
International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

25

A Novel Method for Generating Test Scenarios Based on IDF Model

In Hwa Choi
1
, Jong Ho Paik

1
*, Jun Hwang

1
 and Jaehyoun Kim

2

1
Department of Multimedia, Seoul Women’s University

2
Department of Computer Education, Sungkyunkwaqn University

 {urangi, paikjh, hjun}@swu.ac.kr, jaekim@skku.edu

Abstract

This paper defines a new type of faults that can happen in the integration of embedded

systems. When reusing a hardware component combining with a new software component,

there can be discrepancy among the interfaces of the legacy hardware and the new software.

IDF (interface discrepancy fault) means the faults that come from discrepancy between

interfaces of reused hardware (legacy codes) and a new software to combine with. This paper

defines the IDF model for embedded software testing. In this paper, the DFS (Depth First

Search) algorithm is enlarged to insert IDF node and is used to automatically produce test

scenarios considering the interface discrepancy. The resulted test scenarios raise the test

coverage and help the testers to check the interface discrepancy faults between the HW and

SW for embedded modules, which have usually been ignored and consumed much of the

clueless efforts

Keywords: Software Interface fault model, IDF, Test scenario, Interface fault test

1. Introduction

Generally speaking, embedded systems had been designed and implemented focused on

HW, except some critical functions to perform specific parts. However, recently the

embedded SW has been used in the type of convergence in a wide area, such as in Smart-

phones, Smart TV, medical instruments, telecommunication, aviation, automobiles. Thus the

focus has been moved towards SW from HW to be the qualified products. These changes

make the SW more crucial and complex, and so is the testing of SW to ensure the quality of

the embedded systems.

To improve the quality of SW, various professional methods of testing has been

developed, such as ‘system static analysis, formal model proof, automated code

generation, etc. [1, 2]. Also the structural test, random test, interface test has been used

for embedded SW quality inspection [14, 15, 16]. However, the specific traits of

embedded SW – high coupling for optimization, frequent changes in SW owing to the

dependency on the target HW, big-bang type of integration and difficulties in

V&V(Verification and Validation), participation of various companies and higher risk

of interface discrepancy among the heterogeneous hierarchy of modules[4 , 5, 6, 7] –

makes the SW testing even more difficult.

According to recent trend of reusing HW modules, there are more and more interface

discrepancy faults between SW component and HW, which makes the testing process

quite expensive and time consumable.

Actually, the result of survey regarding on testing process of 3 DAB developing

companies, there have been interface discrepancy faults and it took them 30% of testing

schedule. The key reason was the fact that there has been no concept of this kind of

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

26

fault for the existing testing methodologies. This made it very difficult for the testers to

expect and detect the fault.

Generally speaking, embedded SW testing methods assume that if there is a branch in

HW interfaces, the SW would call and interface with the proper, exact one. They don’t

expect or consider the situation that the target function to interface with can be wrong –

owing to some unexpected fault. In this case, the performing of the wrong function is

meaningless, nevertheless whether the result is successful or not. Rather, if the result is

the same with expected result by any chance, it is far more dangerous because the tester

may consider it successful.

This paper defines these kinds of interface discrepancy fault (IDF) model, and

proposes the algorithm that generates the test scenarios to test IDF. The number of the

test scenarios generated by the algorithm adopting IDF model was a lot higher,

compared to the existing methods that doesn’t consider IDF model. It shows significant

meaning of IDF model in SW testing in terms of raising test coverage and fault

detecting probability.

This paper is composed as follows:

Chapter 2 introduced new fault model named ‘IDF’. Chapter 3 explains an algorithm

which automatically generates test scenarios based on IDF model. Lastly, chapter 4 states the

conclusion of the study and the direction of research hereafter.

2. IDF (Interface Discrepancy Fault) Model

The IDF is the faults that can occur when the interfaces of heterogeneous layers to

integrate are not matched. This phenomenon appears frequently while reusing HW modules

to develop embedded system. For example, consider HW module has related interfaces A and

A’ in the embedded system but in the SW, only A is defined. Now, the SW module tries to

call HW interface A. However, let’s think about the situation that an unexpected fault occurs

and A’ is called instead of A. This is clearly the erroneous situation. However, HW has got A’

defined, and not knowing that this call is mishap, it performs it out unfortunately. The result

itself is fail regardless of the value, but the existing testing model hasn’t had the concept of

interface discrepancy fault, thus it has been impossible to identify the cause of the errors.

Even more dangerous case is that the result value matches with the expected

successful value and deceives the tester and makes the tester ignorant of the fact that

there WAS an error. Even when the error is perceived, the result is usually the one that

are performed several steps afterwards that it is really difficult to detect where and how

the fault occurred. Ideally, there must be tests that check whether the correct interfaces

are called and performed between SW and HW. To solve this problem, this paper

defines a new type of fault model that may occur in the integration of legacy HW and

new SW.

Definition

Consider an embedded system P, and the test case t for P. Suppose that P is composed

of SW unit F and G, and HW unit H.

∙ F makes hardware signals to H,

∙ H makes hardware signals to G

Consider SI(H) to be the n-tuple of values passed to H, and SI(G) the n-tuple of values

passed to G, and SO(H) the n-tuple of values delivered from H.

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

27

The SI(H), SI(G), and SO(H) are defined as:

∙ SI(H): The n-tuple of input values used in a call to function H is determined by

- The input parameters used in the function call and

- The global variables used in G

∙ SI(G): The n-tuple of input values used in the call to function G is determined by

- the input parameters used in the function call

∙ SO(H): The n-tuple of output values by function H is determined by

- The n-tuple of result values that are resulted by the input values to H and stored in the

hardware memory or register.

When performing P in the test case t, the interface faults that can be resulted from the

signals from F to H are as follows:

Figure 1. Interface Discrepancy Fault Model

Type 9: At the introduction of H, SI(H) may have some unexpected values, which

makes an unintended input values. Nevertheless, H accepts it as a normal input and tries

to perform the next process.

Type 10: As a result of type 9, H performs the wrong function which is not intended by

H, and the wrong values are stored in the memory or register by SO(H). Also the unit G

use this wrong output and results in wrong results again.

Type 11: As a result of type 9, H performs the wrong function that is not intended by F,

and then via SI(G), performing command is passed to unit G. Unit G also results in a

wrong outcome.

The Figure 1 depicts the 9, 10, 11 types of IDF model defined ahead.

3. Test Scenario Generation Algorithm based on IDF Model

The automatic test scenario generation method proposed in this paper is composed in three

steps. The first step is ‘activity diagram generation’ step where the target domain is analyzed

and expressed as activity diagrams using UML. The second step is ‘graph drawing’ step

where the activity diagram of the 1st step is converted into a graph by some determined rules.

And lastly, the third step is ‘test scenario generation’ step where the graph is used to generate

test scenarios by adopting an algorithm.

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

28

3.1. Activity Diagram Generation

Here, the target domain for test scenario is Digital Audio Broadcast (DAB)

‘announcement’ function. Figure 2 shows this announcement function as an activity diagram.

Figure 2. Activity Diagram of DAB Announcement

The central line distinguish the DAB SW module in the right area, and User Interface

(UI). DAB SW module receives the broadcasting signal and decodes it, and on request

from the user, it passes signal to specific hardware interface. UI offers the information

received from DAB S/W module to the user, and delivers the request from the user to

the module. The process to generate the activity diagram is omitted, for it is not the

proposed content in this paper.

3.2. Graph Drawing by using Activity Diagram

There has been various studies based on UML regarding with methods to draw graphs for

automatic test-cases generation [10, 11, 12, 13]. However, existing methods cannot generate

test scenarios that consider interface discrepancy faults. This paper extends the existing graph

drawing method by adding a new attribute to the nodes, so that the graph become capable of

adopting the IDF model. The graph used here is directed graph and defined as:

G = {N, E} (1)

N = {n1, n2,
 …

, nn} (2)

E = {e1, e2,
 …

,en} (3)

ni = {id, a} (4)

ei = {id, tail node, head node, c} (5)

a = {i or IDF or NIDF} (6)

∙ The graph G is compose of N (a set of more than one node n) and E (a set of more

than one edge e which links two n) (1), (2) and (3).

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

29

∙ n is compose of “unique identifier id and attribute a” (4).

∙ e is composed of “unique identifier id and a pair of tail node and head node, and

necessary condition c that forms a pair of n” (5).

∙ a is composed of i (interface node) and IDF(IDF node) and NIDF(general node) (6).

Figure 3. Graph converted from Diagram

Figure 3 depicts the result of graph conversion from the activity diagram of Figure 2

by using definition formula.

The graph is generated by the following rules.

∙ One activity is expressed as a node.

∙ To grant each node a unique id and an attribute.

∙ Attribute rule: If an activity is linked to hardware interface, grant i attribute, if it is

a linking branch with hardware interface, grant IDF attribute, and grant NIDF

attribute for the other cases.

∙ When expressing linkage information e from activity A to activity B, A is tail node

and B is head node.

∙ In an activity, there can be more than two divergences to different activities by

some condition. Here, the condition is expressed as the condition for each edge of

those pairs of activities.

3.3. Test Scenario Generation Algorithm using the Graph

This chapter explains test scenario generation algorithm using the graph in two parts. The

first part is about the algorithm to generate general test scenarios, which is an extended

algorithm of DFS. The second part explains the algorithm to generate test scenarios for IDF

that this paper defines.

3.3.1. General Test Scenario Generation: The first algorithm is the one adapted from DFS

(Depth First Search). The adapted graph algorithm store the paths using a stack structure, and

then draw the paths needed for the testing.

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

30

By adapting the Main Algorithm in Figure 4 to the graph in Figure 3, three graph

paths can be obtained as follow.

∙ path 1: n1→ n2→ n3→ n4→ n5→ n6→ n7

∙ path 2: n1→ n2→ n3→ n4→ n5→ n8→ n9→ n10→ n11→ n6→ n7

∙ path 3: n1→ n2→ n3→ n12

Figure. 4. Main Algorithm Figure. 5. Sub Algorithm

Figure 5 shows the extended Sub Algorithm which adds edge information on the

paths above and get the number of IDF nodes in each path, so that we can generate test

scenarios. By these processes, test scenarios are generated as follows:

∙ TS1: By these processes, test scenarios are generated as follows:

∙ TS2: n1 e1→ n2→ e2→ n3→ e3→ n4→ e4→ n5→ e7→ n8→ e8→ n9→ e9→

n10→ e10→ n11

∙ TS3: n1→ e → n2→ e2→ n3→ e12→ n12

3.3.2. IDF Test Scenario Generation: IDF test scenario can be generated by predicting fault

occurrence paths in the graph of Figure 3. There are 6 paths and they are labeled from ① to

⑥. Path ⑥ is branched from TS3. This is the case where some error occurs in the way

to HW interface n12 and goes to wrong interface n9.

In this situation, HW unit does not recognize the fault and thus proceed to perform

processes related with n9. If SW unit already performed processed regarding n4, n5, n8

which located before n9, there would be no collision with the result of HW processing.

However, in fact the SW unit has processed by n3 and there shall be unexpected

collision between SW unit and HW unit. In the same way like path ⑥, path ⑤ performs

properly by n1→ e1 → n2→ e2 → n3 but there shall be error in e12 and interface n6 is

performed instead of n12.

The rest of the paths are also the cases that from IDF node to the first interface node,

there occurs some errors on the edge that links to the target interface and thus makes a

new edge.

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

31

Figure 7 depicts the algorithm that generates IDF test scenarios. The general

TSs(4.3.1) are only calling the target interfaces. However, the extended IDF model TSs

are inducing node information in legacy TS. When it encounters with IDF node, it adds

paths to the other interfaces (excepting the target interface) and generate test scenarios.

The followings are the paths generated by the extended algorithm

∙ IDF TS1: n1→ e1→ n2→ e2→ n3→ e3→ n4→ e4→ n5→ e15→ n9

∙ IDF TS2: n1→ e1→ n2→ e2→ n3→ e3→ n4→ e4→ n5→ e16→ n12

∙ IDF TS3: n1→ e1→ n2→ e2→ n3→ e3→ n4→ e4→ n5→ e7 → n8→ e17→ n6

∙ IDF TS4: n1→ e1→ n2→ e2→ n3→ e3→ n4→ e4→ n5→ e7→ n8→ e18→ n12

∙ IDF TS5: n1→ e1→ n2→ e2→ n3→ e19→ n6

∙ IDF TS6: n1→ e1→ n2→ e2→ n3→ e20→ n9

These are definitely the error scenarios and if the SW is written properly, it shall

detect the error and perform a proper exception dealing routines. In this way, by adding

TS based on IDF model, the tester can check the interfacing errors between the legacy

HW and the SW. These IDF TSs can check the erroneous part as vague as a black box.

By IDF model, SW become more robust against interface discrepancy faults which has

made the embedded SW testing very difficult.

4. Conclusions

This paper proposes two things regarding with embedded system test. The first is to define

a new interface fault model which has not been dealt before. This model can be categorized in

three types which can occur when a legacy HW is reused and integrated with a new SW.

Secondly, this paper introduces test generating algorithm that considers the new fault model.

The original algorithm based on DFS graph is extended and via main and sub algorithms, test

scenarios can be generated to check not only the normal cases but also the IDF cases

Compared with previous TSs, IDF model results in more test scenarios which deals

with crucial error cases in embedded system. The proposed model has significant

meaning in that it raises the test coverage and the probability of fault occurrence.

This paper covers the proposal of the fault model and method to generate related test

scenarios. Hereafter, it is planned to implement the model and scenario and apply

actually to embedded systems. Through this, the result will be compared with the

existing test methods and analyzed to prove the significance of the proposed model.

References

[1] B. E. Notenboom, “Testing Embedded Software”, Addison-Wesley, (2003).

[2] J. Regehr, “Random testing of interrupt-driven software”, In Proc. Of the Int’l Conf. on Embedded Software

(2005) September, pp.290-298.

[3] J. Yo. Seo, “Imbedded Software Test reflecting System state”, (2009).

[4] A. A. Jerraya and W. Wolf, “hardware/software interface codesign for embedded systems”, IEEE Computer,
(2005), pp. 75-84.

[5] T. Wei-Tek, T. Lian, Z. Feng and P. Ray, “Rapid embedded system testing using verification patterns”, IEEE
Software, (2005), pp. 68-75.

[6] S. Yoo and A. A. Jerraya, “Introduction to hardware abstraction layers for Soc”, In Proc. Of the Int’l Conf.
On Design, Automation and Test in Europe and Exhibition(DATE), (2003), pp. 336-347.

[7] E. A. Lee, “What’s ahead for embedded software?”, IEEE Computer, (2000), pp. 18-26.

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

32

[8] M. E. Delamaro, J. C. Maldonado and A. P. Mathur, “Interface mutation: an approach for integration testing”,
IEEE Transactions on Software Engineering, vol. 27, no. 3, (2001) March.

[9] Haley and S. Zweden, “Development and application of a white box approach to integration testing”, The
Journal of Systems and Software, vol. 4, (1984), pp. 309-315.

[10] H. Kim, “GeGenerating Test cases from UML Activity Diagrams”, Information and Communications
University.

[11] C. Minsong, Q. Xiaokang and L. Xuandong, “Automatic test case generation for UML activity diagram”,
Proceedings of the 2006 international workshop on Automation of software test AST' 06, (2006).

[12] D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases from UML Activity Diagrams”,
Journal of Object Technology, vol. 8, no. 3, (2009) May.

[13] H. Li and C. P. Lam, “Using Anti-Ant-like Agents to Generate Test Threads from the UML Diagrams”,
TestCom 2005, LNCS 3502, (2005), pp.69-80.

[14] S. Kandl, R. Kirner and P. Puschner, “Development of a framework for automated systematic testing of
safety-critical embedded systems”.

[15] J. Regehr, “Random testing of interrupt-driven software”, In Proc. of the Int'l Conf. on Embedded
Software(EMSOFT), (2005), September, pp. 290-298.

[16] J. T. Alander, T. Mantere and G. Moghadampour, “Testing software response times using a genetic

algorithm”, In Proc. of the 3rd Nordic Workshop on Genetic Algorithms and their Applications (3NWGA)
(1997), pp. 293-298.

Authors

In Hwa Choi received the B.S. and M.S. degrees in Computer Science

from Seoul Women’s University, Korea, in 2005 and 2007 respectively.

She is currently pursuing her doctoral degree at Seoul Women's

University. Her present research interests are in the areas of digital

broadcasting and embedded software testing.

Jong Ho Paik received the B.S., M.S., and Ph.D. degrees in the school

of Electrical and Electronic Engineering from Chung-Ang University,

Seoul, Korea, in 1994, 1997, and 2007, respectively. He was a Director

with Advanced Mobile Research Center at Korea Electronics Technology

Institute (KETI) by 2011. He is currently an assistant professor in the

department of multimedia, Seoul Women’s University, Seoul, since 2011.

His research interests are in the areas of web-based communication,

software testing, wireless/wired communications system design, video

communications system design and system architecture for realizing

advanced digital communications system and for advanced mobile

broadcasting networks as well.

Jun Hwang received the B.S and M.S. and Ph.D. degrees in

Computer Science from Chung-Ang University, Korea, in 1985,

1987, and 1991 respectively. Since 1992, he has been a professor at

the College of Information & Media of Seoul Women’s University.

His current interests are IPTV, convergence computing, and digital

broadcasting.

International Journal of Control and Automation

 Vol. 5, No. 2, June, 2012

33

Jaehyoun Kim received his B.S. degree in mathematics from

Sungkyunkwan University, Seoul, Korea, M.S. degree in computer

science from Western Illinois University and Ph.D. degrees in computer

science from Illinois Institute of Technology in U.S.A. He was a Chief

Technology Officer at Kookmin Bank in Korea before he joined the

Department of Computer Education at Sungkyunkwan University in

March 2002. Currently he is a chairman of the department of Computer

Education at Sungkyunkwan University. His research interests include

object-oriented modeling and design, software architecture, software

process issues, and computer education.

International Journal of Control and Automation

Vol. 5, No. 2, June, 2012

34

