
International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

35

Automated Memory Leakage Detection in Android Based Systems

 Jihyun Park and Byoungju Choi
1

Dept. of Computer Science & Engineering Ewha Womans University, Seoul, Korea

pola0527@ewhain.net, bjchoi@ewha.ac.kr

Abstract

Since open platforms such as Android vary in device manufacturers and application

developers, modifications in software happened in multiple layers. Therefore, every layer

including OS, library, framework and application may have defects within. Especially, a

memory leakage which increases memory usage and diminish overall system performance is

the key issue in embedded systems with highly limited resources.

In this paper, we suggest a technique that detects memory leakage by gathering memory

execution information in run-time via PCB hooking and apply this technique to actual

Android smartphones. The suggested technique does not require a target source code and any

hardware changes for memory leakage detection, and it is characterized by maintaining the

same target runtime status even in detecting while minimizing performance overhead

simultaneously. We implemented an automated tool of this technique for Android Smartphone,

and show that it is effective.

Keywords: Memory Leakage, Android, Software Test

1. Introduction

Since the embedded system consists of limited hardware resources, the software for the

embedded system must support hardware optimization technologies such as lightweight, low-

power and efficient resource management. As Android system is embedded in mobile devices

such as smartphones, usage of resources (memories and batteries) is limited just like other

embedded systems. Therefore, when developing the software, programmer should be able to

manage resources efficiently.

Android is a software stack for mobile devices that includes operating system, middleware

and applications. Various defects can be found in Android system. Having high frequency of

memory leakage like ‘Out of Memory’ particularly in Android applications, the efficient

management of memory usage is needed in Android system. In order to use memory

efficiently, memory should be returned to the system after being distributed as required to

running programs or applications. However, there is a possibility that programs or

applications may not return and keep on occupying unnecessary memory. This program state

is called memory leakage.

Memory leakage is a program state that happens either when new memory is being

allocated constantly while a program is still running or when a seemingly closed program

actually remains in memory. If memory leakage gets worse, it uses up much more memory

over time while a program is running. This is a serious problem especially in embedded

device where efficient resource usage is important.

In Android system, memory defects occur in different ways between Android application

layers operating in virtual machine and processes operating in Linux kernel.

1
 Corresponding author

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

36

In Dalvik virtual machine, the heap memory is being allocated for each application and any

wasted memory resources are being collected by executing the Garbage Collector periodically.

The Garbage Collector plays a role in removing objects from memory, when the objects

generated by an application in execution are no longer in use. However, not knowing exactly

when the Garbage Collector is performed, memory shortage may occur if memory is being

used unboundedly. In case which a program maintains a reference to an object, even if the

object is no longer being used, unnecessary memory waste - memory leakage occurs because

the object is not subject to the Garbage Collector[1][2][3].

For processes operating in the Linux kernel, they do not go under any additional memory

management. Because of that, there can be various problems such as memory leakage due to

not removing memory after its allocation or removing memory after its removal.

In this paper, we suggest an automated memory leakage detection technique considering

the characteristics of software in Android platform (hereinafter referred to as “Android“) and

apply it to actual Android platform for analysis. The suggesting technique does not involve in

changing target software code and hardware and is characterized by maintaining the same its

runtime status in detecting, and minimizing performance overhead simultaneously.

2. Memory Leakage Detection

There are mainly two causes for memory leakage in Android. The first one is where the

object generated in application running on Dalvik virtual machine is not collected by the

Garbage Collector, though it is no longer being used and cause memory leakage staying in the

memory space of application. The second one is where memory is not returned after being

allocated and used in kernel layer. Based on these causes, we suggest an automated memory

leakage detection method overcoming restrictions - (1) No modifications to the target

software allowed, (2) Maintaining runtime status, (3) Minimizing performance overhead and

(4) Targeting all software in the system.

When collecting the data related to memory leakage detection in runtime, optimizing

locations where the data are collected is one of the best solutions to minimize system

performance degradation. In order to do dynamic embedded software test, we have suggested

a test technique that collects test information via hooking process control block (PCB)

managing runtime running information in purpose of controlling process by OS [4]. In other

words, it is a technique that collects running information of all the processes running in the

system via PCB hooking and minimizes corresponding system overhead better than the other

test techniques. In this paper, memory leakage detection is automated via PCB hooking.

PCB is a kernel data structure that manages necessary information for controlling specific

process. In general, PCB contains information on running processes such as ‘process ID,

priority, shared library list, specific process-resource list‘. Especially, PCB is generated

simultaneously as the process is generated, and PCB is always updated with the latest

information about the process as long as the process is operated. Since the information gets

deleted as the process is terminated, it is the best location for getting the latest information

regarding dynamic activities during process running. Our technique has the advantage of

minimizing system overload by concentrating detection activity on one location, PCB, rather

than spreading over multiple locations.

Hooking is a programming skill that snatches system management and control system in

runtime and modifies them into desired direction for specific purpose. In this paper, when a

function which becomes the subject to monitoring starts to run, hooking snatches it and run

‘Patch function’ to collect data regarding memory leakage as in Figure 1. Add to the functions

of the preexisting function, the patch function collects data that is for detecting memory

leakage.

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

37

Our suggested memory leakage detection technique consists of three steps as follows –

identifying PCB, extracting information on memory leakage, and judging memory leakage.

Step 1. Identifying PCB: Identify a kernel memory space where PCB is stored.

Step 2. Extracting information on memory leakage: Extract necessary memory leakage

information stored in PCB

 (1) Creating patch function: The patch function that is for extracting memory leakage

information is implemented via library being loaded on shared memory space.

 (2) Hooking: The location for extracting memory leakage information is identified via

PCB and the location gets hooked by the patch function.

 (3) Collecting information on memory leakage: When the patch function starts to run,

the memory leakage information is collected for defect analysis.

Step 3. Judging memory leakage: Memory leakage is judged by analyzing memory leakage

information.

The point is to collect memory leakage related data with patch function from the optimized

location for detecting memory leakage from Step 2 in real time.

Unlike general C based programs allocate/remove memory using functions like malloc/free,

Android applications is allocated with heap memory space in advance as soon as an object is

created as in Figure 2. When an application creates an object, it allocates empty space from

allocated heap memory area and increases the reference value of the objects. However, when

it no longer uses the object, it decreases the reference value to collect memory later via the

Garbage Collector. Therefore, in order to obtain memory leakage information, not only

Figure 1. Hooking

Figure 2. Android Memory Management

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

38

general functions related with memory such as malloc/free, but also the method for allocating

the object to heap memory as dvmMalloc/dvmAllocObject is being called when an applicatio

n creates an object using ‘new‘, and the dvmHeapHandleReferences method that is being

called to check the reference value of the object when the Garbage Collector is performing

become the location for detecting memory leakage.

When the hooking-targeted function runs after PCB is being hooked, the patch function

starts to perform. For example, as Figure 3 shows, the patch function of dvmMalloc calls the

original function of dvmMalloc maintaining the original function of allocating memory for

the object, and leaves the necessary data for judging leakage as log form.

void* Patch_dvmMalloc(size_t size, int flags) {

 void* return val = dvmMalloc(size, flags);

 writeLog(return_val, size);

 return return_val;

}

Figure 3. Patch Function Code of dvmMalloc

In order to judge memory leakage using memory leakage information extracted from Step

2, the address of the allocated object and the address of removed memory. Memory leakage is

judged after tracking whether the address allocated to malloc, calloc or realloc is not removed

to free and still remains. It is judged as memory leakage as the reference value for the

allocated object still remains if the object address allocated to dvmMalloc, dvmAllocObject

or dvmHeapHandle References runs.

We implemented it as an automation tool and named it as AMOS for Android (hereinafter

referred to as AMOS). AMOS consists of AMOS
SA

 (Scanning Agent) and AMOS
TM

 (Test

Manager) as shown in Figure 4. AMOS
SA

 is equipped in the targeted system, and collect

information on memory leakage. AMOS
TM

 (Test Manager) analyzes information collected

from the binary image and scanning agent of the targeted software in the host system, and

derives the test result from the analysis.

Figure 4. AMOS System Structure

3. Case Study

The smartphones we have used for case study are HTC I/O Device, Linux 2.6.xx and

Android 2.2 (froyo). The target applications were 175 applications basically equipped in a

Galaxy S smartphone. We organized four test scenarios where memory leakage can occur in

applications as follows.

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

39

Scenario 1. Creating and terminating an application repeatedly

Scenario 2. Switching between vertical/horizontal views

Scenario 3. UI event occurrence

Scenario 4. Running multiple applications concurrently

We compare our memory leakage detection technique with DDMS and MAT, the memory

testing tools for android system, to find out whether our technique can detect memory leakage

and analyze the cause of it efficiently[5][6].

When we tested four scenarios to 35 Android applications, memory leakage occurred in

total 11 applications as shown in Table 1. For example, in case of the internet web browser,

memory leakage occurred, when the test scenarios 1 and 3 are applied. All of the tools such as

AMOS, MAT, and DDMS detected leakage.

Table 1. Memory Leakage

Application
Leakage Occurrence Leakage Detection

Actual Leakage Defects
 (Reported Leaked Objects)

Test Scenario AMOS MAT DDMS AMOS MAT DDMS

V3 Mobile Scenario 1, 4 Y Y Y 2(2) 0(3) -

Internet Web Browser Scenario 1, 3 Y Y Y 4(4) 1(3) -

Camera Scenario 1 Y Y Y 3(3) 0(4) -

Daum Maps Scenario 1,2,3 Y Y Y 11(11) 2(4) -

E-mail Scenario 1 Y Y Y 6(6) 0(4) -

Cyworld Scenario 1 Y Y Y 5(5) 0(4) -

Naver Scenario 1 Y Y Y 7(7) 0(4) -

Daum TV Pot Scenario 1 Y Y Y 5(5) 0(4) -

Video Player Scenario 2 Y Y Y 4(4) 2(4) -

Subway Maps Scenario 3 Y N Y 1(1) 0(0) -

Naver Maps Scenario 3 Y Y Y 3(3) 2(3) -

Total 51(51) 6(37) -

A leak reporting mechanism is different for each tools and AMOS and MAT shows the

object which creates memory leakage. However, not all of the objects shown are the objects

that are responsible for the leakage. We will compare the results from the test scenario 1

where it repeats a cycle of creating and terminating the internet web browser 100 times.

We identified detailed information regarding the object by tracking the source code

appeared in CallStack information, and the objects responsible for the leakage in the internet

web browser are as follows - String object of ‘android.webkit.PluginManager’, char[] object

of ‘Android.text.AutoText’, Drawable object of ‘Android.text.AutoText’, and String object of

‘org.apache.http.impl.EnglishReasonPhraseCatalog$DefaultTimeZone’.

These are all actual leakage defects. When the internet web browser is running on the

background after being terminated, the objects generated to show the display should be

removed and when the application is launched again, new objects should be generated.

However, since the internet web browser still refers to the objects which should be removed,

the objects do not become the subject of the Garbage Collector and remains in memory,

causing memory leakage.

MAT shows the top three classes with the most memory usage as suspicious objects in

memory leakage. Regarding this creation-termination repetition test scenario, HashMap

object of TrustManagerImpl class, String object of DefaultTimeZones class and Hashtable

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

40

object of BouncyCastleProvider are appeared as suspicious objects in memory leakage.

However, only String object of DefaultTimeZones class is the memory leaking object.

For DDMS, it shows the heap memory usage. When suspecting memory leakage, if the

objects are not garbage collected and still remains when a user performs the Garbage

Collection using [Cause GC] provided by the tool, and the objects pile up as an application

proceeds, it can be judged to be memory leakage. It is possible to know whether memory

leakage occurred in an application through this process, however it is impossible to know

which objects caused the leakage.

Figure 5. Memory Leakage Test Result Comparison

Figure 5 is the graph of the actual leakage defects vs. objects reported by AMOS and MAT

regarding 11 applications where the leakage occurred. According to AMOS, among 51

leakage occurring objects, every objects were the actual defect occurring objects. According

to MAT, among 37 reported objects, only six (16%) of them are the actual defect occurring

objects.

DDMS and MAT detect leakage by analyzing heap memory of one application. It means

that it is possible to detect leakage, when the leakage defect occurred within an application;

however, if the leakage is caused by different layers, it is hard to detect the leakage. However,

AMOS can test the entire system image to find wherever the leakage occurred. AMOS also

can analyze the cause of leakage. AMOS shows CallStack information including names of

source code files and functions in order to find the objects responsible for leakage. Analyzing

the causes of leakage in 11 applications reveals that the most of the cases are the defects

occurred within the applications as shown in Figure 6 and both of the Android Framework

layer and kernel had one leakage respectively.

Figure 6. Distribution of Causes of Memory Leakage Defects

The defects occurred in Android applications are mostly the defects where an application

maintains the reference to the object due to improper removal of the object, whereas the

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

41

objects are supposed to be created and removed in process of switching Activity which is the

display of an application to foreground and background

In Naver Maps application, memory leakage is caused by LinkedHashMap object

generated in ‘dalvik.system.PathClassLoader’ of Android Framework class. Based on Google

Maps, Naver Maps application calls PathClassLoader in order to load Google Maps. We

identified that memory leakage occurs as LinkedHashMap generated from PathClassLoader

keeps being generated,

The defects occurred in Kernel layer are from Service Administrator Process. As a daemon

process which runs as Android boots up, Service Administrator Process registers services into

system, and finds proper services when requested by an application. When a new service is

generated and the corresponding allocation request enters to Service Administrator Process,

the Administrator allocate memory to the request using malloc function, however the defects

occur when memory does not get removed, even after the service is terminated.

In AMOS, there is a running agent equipped on a target, and an agent consists of a module,

a log collection module, a library defined by hooking functions. Three of these modules take

up 64kbytes, which is very small compared to the average size (2.54MB) of applications that

come with a Galaxy S. The runtime of an application is also added by 0.14x while the tool is

running. However, it barely affects system performance since the overhead of AMOS is

smaller than that of DDMS.

Since DDMS and MAT does not have a running module equipped on a target, memory

overhead does not occur. For DDMS, the runtime overhead of around 0.174x occurs while

tracking heap memory. For MAT, the runtime overhead does not occur because MAT extracts

heap log regardless of application execution.

5. Conclusion

Since open platforms such as Android vary in device manufacturers and application

developers, modifications in software happened in multiple layers. Therefore, every

layer including OS, library, framework and application may have defects within. It is

even hard for an application developer to detect defects by checking inside of a system.

Even if a developer finds a defect, it is hard for him to debug.

Since memory leakage defects in applications, in particular, increases memory usage

and diminish overall system performance, it is the key issue in embedded systems with

highly limited resources.

In this paper, we suggested a method that judges memory leakage from a host by

tracking memory related functions and real-time logging into memory leakage related

data on a target, in order to detect memory leakage defects on Android platform by

applying hooking technique. We implemented AMOS and applied to 35 applications on

the Android platform and analyzed the result. As a result, 51 memory leakage objects

from 11 applications were found. Defects found by AMOS can track the location by log

analysis. It was very helpful for debugging on android system and applications.

Applying the same principle to DDMS and MAT, we compared the results with that

of AMOS. DDMS only shows heap memory usage and leave a judgment on the memory

leakage to user’s discretion. On the other hand, MAT and AMOS judges the memory

leakage from a tool. MAT analyzes heap memory situation when extracting log, and

shows information which turns into a cause of memory leakage defect. AMOS shows

the result of memory leakage judgment by analyzing logs collected from the agent.

Though, both of the tools inform the causes of memory leakage, the accuracy of MAT

is 18% which is very low compared to 100% accuracy of AMOS.

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

42

Based on the findings of this study, we are now expanding our work to detect the

defects occurring from interactions between Android applications.

Acknowledgements

This research was supported by the MKE(The Ministry of Knowledge Economy),

Korea, under the ITRC(Information Technology Research Center) support program

supervised by the NIPA(National IT Industry Promotion Agency(NIPA-2012-(H0301-

12-3004))).

References

[1] M. Jump, K. S. McKinley, “Cork: Dynamic Memory Leak Detection for Garbage-Collected Languages”,
SIGPLAN Not., vol. 42, (2007), pp. 31-38.

[2] Y. Tang, Q. Gao and F. Qin, “LeakSurvivor: Towards Safely Tolerating Memory Leaks for Garbage-
Collected Language”, In USENIX Annual Technical Conference, (2008), pp. 307–320.

[3] G. Xu and A. Rountev, “Precise Memory Leak Detection for Java Software Using Container Profiling”, In
ICSE, (2008), pp. 151–160.

[4] J. Seo, B. Choi and S. Yang, "A Profiling Method by PCB Hooking and Its Application for Memory Fault

Detection in Embedded System Operational Test", Journal of Information and Software Technology, vol. 53,
no. 1, (2011), pp. 106-117.

[5] DDMS, http://developer.android.com/guide/developing/debugging/ddms.html.

[6] MAT, http://psychcorp.pearsonassessments.com/haiweb/Cultures/en-US/site/Community/PostSecondary/
Products/MAT/mathome.htm.

Authors

Jihyun Park

Jihyun Park is a Ph.D. student in the Department of Computer

Science and Engineering at Ewha Womans University in Korea. Park

holds B.S. and M.S. degrees in Computer Scicence and Engineering

from Ewha Womans University.

Byoungju Choi

Byoungju Choi is a full professor in the Department of Computer

Science and Engineering at Ewha Womans University in Korea. Choi

holds a B.S. degree in mathematics from Ewha Womans University,

M.S. and Ph.D. degrees in computer sciences from Perdue University,

USA. Choi’s research interests include software engineering with

particular emphasis on software testing, risk based testing, embedded

software testing, and software process improvement.

