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Abstract 

In this paper, we consider periodic review production or inventory models incorporating 

inventory level dependent demand and random yield models. Inventory level dependent 

demand models have been investigated by many marketing and production management 

researchers. Random yield inventory models have also been investigated by many production 

management researchers. There is, however, to our best knowledge, a few researches 

involving periodic review production model incorporating inventory level dependent demand 

and random yield. We, therefore, investigate single period and multiperiod inventory 

problems in which demand is inventory level dependent in a very general form and 

production yield is also random. For the single period problem, we obtain the complete 

analytical solutions and give the numerical example. For the multiperiod problem, we first 

investigate the two period models and extend to the n-period problem. 
 

Keywords: Production/Inventory Management, Periodic Review Production/Inventory 

Model, Inventory Level Dependent Demand, Random Yield  

 

1. Introduction 

A subject in the area of inventory theory that has recently been receiving considerable 

attention is the class of inventory level dependent demand models [1]. In this model the 

presence of the inventory in some items is assumed to stimulate sales of the items. For the 

inventory control of these items, Baker and Urban [2, 3] investigated two basic models in 

which the demand rate of an item is a function of the instantaneous inventory level. After 

Baker and Urban’s research, several other variations have been investigated such as Mandal 

Phaujdar [4], Datta and Pal [5], Goh [6], and so on [7]-[20]. Specially, Gerchak and Wang [9] 

investigated a very general form of inventory level dependent demand model. Their approach 

is to describe a demand as a general deterministic function of the starting inventory level, 

multiplied by a random variable. This makes both the modeling and analysis of the inventory 

model much easier, and permits the derivation of explicit, implementable solutions.   

Another interesting area of inventory theory is random yield inventory models. When 

production activities are initiated or orders placed, the outputs or quantities received are often 

somewhat uncertain. The yield, or quantity received, might be itself uncertain, or possibly it is 

the usable portion of the yield which varies. These uncertainties could affect inventory 

stocking decision or production lot sizes [22]. There are several factors which might 

contribute to discrepancies between quantity ordered and quantity received. These might be 

clerical errors and damage in transit, inadequacies of raw materials, and rounding off by 
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suppliers to achieve certain scale economies [23]. In Gerchak et al. [22], they investigated a 

periodic review production model with variable yield and uncertain demand. They provided a 

complete analysis of the single period model. Their results showed that the order point is not 

affected by the yield distribution and the expected yield is not order up to type. For other 

random yield inventory models refer to the papers [24]-[31].   
In this research we consider single period and multi-period inventory models incorporating 

inventory level dependent demand and random yield models. For the previous researches of 

the incorporated inventory models, Lee and Chang [32] investigated the optimal order 

quantity in single period inventory level dependent demand and random yield models. This 

research is the extended version of the paper [32]. As another research, Lee et al. [33] are 

investigating periodic review production models with random yield, and stochastic 

endogenous demand. Moreover, Bar-Lev et al. [34] investigated the EOQ model with 

inventory-level-dependent demand rate and random yield. This paper, however, only dealt 

with the EOQ-type inventory problems. In this paper, we deals with the newsvendor-type 

inventory problems.       

To develop the incorporated inventory model, we use Gerchak and Wang [9]’s demand 

model. Their approach is to describe a period’s demand as a general deterministic function of 

the starting inventory level, multiplied by a random variable. This explicit and stochastic 

functional form is a major distinguishing feature of the paper [9]. It makes both the modeling 

and analysis of the periodic-review model much easier, and permits the derivation of explicit, 

implementable solutions. With these benefits, we decide to adopt Gerchak and Wang’s 

demand model. For the random yield, we use Gerchak et al. [22]’s yield model. Since the 

multiplicative yield model in the paper [22] is more convenient than the additive model we 

adopt the Gerchak et al.’s yield model. 

By incorporating these two models we provide complete analyses of the single period and 

two-period inventory problems in which demand is inventory level dependent in a very 

general form and production yield is also random. We also provide the solution structure of 

the n-period problem.  In the incorporated inventory models, we showed that the objective 

function is concave in some conditions and that the optimal policy is of a “reorder-point” type. 

That is, there exists a unique and finite value such that if the initial stock is greater than this 

value the order quantity is zero, otherwise the order quantity is greater than zero. Expressions 

for determining the reorder point and the optimal order quantity are derived. When only 

inventory level dependent demand is considered [9], the reorder point policy reduces to an 

order-up-to type. 

In the next section, we review the single period (news-vendor) problem. We, then, develop 

an optimal order quantity in single period inventory level dependent demand with random 

yield. After the analysis of the single period model, we analyze two-period inventory model 

and provide the solution structure of the n-period model. Finally we conclude this paper with 

concluding remarks and future research. 
 

2. The Classical Single Period Problem 

In this section, we review the classical single period problem. After this section, we extend 

the single period problem to the inventory level dependent demand model incorporating 

random yield. We will use the following notation in this section and throughout the paper. 

 
r = unit revenue from any sold item. 

c = unit production/purchase cost. We will assume that c is always less than r and the cost c is 

proportional to the realized yield.  
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h = unit holding cost associated with each unsold item at the end of each period in a 

multiperiod setting. 

v = unit cost associated with each unsold item at the end of the period in single period setting. 

v may be negative, corresponding to a salvage value. Assume  

–v<c. 

p = unit shortage penalty cost per unit of unsatisfied demand at the end of a period. 

Q = order quantity at the beginning of a period, which is the decision variable for the problem. 

We assume that the only chance to replenish the inventory is at the beginning of the period, 

and that the lead time is zero. 

D = demand in a period. We assume that the demand D is a random variable and has a density 

function k(d) and a distribution function K(d).  

Then, the profit per period is 

 

      
      , if     ,)(

, if     ),()(









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 Simplifying and taking the expected value of  gives the following expected profit. 
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  We can show that ][E  is concave and the sufficient optimality condition has the 

following form. 

 

vpr

cpr
QF




)( *

, where Q* is the optimal order quantity. 

 

3. A Single Period Model Incorporating the Inventory Level Dependent 

Demand with Random Yield 

In this section, we develop a single period inventory models incorporating inventory level 

dependent demand with random yield. First consider notation and assumptions. In addition to 

the notation in the previous section, we use the following notations in and after this section. 

 

β = discount factor per period. 0 < β < 1 

I = initial stock level of a period. 

YQ= yield when the input level is Q. 

 

In our inventory system, the demand D in any period is assumed to be randomly dependent 

on the starting inventory level x in the form 

 

D=H(x)*W,                       

 

where H(x) is a general deterministic function of x and W is a nonnegative random variable 

with a known probability distribution G, density g and mean α. We assume that the random 

variable W is independent of x. 
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The specific form of H(x) may vary for different items or situations, but we will have the 

following general assumptions: 

1. H(x) is positive and increasing in x; i.e. H(x)>0 and H’(x) ≥ 0. 

2. H(x) is a concave function; i.e., H’’(x)<0. 

3. As x goes to infinity, the first-order derivative of H(x) goes to zero; i.e. H’(∞)=0. 

All these assumptions are rather plausible, for the discussion of the plausibility of the 

assumptions refer to Gerchak and Wang [9].  

The yield is assumed to be contingent on the order quantity Q in the following manner 

 

YQ=Q*U                    

 

where U is a non-negative random variable which is not contingent on Q, and is independent 

of D and U has mean with density f( ). 

Since demand, and hence revenue, are affected by our inventory decisions, the natural 

model will be a profit maximization. 

In a single-period scenario, with an initial inventory I and an order quantity Q at the 

beginning of the period, the stating inventory level of the period will be x=I+ YQ because 

YQ=Q*U is the yield at an order quantity Q. So, the resulting random demand will be given 

by 

 

D=H(I+ YQ)*W=H(I+Q*U)*W 

 

Now, let ∏ be the random profit. Suppose that its initial stock is I and an order quantity Q, 

the realized profit will be  
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We wish to maximize E( ), where the expectation is taken with respect to the joint 

distribution of W and U. That is, for any given initial inventory level I, we seek the order 

quantity Q which maximizes the expected profit. Let  (   )  ( ). Then from (1), we have 
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(2) 

 

Note that if H(x)=1 i.e., when demand is inventory-level independent, and the yield is 

deterministic, the model reduces to the classical news vendor problem.

 

In the following, the main task is to analyze the properties of the above model and its 

corresponding optimal order policy. These properties are obtained under the following two 

assumptions about the cost parameters, the demand function H(x) and the distributions of W 

and U. 
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ASSUMPTIONS:  

 

The following inequalities (3) and (4) hold for all x ≥ 0; 
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where x is a function of u. 

 

If A(x)>0, condition 1 holds for all values of the cost parameters; if A(x)<0, condition 1 

can be written as  
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If B(x)>0, condition 2 holds for all values of the cost parameters; if B(x)<0, condition 2 
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can be written as  

).(/])('')()[( xBxHxBvrp   

Now, condition 3 is guaranteed if 0)0('1  H ; if 0)0('1  H , the condition 

translates to  

            ].1)0('/[)(  Hcrp          

Interestingly, the condition 3 is the same as condition 2 in Gerchak and Wang [9]. As 

mentioned in Gerchak and Wang [9], since the explicit shortage penalty will tend to be 

relatively low, possibly zero, these two assumptions are thus plausible. 

 

Now, let us prove the following: 

 

PROPOSITION 1: )|( IQ is strictly concave in Q. 

 

PROOF: From (2) it follows, after some algebra, that  
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The inequality in (7) follows from assumption (3). Thus, Proposition 1 is proved. 

                                                                           

  Our second goal is to show that there exists a unique and finite critical level of initial stock 

above which no order will be placed. From (6), the first-order derivative of )|( IQ  with 

respect to Q at Q=0 is given by 
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Thus, it follows that  
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where the inequality follows from assumption (4). Thus, we see that the first order derivative 

of )|( IQ  with respect to Q at Q=0 is decreasing in the initial stock level I. 

Also from (8), since H(x)>0 by assumption, which implies I/H(I)|I=0=0, we have 
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PROPOSITION 2: There exists a unique value I0, 0< I0<∞, of initial stock level, such that the 
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  Now, consider the optimal order quantity Q*=Q(I) for I< I0, which we know by Proposition 

2 to be strictly greater than zero. Since )|( IQ is strictly concave in Q by Proposition 1, 

Q* will be given by equation (6) to zero; that is, Q*=Q(I) solves 
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By the result of Gerchak et al. (1988), for I< I0, E[YQ]=μQ*(I)  I0-I. Therefore, the 

optimal policy does not call for order quantity which is expected to be bring stock up to a 



International Journal of Control and Automation 

Vol. 5, No. 2, June, 2012 

 

 

58 

 

constant level. 

 

PROPOSITION 2: The optimal order quantity for our single period problem is given by  
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where Q** is given by (12). 

 

EXAMPLE 1: Let H(x) be given by 

           
1 / 2( ) ( 1 )H x x  . 

All the assumptions we made about H(x) are satisfied by this example. That is, a=1, d=1, 

b=1/2. We also assume that the distribution of the random multiplier W in the demand 

function is uniform; i.e., 

                ( ) 1 / 2 ,        0 2 ;          s o   = 1 .g w w     

For the distribution of the random multiplier U in the yield, we assume  

                ( ) 1 ,      0 1,     s o   1 / 2 .    f u u      

In addition we assume that unit revenue r=10, unit production/purchase cost c=2, unit cost 

associated with each unsold item at the end of the period in single period setting v=1, unit 

shortage penalty cost p=1  

By the Proposition 2, I0=4.16573. That is, if initial inventory I is greater than or equal to 

I0=4.16573, we then do not order any item in this example. However, if initial inventory I is 

less than I0=4.16573, we order some items. To determine order quantity, we use Proposition 3. 

In this example, let us assume that initial stock level of a period I=0. Since I=0 is less than 

I0=4.16573, by using Proposition 3 the order quantity Q**=0.6705. 

 

4. Two Period Model 
 

  Consider now a two-period problem with random demands D1 and D2 and random 

multipliers U1 and U2. Then the decision problem in the first period is to find the value of Q 

which maximizes 

 

                                          (13) 

 

where        is the expected profit in first period (with h as unit holding cost), and 

                       is the final period value function [22]. 
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  Now, since both terms on the right in (13) are concave in Q, so is   . Also, from (6), (13) 

and (14) we have 
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The conclusion from (15), (16), (17) and the concavity of 2 is summarized in the 

following. 

Proposition 4: For the first period in a two period problem, there exists I1 such that the 
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optimal order quantity Q* satisfies   
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  Now, consider the optimal order quantity Q*=Q(I) for I<I1. 

 

Proposition 5: For the first period in a two period problem, there exists I1 such that the optimal 
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5. Multiperiod Model 

For the n period problem, the decision in the first period is to find the value of Q which 

maximizes 

 

                                             

 

Using a similar approach to the two period model, we can show: 
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4. For the first period in n period problem, there exists In such that the optimal order 

quantity Q* satisfies 
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       where Q** is given by the following equation, 
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      where ( | ) /Q I Q  is given by (6). 

 

5. Concluding Remarks and Future Research 

In this research we consider single period and multi-period inventory models incorporating 

inventory level dependent demand with random yield. To develop the incorporated inventory 

model, we use Gerchak and Wang [9]’s demand model since it makes both the modeling and 

analysis of the periodic-review model much easier, and permits the derivation of explicit, 

implementable solutions. For the random yield, we use Gerchak et al. [22]’s yield model since 

the multiplicative yield model in the paper [22] is more convenient than the additive model. 

In the incorporated inventory models, we showed that the objective function is concave in 

some conditions and that the optimal policy is of a “reorder-point” type. That is, there exists a 

unique and finite value such that if the initial stock is greater than this value the order quantity 

is zero, otherwise the order quantity is greater than zero. Expressions for determining the 

reorder point and the optimal order quantity are derived. When only inventory level 

dependent demand is considered, the reorder point policy reduces to an order-up-to type. 

For the future research, we are investigating multiperiod inventory model in which demand 

is inventory level dependent and yield is random and production capacity is variable. 
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