GPS components for all position and velocity components. These data sets are 

then used to train six DANFIS networks corresponding to the six components of position and 

velocity. The inputs for each DANFIS network are the INS data (instant and previous 

samples) with the instantaneous time. 
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The intelligent dynamic navigator system, as shown in Figure 2 is trained to predict the 

INS error and provide accurate navigation solution for the moving vehicle. The DANFIS 

network output is compared to the desired INS error signal and the resulting difference is 

feedback to the network which adjusts its learning parameters in a way to minimize the mean 

square error value. The learning parameters for the DANFIS network that are calculated 

during the training phase are m, y, and σ. These parameters are updated according to equation 

(16), (17), and (18). The computations of these parameters are reiterated until the best 

possible values are realized (minimum mean square error) or the maximum iteration has been 

reached. Then the optimal values of learning parameters are saved to be used later during 

GPS outages. The preliminary values of the learning parameters (m, y, and σ) are initialized 

randomly the first time the intelligent dynamic navigator starts the training. Therefore, the 

user can specifies the number of epochs, the learning rate value, and the number of fuzzy 

rules (M). Table 2 shows the initial values for the parameters of DANFIS network which is 

obtained by trial-and-error. It must be mentioned that a precise selection of the learning 

parameters will ensures a good performance of the DANFIS networks that converge to a 

minimum error value.       

During GPS signal loss the proposed DANFIS networks are then employed to process the 

instant and previous INS data to predict the instant INS position and velocity error as shown 

in Figure 3. Therefore, using previous INS data is anticipated to provide an accurate 

navigation solution during long GPS signal loss as will be shown in the experimental results. 

In this paper, different numbers of input delay (i.e. memory elements) was considered in 

order to find the suitable number of input delay. Also, the outcome of using different number 

of input delay elements will be investigated and discussed in terms of time consumed and 

prediction accuracy through comparing the proposed DANFIS with the conventional ANFIS. 

The proposed DANFIS model performance is evaluated using real field test data collected 

from using MEMS IMU (Motion PakII) and NovAtel OEM4 GPS. 

 

Table 2. Values of the Learning Parameters for the Six Networks 
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Figure 2. Dynamic ANFIS Scheme for GPS/INS Integration System during 

Updating Phase 

 

4. Results and Discussion 

To evaluate the effects of the dynamic ANFIS on predicting the INS error depending on 

both instant and previous INS data. A performance test is conducted for the dynamic ANFIS 

by taking into consideration the two modes of operation. The first mode is during the GPS 

availability though examining the DANFIS during updating mode when online learning on 

the INS error dynamics characteristics is conducted. In addition, the integrated system is also 

examined during GPS signal lost to validate the capability of the DANFIS model for accurate 

prediction of the INS position and velocity error patterns. In fact, the GPS are already 

available along the tested trajectories. Therefore, intentionally different outages were selected 

at different locations along the tested trajectory.  
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Figure 3. Dynamic ANFIS Scheme for GPS/INS Integration System during 

Evaluation Phase 

 

The maximum position error obtained are less than 0.18, 0.24, 0.42, 0.67 and 1.18 m for 

(40, 50, 100, 150 and 200 second) outages respectively as shown in Figure 4 while a 

maximum error for velocity are less than 0.027, 0.03, 0.045, 0.048 and 0.05 m/sec for same 

outages periods as shown in Figure 5. Also, the difference between the desired and actual 

output of the DANFIS shown in Figure 6 indicate the superiority of the proposed DANFIS to 

provide the position and velocity components during GPS signal loss.  
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Figure 4. Maximum Position Error Results during Different GPS Outages (a) 40, 
(b) 50, (c) 100, (d) 150, and (e) 200 seconds 

 

 

 

 

 

 

 

 

 



International Journal of Control and Automation 

   Vol. 5, No. 3, September, 2012 

 

 

13 

 

 

 

 

North East Down
0

0.005

0.01

0.015

0.02

0.025

0.03

40 Second

M
a

x
im

u
m

 V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
e

c
)

North East Down
0

0.005

0.01

0.015

0.02

0.025

0.03

50 Second

M
a

x
im

u
m

 V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
e

c
)

 
(a)                                                             (b) 

North East Down
0

0.01

0.02

0.03

0.04

0.05

100 Second

M
a

x
im

u
m

 V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
e

c
)

North East Down
0

0.01

0.02

0.03

0.04

150 Second

M
a

x
im

u
m

 V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
e

c
)

 
(c)                                                               (d) 

North East Down
0

0.01

0.02

0.03

0.04

0.05

200 Second

M
a

x
im

u
m

 V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
e

c
)

 
                                                                (e) 

Figure 5. Maximum Velocity Error Results during Different GPS Outages (a) 40, 
(b) 50, (c) 100, (d) 150, and (e) 200 seconds 
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Figure 6. Error between the Desired and Actual Output of the Integrated 
GPS/INS Navigator Modules for Position in (a) X-Axis, (b) Y-Axis, and (c) Z-

Axis, and Velocity in (d) North, (e) East, and (f) Down Directions. 
 

 

The impact of using different number of input delay elements is a vital parameter to be 

investigated and study its effect in terms of reducing the prediction error and the time 

required for prediction. Therefore, Figure 7 shows that the root mean square error for both 

position and velocity is reduced as the number of input delay elements is increased. However, 

after reaching a certain number of input delays the reduction in the error value become 

invisible while the time increased dramatically as shown in Figure 8 which affects the 

condition required for real time implementation. Hence, increasing the number of input delay 

without limitation will increase the time required during training mode and increase the 

complexity of the proposed model since the number of membership functions will increased 
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due to increasing the number of input delay as shown in Figure 9 which shows the 

relationship between the number of input delay and the number of membership functions 

required to keep the required root mean square error at a constant value. Finally, the results 

obtained using the proposed dynamic intelligent navigator is compared with the Kalman filter 

and it shows an elevated reduction in position and velocity errors as shown in Figure 10. 

Finally, Table 3 shows clearly that the proposed method improve the accuracy of the 

proposed intelligent navigator by 79%, 80%, 72% for position and 93%, 95%, 93% for 

velocity in the three directions compared to Kalman filter. 
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Figure 7. Impact of Increasing the Number of Input Delay Elements for (a) 
Position and (b) Velocity 
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Figure 8. Average Time for 200 second by repeating each Experiment Five 
Times for all Components in (a) Position, and (b) Velocity 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

 
(a)                                                        (d) 



International Journal of Control and Automation 

   Vol. 5, No. 3, September, 2012 

 

 

17 

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

 
(b)                                                        (e) 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Number of Input Delay

N
u

m
b

e
r 

o
f 
M

F
s

 
(c)                                                          (f) 

 

Figure 9. Relationship between the Number of Membership and the Number of 
Input Delay for all Components in (a) X-Axis, (b) Y–Axis, and (c) Z-Axis for 

position and (d) North, (e) East, (f) Down directions for Velocity 
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Figure 10. Performance Comparison between the proposed dynamic ANFIS 
and the Kalman filter for (a) Position, and (b) Velocity 

 

 

Table 3. Improvement Results for the Proposed DANFIS 

 
 

5. Conclusions  

This paper presents a new DANFIS module to integrate the GPS and INS systems in order 

to overcome the limitations of the traditional methods and through depending on the previous 

INS error that has a great effect on the intelligent navigator during prediction mode. However, 

increasing the number of inputs (i.e. INS data samples) to the ANFIS module will increase 

the precision of the INS prediction during evaluation phase and increase the time required for 

learning phase. Therefore, it is better to select a specific number of inputs to the ANFIS to 

obtain the required accuracy and to keep the time as short as possible. Finally, the results 

obtained show clearly the superiority of the proposed method compared to Kalman filtering 

and conventional ANFIS methods.  
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