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Abstract 

 
In this paper, we investigate the problem of Neural Network (NN) observer for nonlinear 

systems. Therefore, it can be applied to systems with higher degree of nonlinearity with any a 
priory knowledge about system dynamics. 

The proposed neuro-observer is a three-layer feedforward neural network, which is trained 
extensively with the error backpropagation learning algorithm including a correction term to 
guarantee good tracking as well as bounded NN weights. Furthermore, the Lyapunov’s direct 
method is used in order to ensuring the stability of the proposed non-conventional observer and 
of the NN weight errors.  

The effectiveness of the proposed state observer scheme is demonstrated through numerical 
simulation to reconstruct the unavailable state variables of an induction motor (IM) and 
especially the rotor flux despite the effect of the arisen parameters such as the load torque 
which is also reconstructed using the NN observer. 

 
Keywords: Artificial neural network, Nonlinear observer, Backpropagation algorithm, Stability analysis, 

Lyapunov method, Induction motor. 

 
1. Introduction 

The state observation problem has been widely developed in the literature, and used in 
numerous applications. However in most cases, the state variables are rarely available for direct 
online measurements. Furthermore, there is a substantial requirement for reliable reconstruction 
of the state variables, especially when they are required in the synthesis of control and 
observation laws or for process monitoring purposes [1], [2], [3]. 

However, in most realistic cases merely input and output of the system are measurable. 
Therefore, estimating the state variables by observers plays a crucial role in the control of 
processes to achieve better performances [4], [5]. 

On the other hand, several conventional nonlinear observers have been suggested during the 
past decades, such as high-gain observers, sliding mode observers and others [6], [7], [8], 
however these conventional methods are relatively complex and are applicable to systems with 
knowledge of model structure. Whereas the use of non conventional techniques as neural 
networks in many scientific disciplines mainly in identification and control of dynamical 
systems has been widespread [9], [10], [11]. However, the application of the neural networks in 
the state observation remained an over problem.  

Moreover, neural network techniques have showing a good promise as competitive methods 
for signal processing, power systems and other applications [12], [13], [14]. Indeed, these 
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performances are due to their capacity for approximating a wide range of nonlinear functions 
[15], [16].  

It is noted that most practical systems are nonlinear and it is difficult to design a performant 
controller or observer. So far, the linearisation techniques can be used to overcome these 
problems. However, this linearisation can limit enormously the performances of such 
approaches of control and observation. In this case, the use of neural networks permits to 
approximate suitably the nonlinear functions and then to bypass the linearisation problem. 

In order to guarantee stability, robustness and good performances, several schemes based on 
the Lyapunov stability theory have been proposed in the literature. In [17], a neural net 
controller is derived using a filtered error passivity approach leading to new NN passivity 
properties. Via the Lyapunov theory, the stability of the neural net controller is guaranteed by 
using a tuning algorithm including a correction term to backbropagation. This correction term 
is used to relaxing the persistence of excitation (PE) condition, which is required to guarantee 
boundedness of the weight estimates. In [18], specific bounds are determined, and the tracking 
error bound can be made arbitrarily small by increasing a certain feedback gain. The correction 
terms involve a second-order forward-propagated wave in the backpropagation network. In 
order to tackle more general nonlinear systems, [19] extend the previous result. Indeed, two 
linearly parameterised neural networks are used to capture the unknown dynamic of the system, 
where their weights are adjusted via robust adaptation laws in order to guarantee the stability of 
the overall scheme. In [14], a neural network multimodel identification using radial basis 
function is presented. It is considered one tuneable layer neural network. To provide the 
convergence of the parameters of the identifier to the ideal parameters, persistency of excitation 
condition is developed. In [17], it is proposed a stable neural network based observer for 
general multivariable nonlinear systems using a backpropagation algorithm with a modification 
term.  

In our paper, we present the development of a multi-layer feedforward neural network 
observer for nonlinear systems. The NN, adopting a sigmoid activation function, is used to 
parameterize the nonlinearities of the system. This NN observer is trained with the error 
backpropagation algorithm. 

To guarantee the stability of the designed NN observer, several forms of weight tuning 
equations have been considered in the literature. In this paper, we succeed to obtain less 
complex conditions of the NN observer stability by selecting suitable weight tuning equations. 
Furthermore, a good choice of a sigmoïdal activation function has been carried out. Notice that 
there are many different activation functions used in literature, see for instance [15], [16] and 
the issue of selecting of these functions is a current topic of research.  

The proposed neural network state observer is applied to the rotor flux reconstruction of an 
inductor motor. In fact, the induction motor is a nonlinear and complex system, which makes 
difficult the design and implementation of efficient control and observation laws [3], [20]. 
Moreover, the state variable is not always available and especially the rotor flux [20], [21]. 
Therefore, the control of induction motors, requiring high dynamic performance, is based on 
the accurate knowledge of rotor flux. 

An outline of this paper is as follows. The architecture of the feedforward neural network is 
presented in section 2. The section 3 is devoted to developing the neural network observer. The 
stability of the proposed non conventional observer is studied in section 4. Then, section 5 is 
concerned with the application of the proposed neural network observer to the rotor flux 
reconstruction of an induction motor. Finally, some conclusions are provided in section 6. 
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2. Artificial neural network architecture 

The architecture of a NN is determined by its topological structure, i.e., the overall 
connectivity and transfer function of each node in the network. 

A typical three layer feedforward NN is given in figure 1. It consists of an input layer, 
hidden layer and output layer. Each input is connected via a weight to each node in the hidden 
layer. Each hidden node is, in turn, connected via a weight to each node in the output layer. 
 

 
Figure 1. A three layer feedforward ANN 

 

The output of hidden node j is given by   

( )a zj j  

with         

z v xj ji i ji
   

where  

v ji  is the weight between the iih input and the jth hidden node; 

x i  represents the input of the ANN; 

j  is a threshold of node j; 

 .  depicts the activation function of the hidden nodes that is considered as a sigmoïdal 

function. Indeed, we can find many forms of this function. But, for us we propose this form to 
simplify the development concerning the stability study. 

  1

1 exp
z zj j

  


 

The output of output node m is a weighted sum of its inputs, that is 

y w ak kj jj
   

where w kj  is the weight between the jth hidden and the kth output node.  
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The NN equation may be conveniently expressed in matrix format by defining 

, ,...,1 2
Tx x x x n 

  , , ,...,1 2
Ty y y y m 

  , and weight matrices TW w kj
 
  

 , 

TV v ji
 
  

 . The threshold vector , ,...,1 2 s    
   can be included as the first column of 

TV , so that TV  contains both the weights and thresholds of the first to second layer 
connections. Then  

   T Ty W V x  

However, several algorithms of multilayer neural networks training have been proposed in 
the literature of which most popular is the error backpropagation algorithm used extensively in 
NN applications [12]. 

The training is considered as a problem of optimization of a nonlinear function able to 
present the local minima and a global minimum. Indeed, it comprises of changing 
weights and thresholds so as to minimize the mean squared error between the actual 
outputs and the desired outputs in a gradient descent manner [10]. 
 
3. Neural network observer of nonlinear systems 

In this section, the proposed neuro-observer structure and the observing error equations are 
described. Indeed, a feedforward neural network is used to replace the nonlinear function that 
has known structure and unknown weights. 

Consider the nonlinear system 

                                                         
   

   
,x t A x g x u

y t C x t





 



                                                       (1) 

where  

  nx t   is the state vector ; 

  muu t   is the input vector ; 

 
myy t  is the output vector ; 

 ,g x u is an unknown nonlinear function; 

A  is a Hurwitz matrix; 
The pair  ,A C  is observable. 

 
A state observer for (1) can be described by  

              
     

   
ˆˆ ˆ ˆ ˆ,

ˆ ˆ

x t A x g x u L y y

y t C x t





   



                                    (2) 

where x̂ , ŷ  denote respectively the state and the output observer. L is the observer gain 

selected such that  A LC is a Hurwitz matrix. 

The key to designing a neuro-observer is to employ a neural network to identify the 
nonlinearity and a conventional observer to reconstruct the state [22], [19], [23]. The following 
graphics depicts the structure of the proposed neural network observer. 
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Figure 2. Structure of the designed neural network observer 

 

Furthermore, a NN with one hidden layer is sufficient for identifying and modeling a 
nonlinear system with any degree of nonlinearity [7], [24]. 

The main property of the NN used here is the function approximation property [25]. Let 
 x  be a smooth function from n  to m . Then it can be shown that, as long as x is 

restricted to a compact set of nx  , for a sufficiently large number of hidden-layer neurons s, 
there exist weights and thresholds such that any continuous function on a compact set can be 
represented as follows [14] : 
                                                                x W V x x                                                     (3) 

where  x  is the NN approximation error satisfying  x N  . With N  the bounding 

function known on a compact set S. Moreover, for any positive number N  one can find a NN 

such that  x N   for all x S [17], [14]. 

It is assumed that the ideal weights W and V are bounded by known values, so that 

MF
W W  and MF

V V [17], [26]. 

According to the approximation property of NN, the smooth nonlinear function  ,g x u  in 
the system (1) can be represented by NN with constant ideal weights W and V as follows: 

     ,  g x u W V z x   

where  z x u .  

Thus, the NN functional estimates for  g x  is given by 

ˆ ˆˆ ˆ ˆ( , ) ( )g x u W V z  

The proposed observer is then given by 

              
     

   

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

x t A x W V z L y y

y t C x t






   




                                     (4) 

Defining the state and output estimation error as ˆe x x   and ˆye y y   yields the error 
dynamics as follows: 

       
   

ˆ ˆˆ ˆˆ( ) 



      



e t A x W V z Ax W V z L y y x

e t C e ty

  
                            (5) 
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By adding  ˆ ˆW V z  to and subtracting from (5), we can write 

                                                    
   

   

ˆ ˆ( )e t G e e V z tW
e t C e ty

 



  




                                            (6) 

where   
ˆ  We W W , the NN weights estimation error; 

G A L C  ; 

       ˆ ˆ  
  

  t W V z V z x     is a bounded disturbance term  t   for some 

positive constant   due to the boundedness of the sigmoidal function and the ideal weights 

 ,V W [27]. 

 
4. Stability analysis of the neural network observer 

To train the network, a proper learning rule is defined in such a way that the stability of the 
observer is guaranteed. Furthermore, the weights updating mechanism, using standard 
Lyapunov technique, is based on the error backpropagation algorithm for which are added 
some correction terms in order to guarantee the stability of the state observer and the NN 
weights errors. 

This task can be realized using the development presented in [7], but with some added 
modifications in the NN weights tuning. Moreover, the used correction terms are borrowed 
from [14], which use a radial basis activation function and deal with the control problem. 
The modified NN weights tuning, taking in account the modification term, are provided as 
follows: 

                                                 ˆ ˆ ˆˆTW S e V z k S e W 
                                                   (7) 

                                         ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ1
T

TV W Vz Vz T e z k T e V  
 
 

  
                               (8)  

where  

 1
T TS G C C  , 0TS S  ; 

 2
T TT G C C  , 0TT T  ; 

 1 2, 0    are the learning rate and k is a small positive number. 

The introduction of the matrices S  and T  in the correction terms permit to simplify the 
stability study. 

The learning rules (7) and (8) in terms of the weight errors ˆ  We W W  and ˆ  Ve V V  can 
be written as follows: 

 ˆ ˆˆTe S e V z k S e WW                                                (9) 

    ˆ ˆ ˆ ˆˆ ˆ ˆ1
T

Te W V z V z T e z kT e VV   
 
 

                               (10) 

Select the positive definite Lyapunov function candidate, used in [7], [6], such as 

   1 1 11 1
2 2 2

T T Te P e tr e S e tr e T eW W V V                                (11) 

with 0TP P   satisfying  



International Journal of Control and Automation 

Vol. 3, No. 1, March, 2010 

 

 

7 

T TG P P G Q                                                          (12) 

for some positive-definite matrix Q . 

The time derivative of (11) is given by  

   1 11 1

2 2
T T T T

W W V Ve P e e P e tr e S e tr e T e                                   (13) 

By substituting (9), (10) and (12) into (13), it yields 
 

      
   

     1

1 ˆ ˆ ˆˆ ˆ
2

ˆ ˆ ˆ ˆˆ ˆ ˆ1

TT T T T
W W W

T
T T T

V V

e Q e e P e Vz tr e e V z k e e W

tr e T W V z V z T e z k e e V

   

 

             
 

    
 


                    (14) 

In order to simplify the stability analysis ẑ is replaced by  ˆsgn z  since  ˆsgn z  is bounded 
but this is not necessarily true for ẑ [7]. Where  ˆsgn z  is the sign function characterized by 

 
ˆ1, 0

ˆ ˆsgn 0, 0

ˆ1, 0

for z

z for z

for z


 
 

 

Hence, the equality (14) becomes 

   

       1

1 ˆ ˆ ˆˆ ˆ
2

ˆ ˆ ˆ ˆˆ ˆ ˆ( 1 sgn )

TT T T T
W W W

T
TT T

V V

e Q e e P e Vz tr e e V z k e e W

tr e T W V z V z T e z k e e V

   

 

             

   


                      (15) 

In order to demonstrate that (15) is a negative semi definite function, we can relay on the 
following inequalities cited in [7] and recalled here as 

  
  

2

2

T
W W M W W

T
V V M V V

tr e W e W e e

tr e V e V e e

  

  
                                       (16) 

and  

 ˆ ˆ
TT T

W m Wtr e e V z e e    
 

                                        (17)  

Notice that (17) is obtained since  T Ttr AB B A  for two columns vectors A and B. 
 

On the other hand, by using  1m m m    , ˆ
W M WW W e W e    and (17), then 

the following inequality holds: 

         11 ˆ ˆ ˆˆ ˆ ˆ( 1 sgn )
T

TT
V V m M Wtr e T W V z V z T e z e T W e T e           (18) 

The use of  (16), (17) and (18) yields the following inequality: 
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   

   

22
min

2 1

1
( )

2
TT

W m m W M W W

T
M V V V m M W

Q e e P e e e k e W e e

k e V e e e T W e T e

    



      

   


        (19) 

where min ( )Q denotes the minimum eigen-value of Q . 
 

By defining 1
12 mK T T  and by adding and substracting 22

1 WK e e  and 2
Ve e  

to the right hand side of (19), we get 

   

     

2 2 2
min 1

22
1 1

1
( )

2

1 2

W W m m M

V V M M W V

Q e e P e k K e P kW

e k e K W kV K e e

           

      


        (20) 

Defining 2K  and 3K  as 

 2 2
12

m m MP kW
K

k K

  



 

 
1

3
2

2 1
M MK W kV

K
k





 

Then, 2
2K e  and 2

3K e  are added to and subtracted from (20) 

     
   

       

1 2 2 2 2( ) 11 2 3min2
2 2 22 11 2 3 1

Q e e P k K K k K

k K K e k K e K e eW V W V

  






      

       



               (21) 

Assuming 2
1k K  and 1k  , then it follows: 

   
  
 

22
1 2

2
3

2
1

0

1 0

0

W

V

W V

k K K e

k K e

K e e

   
    

   


 

Therefore, (21) becomes 

    2 2 2 2
min 1 2 3

1
( ) 1

2
Q e e P k K K k K          

              (22) 

We obtain the following condition on e  to guarantee that   is negative semi-definite such 
that 
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   
 

2 2 2
1 2 3

min

2 1P k K K k K
e

Q





    
                                    (23) 

Thus, according to the standard Lyapunov theorem, we can demonstrate that the observation 
error e  is uniformly ultimately bounded [28]. 

In order to show the boundedness of the weight errors We , the equation (9) is recalled here 
as follows: 

 
 
ˆ ˆˆ

ˆ ˆ

T
W

T
W

e S e V z k S e W

S e V z k S e W k S e e





  

   


                              (24) 

First, since e ,  ˆˆVz , C are all bounded and G  is a Hurwitz matrix then the term 
 ˆ ˆTS e V z  is bounded. Therefore, (24) is considered as a linear system with bounded input 
  ˆ ˆ  TS e V z k S e W  with the fact that the ideal weight W is fixed.   

Second, since the quantity k S e  is positive, then the system with bounded input (24) is 
stable. Hence, the boundedness of eW  is guaranteed. 
 

In the same way, while putting the equation (10) under the following form: 

       

       

ˆ ˆ ˆ ˆˆ ˆ ˆ1 sgn

ˆ ˆ ˆˆ ˆ ˆ1 sgn

   

   


T

T
V

T
T

V

e W V z V z Te z kT e V

W V z V z Te z k T e V k T e e

 

 

                 (25) 

The system (25) represents a stable bounded input linear system since all its arguments are 
bounded including  .  and the quantity k T e  is positive. Hence eV  is bounded. 
 
5. Application of the proposed neuro-observer to the rotor flux observation 
of an induction motor 

In this section, we deal with the reconstruction of the rotor flux of an induction motor 
by using the proposed artificial neural network. 
 
5.1. Induction motor model 

The Park’s model of an induction motor, considered in the     frame with the hypothesis 
of not saturated magnetic circuits, is described by five nonlinear differential equations given by 
[29], [30] as follows: 

                          
( ) ( , , )

( ) ( , )

x t A x g x u t

y t h x t

 
 


                                               (26) 

where 

 Trrss IIx    is the state vector composed by two components of the stator 

currant sI   and sI , two component of the rotor flux r  and r  and the rotor speed  ; 

 Tss VVu  is the control vector composed by two components of the stator voltage sv   and 

sv  ; 
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T

s sy I I      is the output vector. 

 

The functions ( , )g x u , ( )h x  and the matrix A  are given by 

 

      

    +  

g ( ,  ,  )  
   

           

r s

r s

r

r

r s r s r

V

V

x u t

p
I I C

J

 

 





   

  
  




 

  
   
   

  
 
     
 

;   
s

s

I

h (x)  I






 
   
  

 

 
and 
 

0 0

0 0

0 0 0

0 0 0

0 0 0 0

s r

s r

r r

r r

m

A M

M

 
 
 

 


 
   
  
 

 
  

 

 

The different parameters, characterizing the induction motor modeling, are given by 

1 1
, , , , , , , sr

r s m
r s s r r s

RR f M pM p

L L J L L JL L J
       

  
         

where rL  and sL  are the rotor and stator inductance, M  is the mutual inductance, 
2

1
s r

M

L L
    is 

the Blondel coefficient, rR  and sR  are the rotor and stator resistances, p is the pair pole 
number, f is the viscous friction, J is the rotor inertia moment and rC  is the load torque. Notice 
that the model of the induction motor (26) is strongly nonlinear with unmodeled dynamics and 
parameter variations. 
 
5.2 Neural Network flux observer of induction motor 

The artificial neural network was applied for the state observation of an induction motor 
characterized by the following numerical parameters [31]: 

 
Parameter of IM Values 

Rr 1 Ω 
Rs 1.1 Ω 
Lr 156.8 mH 
Ls 155.4 mH 
p 2 
J 0.013  Kgm2 
M 150 mH 
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To test the robustness of the proposed observation approach, an unknown variable physical 
parameter, represented by the load torque rC  with the value of 35 Nm , is applied on the 
nonlinear system in the interval 0.1 0.3t  . 

In this paper, two neural networks are employed: One to estimate the rotor flux and the other 
to estimate the load torque. 

It is to be announced that the two used ANN are a multi-layer feedforward neural network 
with the error back-propagation learning algorithm and a sigmoidal activation function.  

The first one is a three layer neural network where the input layer contains seven neurons, 
fifteen neurons in the hidden layer and the output layer contain two neurons which represent 
the two components of the rotor flux r  and r . 

The second one is a four-layer neural network with two hidden layers containing 
respectively twenty-two and fifteen neurons. The input layer involves five neurons and the 
output layer contains one neuron which represents the load torque rC . 

The inputs of each network are sI  , sI   , ˆ
r , ˆ

r , sv  , sv   and  as illustrated in figure 
1. The input and output layer neurons use linear activation functions and the hidden layer 
neurons have a sigmoidal transfer functions. 

The initial weights of the network are selected as small random numbers. 
The curves of the figure 2, 3 and 4 present the evolution of the actual rotor flux ( r ,  r   ), 

the actual load torque rC  , the rotor flux  ˆ ˆ,r r   and the load torque ˆ
rC  obtained by using 

the neural network estimator. 
As can be observed, despite nonlinearity and complexity of the induction motor model and 

the effect of the load torque considered as an external disturbance, the proposed neural network 
estimator is able to reconstruct accurately the rotor flux of the studied process. Besides 
robustness with respect to parameter variation, the proposed NN observer allows also the 
reconstruction of the load torque which is practically difficult to measure. 

Notice that, the network of neurons is capable of high speed nonlinear computation due to its 
parallel structure [10]. Hence, ANN’s are a self learning means of emulating the input/output 
relation ships of very nonlinear systems. Thereby, the ANN state observation presents high 
performances to reconstruct the induction machine unavailable state variables and in particular 
the rotor flux. 

 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

       Figure 2. Evolution of the real state r  and the neural flux observer ˆ
r   
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           Figure 3. Evolution of the real state r  and the neural flux observer ˆ
r  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 4. Evolution of the parameter rC  and the neural load torque observer 
 
 

6. Conclusion 

In this paper, we have developed a neural network observer for nonlinear dynamical 
systems. It is a three-layer feedforward artificial neural network, trained with the modified error 
backpropagation learning algorithm. 

The Lyapunov’s direct method is used in order to ensuring the stability of the proposed non-
conventional observer and the neural network weight errors. Furthermore, some correction 
terms are provided to the NN weights to improve the robustness of the NN observer.  
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Moreover, the efficiency and the high performances of the proposed recurrent observer are 
due to the parallel architecture of the ANN’s and the high capacity of training despite the 
presence of external disturbances. 

It has been shown from the simulation results that the proposed recurrent observer is 
efficient and permits the rapid reconstruction of the state variables of an induction motor and 
especially the rotor flux despite the strong nonlinearities affecting the studied process and the 
emerged load torque considered as an external disturbance. In addition, the reconstruction of 
the load torque variation has been made possible using the proposed neural network observer. 
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