
International Journal of Control and Automation

 Vol.2, No.2, June 2009

19

Hierarchical Role Graph Model for UNIX Access Control

Abderrahim Ghadi1, 2, Driss Mammass1, Maurice Mignotte2, and Alain Sartout2

1 Irf-Sic–Fsa, Ibn Zohr University, Morocco
2 Irma, University of Strasbourg, France

{ghadi, mignotte, sartout}@math.u-strasbg.fr, mammass@univ-ibnzohr.ac.ma

Abstract

The access control system is a very important step in the implementation of the security

policy of an information system. Access control checks what a user can do directly, as well as
what programs executing on behalf of the users are allowed to do. In this way the access
control seeks to prevent the activities which will be able to endanger the safety of the system.

The aim of this paper is to try to model the access control system in the operating systems
of the type UNIX. The modeling will be based on a combining of the UNIX access control
system, namely Super-User model, and RBAC1 model [1, 11, 12]. In order to get a model
nearest possible at reality, we will use the notion of roles and the privileges graph to build
our graph. The properties of graph theory well are used in order to evaluate the stability and
the robustness of our model.

Keywords: Privilege, Role, Graph, Hierarchy, Access Control, SuperUser, DAC, MAC, RBAC

1. Introduction

Safety, and more particularly access control [8, 9], are current problems in data processing
[3, 4, 7]. Indeed, it becomes today important to be able to control the floods of information in
the networks and the information systems. It is advisable to develop within the computing
systems of the mechanisms making it possible to filter the accesses in order to let pass only
those authorized. It is a question for that of laying down a security policy, i.e. the
characterization of the allowed accesses. Access control is the center of gravity of computer
security. Its function is to control which subjects (users, processes, machines, etc.) have
access to which resources in the system, which files they can read, which programs they can
execute, how they share data with other subjects, and so on.

The aim of this paper is to combine the access control model of UNIX (model of the type
DAC2 [13], based on the access modes and the concept of user-group-other) and RBAC
model based on the roles [2]. A frequently asked question is what is the difference between
roles and groups? A major difference between most implementations of groups and the
concept of roles is that groups are typically treated as a collection of users and not as a
collection of permissions. A role is both a collection of users on one side and a collection of
permissions on the other one. The role serves as an intermediary to bring these two
collections together. The resulting model will be presented in the form of graph [5, 6] which
one will release from the mathematical results. The modeling of access control system give a

1 RBAC: Role Based Access Control
2 DAC: Discretionary Access Control

International Journal of Control and Automation

Vol.2, No.2, June 2009

20

clearer vision of security system and consequently limits the maximum the intrusions usually
based on transfers of privileges.

2. SuperUser model: UNIX Access Control

We summarize briefly the aspects of UNIX access control. Everything in a UNIX system
resides in a file. Thus controlling access to files effectively controls access to software and
data on the system. In conventional UNIX systems, the root user (also referred to as super
user) is all powerful, with the ability to read and write to any file, run all programs, and send
kill signals to any process. For this reason, the standard model of UNIX access control is
called SuperUser model.

The objects of importance in the UNIX system are files, and the access modes are read,
write and execute. There are three sets of three bits labeling each file description in UNIX
(rwx rwx rwx): three bits describe the file owner’s privileges, three the group’s privileges,
and three the privileges assigned to others (which is all users of the system). Within each
three bit set, one bit says whether or not the read privilege is granted, one says whether or not
write is granted, and the third says whether or not execute is granted. If the privilege is not
granted, then a “-” appears, e.g:

- rw- r- - r- - 1 ghadi ghadi 28190 2009-03-01 12:41 UNIX-Admin.pdf

These permissions can be maintained and changed by the UNIX commands chgrp, chmod,
chown and umask. In addition to the three modes (read, write, execute) we have three
additional access modes: the Setuserid, setgroupid and sticky bits. In a directory listing,
setuserid is indicated by an s or S replacing the x in the owner’s permissions. The sticky bit is
indicated by a t or T replacing the x in the others permissions.

Setuserid status means that when a program is executed, it executes with the permissions
of the user who owns the program, in addition to the permissions of the user executing it. The
effective user id of the process becomes the id of the owner of the executable file. The real
user id of the process remains that of the user who initiated the process. This bit is
meaningless on non executable files or on directories.

Setgroupid It behaves in exactly the same way as the setuserid bit, except that the program
operates with the permissions of the group associated with the file. When a process is
executed with setgroupid bit turned on, the effective group id of the process becomes the
group id of the owner of the executable file and the program thus executes with permissions
of that group. The real group id of the process remains that of the user who initiated the
process. This bit is meaningless on non executable files.

On some systems this bit has a special meaning when set on directories. For example, in
SunOS, the group id of a file is set to the group id of the directory in which it is created if the
setgroupid is set on the directory. Otherwise, the group id of a file is set to the primary group
id that the owner belongs to.

sticky If set on an executable binary file, the ’sticky’ bit tells the operating system to
maintain the image of the executing process in the swap area, even when execution is
terminated. If a directory has its sticky bit set, users may not delete or rename files in this
directory that are owned by other users. The sticky bit is usually set on world writable
directories.

International Journal of Control and Automation

 Vol.2, No.2, June 2009

21

All the user’s files are under the user’s home directory /home/$USER, including the startup
files and possibly other directories. Therefore, the home directory is the ultimate outer
defense against any access to the files of a user. The user account could be easily pirated if
the access rights of the home directory are badly managed.

3. Role Based Access Control: RBAC Model

A security policy is a set of rules which specify how to manage, protect or distribute
information or resources of a system. In the case of the access control, a security policy is the
definition of the authorized accesses. This definition will depend on the concept of entities, of
the information of safety available as well as characterization of the access.

Hereafter, the keywords used in the field of the modeling of the information systems:

Definition 1

 Subject: A person or automated agent,

 Object: Any system resource, such as a file, terminal, printer, database record, etc,

 Role: Job function or title which defines an authority level,

 Permission: The ability or the right to perform some action on some resource,

 Operation: A level permission that a resource manager uses to identify security
procedures,

 Session: A mapping involving subject, role and/or permission.

One generally distinguishes two big classes from security policies: discretionary policies
(DAC) and mandatory policies MAC3 [13].

The principal difference between a DAC and an MAC is the way in which the information
of safety of the objects is modified and created. In the DAC model, each object is under the
responsibility of one or more subjects. Change of informations of object security is thus
carried out at the discretion of one or more persons in charge. Thus, a subject can potentially
have access to any object, provided the persons in charge of this last gives him the permission
of this object. Conversely, in the MAC model, Each subject has a set of fixed permissions,
which it cannot change.

A typical example of DAC model is the security policy employed in the operating system
UNIX (SuperUser Model). The Bell-LaPadula [14] model of access control uses mandatory
access control.

The analysis of the security policies and the existing models makes it possible to conclude
that the control systems of existing accesses are insufficient. Indeed, discretionary access
control present of serious disadvantages with respect to the escapes of information and the
Trojan horses, while the obligatory access control very rigid and is badly adapted to the
systems really distributed.

In computer systems security, RBAC is an approach to restricting system access to
authorized users. It is a newer alternative approach to DAC and MAC. RBAC is a policy
neutral and flexible access control technology sufficiently powerful to simulate DAC and

3 MAC: Mandatory Access Control)

International Journal of Control and Automation

Vol.2, No.2, June 2009

22

MAC. Conversely, MAC can simulate RBAC when the role hierarchy is restricted to a tree
rather than a partial order.

RBAC is a access control system to computer or network resources based on the roles of
individual users within an enterprise. In this context, access is the ability of an individual user
to perform a specific task, such as create, delete or modify a file. Roles are defined according
to job competency, authority, and responsibility within the enterprise. Within an organization,
roles are created for various job functions. The permissions to perform certain operations are
assigned to specific roles.

In RBAC model:

 Subject can have multiple roles,
 Role can have multiple subjects,
 Role can have much permission,
 Permission can be assigned to many roles.

4. Privileges graph

The privileges graph [15, 16] is a graph whose nodes are roles which represent a set of
privileges on a set of objects. So, we propose to model the access control system in the form
of this type of graph. Thus, we can improve the security policies by the application of a
process with the three different phases:

1. Build the privileges graph. The arc of graph is a transfer method of privileges, in
other words, the arc

2. is a mean to acquire privileges,
3. Check if the arcs of the graph are licit,
4. Compare the obtained graph with the hoped security policy.

 The nodes and the arcs of the graph are created by the application of the rules which
compose the authorization scheme. First we start by inspecting the files /etc/passwd and
/etc/group to check off the list of the users and the groups of the system (Node/Role). Then,
several programs and scripts allow us to identify all the existing arcs in our system.

The authorization scheme is considered sure if from an initial protection sure state, we
cannot reach a unsure state by the application of the rules of this scheme.

The figure 1 represents a sample example of graph of privileges.

In this example, we have 8 roles which correspond to the privileges of the 8 groups of a
system. We have two administration roles: R_admin_1 (administration role whose members
are R_5 and R_6) and R_admin_2 (administration role with only one member R_5). An
analysis of the file system has to detect transfers of the following privileges: R_1 and R_2 are
in the file $HOME/.shosts of R_8, what is presented in the graph by arc 1. Likewise, R_3 and
R_7 are present in $HOME/.shosts of R_4. The inspection of the configuration files special to
each user reveals that R_3 uses .xinitrc file of R_2 (.xinitrc is the file which cements all the
process of starting of X). This transfer of privileges is presented here by arc 3. The arc 4
reflected the following situation: «the privilege of a role is a subset of privileges of another
role".

International Journal of Control and Automation

 Vol.2, No.2, June 2009

23

Figure 1. Example of privileges graph

5. Role graph model

Definitions 2
Aℜ: The set of all access rights of a system;
Privilege: A privilege is a pair p = (Obj, A) where Obj refers to an object, and A is a
non-empty set of access rights for Obj (A Aℜ);
Role: A role r is a collection of privileges. r can be represented by a pair (rname, rpset),
where rname is the name of r , and rpset represents the set of privileges of r;
ℜ: Set of roles of a system;
Pν: Set of privileges of a system;
PL: Set of system profiles;
ℜℜ : Set of Redundant Roles;
Fℜ: Father Role;
Sℜ: Son Role;
UID : Set of identifiers of system users;
GID: Set of identifiers of system groups;
ID = UID GID
G = {g such as g is UNIX group}
Ug = {u such as u g}
Arc One of problems encountered in the system administration of UNIX is that there is
no hierarchy between the groups. Consequently, there will be a redundancy of
privileges. For this reason, we added the concept of hierarchy of group via the

International Journal of Control and Automation

Vol.2, No.2, June 2009

24

hierarchy of the roles. In this vision, we regard the arc of the roles graph as methods of
transfer of privileges. In other word, an arc between two roles will be a hierarchy
relationship. Let r1 and r2 two roles, if there is an arc between r1 and r2 (r1 r2): r1, we
said that r1 is a son-role of r2. In this case all the privileges of r1 will be transmitted to
r2.

5.1. Build of graph

The aim of this section is the build of the elements of the roles graph.

5.1.1 Build of roles

The build of the roles depends on the security policy of the system, and consequently
there are more ways of proceeding in this stage. One can give, for example, one of
those methods of build of role starting from the groups:

In addition to the roles created via the groups or of the users, there are two special
roles to define: Rroot and Common:

Rroot: Union of all privileges:

Rcommon Set of common privileges for all users. For example, the read access to the file
/etc/passwd in order to have the possibility of changing the password.

5.1.2 Build of edges

Definitions 3

1. Let ζ a function enumerating the privileges of a given role:

2. Default privileges (DP): Privileges assigned to a given role during its creation. In
other term, are the initial privileges without counting the privileges acquired by
hierarchy?

2. Hierarchical privileges (HP): Privileges obtained thanks to the hierarchy of roles
[11],

3. Effective privileges (EP): Union of the default privileges of immediate son-roles.
Effective privileges of a role r are:

International Journal of Control and Automation

 Vol.2, No.2, June 2009

25

 Then an arc between ri and rj well be created:

 rj is authorized to accede to the privileges of ri if and only if
we say, in this case, that ri is son-role of rj.

5.2. Graph properties

Our graph is a graph whose vertexes are roles and edges are the hierarchical relationship
between these roles; methods of transfer of privileges between father-role and son-role. The
aim of this paragraph is to quote some properties of this graph.

Definitions 4

We say that there exists a path, between two ri role and rj and noted ri rj if there exists

We note the set of all paths
in the graph Path, and thus our graph is noted:

Property 1: Reflexivity

 (A role can be a son-role with himself since)

Property 2: Antisymmetry

This property ensures the no-redundancy of roles.

Property 3: Transitivity

Figure-2 presents an example of graph of role with a presentation in the form of table
(table-1).

Now we can say that our graph. is a partially ordered set (also called a
poset).

In the graph of roles, we can have two roles without relation between them; therefore we
conclude that our graph is partially ordered set (also called a poset).

 1-4 it means 1,2,3,4

 Let

 The direct privileges of a role are those which are not obtained via transfer of
privileges (privileges by defect affected by the administrator),

 The indirect privileges of a role are those which are obtained via transfer of
privileges,

 The effective privileges of role are the union of its direct and indirect privileges,

 The path p is such as :

International Journal of Control and Automation

Vol.2, No.2, June 2009

26

After this discussion, we can say that our graph is a Lattice. In Mathematics, a Lattice is a

poset in which sets of any two elements have a unique supremum (the elements’ least upper
bound; called their join) an infimum (greatest lower bound; called their meet).

Our graph is too a directed acyclic graph. It means a graph with no directed cycles; that is,
for any vertex r, there is no nonempty directed path that starts and ends on r.

Figure 2. Example of privileges graph Table 1. Transfer of privileges for role-
graph of figure 2.

5.1. Role Graph Algorithms

We have developed algorithms to:

 add a role giving its direct privileges, expected juniors and seniors

 add a role giving effective privileges

 add/delete a privilege to/from a role

 add/delete an edge

Creation of the roles starting from the profiles

International Journal of Control and Automation

 Vol.2, No.2, June 2009

27

Addition of the redundant roles in ℜℜ

Creation of the heritage relation ℜℜ

8. Conclusion

In terms of access control, the question which often arises is : What are the users
who have permission to access to a given service ?. Modeling the access control system
in the form of oriented and hierarchical graph allows visualizing the impacts of the
modifications of permissions of a role. The search for all possible ways in the graph
makes it possible to filter the transfers of privileges. This research is perfectly feasible
by using the algorithms of the theory of graphs.

The model is not of course complete, there is still again a lot of work in order to
improve it. There are two essential extensions required to supplement SuperUser model
in a UNIX environment: 1. the system file permissions must be modeled, 2. the links
between files must be modeled too.

References

[1] D.F. Ferraiolo, R. Kuhn, R. Sandhu (2007), "RBAC Standard Rationale: comments on a Critique of the ANSI

Standard on Role Based Access Control’, IEEE Security & Privacy, vol. 5, no. 6 (Nov/Dec 2007), pp. 51-53.
[2] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Formal Foundations for Hybrid Role Hierarchy,” ACM

Transactions in Information and Systems Security, in print for Nov. 2007.
[3] ISO/IEC 27001:2005, Requirements for Information security management systems, 2005.
[4] ISO/IEC 27002:2005, Code of practice for information security management, 2005.
[5] O. M. Sheyner. Scenario graphs and attack graphs, Thesis of School of Computer Science, Computer Science

department, Carnegie Mellon University, Pittsburgh, PA, 2004.
[6] S. Jha, O. Sheyner and J. Wing, Two formal analyses of attack graphs, Computer Security Foundation

Workshop, 2002.
[7] G. Vache, Towars Information System Security Metrics, European Dependable Computing Conference 7,

Proceedings Supplemental Volume, pp 41-44, Kaunas, 7-9 May 2008.
[8] A..Ghadi, D. Mammass, M. Mignotte and A.Sartout, «Formalism of the access control model based on the

Marked Petri Nets". International Journal of u- and e- Service, Science and Technology Vol.1, No.2, Mars,
2009.

International Journal of Control and Automation

Vol.2, No.2, June 2009

28

[9] M Jaume and C Morisset. “A formal approach to implement access control”, .Journal of Information Assurance
and Security, 2:137–148, 2006.

[10] Feng Xiaoning;Wang Zhuo; Yin Guisheng; “HierarchicalObject-Oriented Petri NetModelingMethod Based
on Ontology” Internet Computing in Science and Engineering, 2008. ICICSE ’08. International Conference on
28-29 Jan . 2008 Page(s):553-556.

[11] S. Gavrila, J. Barkley, "Formal Specification for Role Based Access Control User/Role and Role/Role
Relationship Management" (1998), Third ACM Workshop on Role-Based Access Control.

[12] J. Barkley, "Implementing Role Based Access Control Using Object Technology", First ACM Workshop on
Role-Based Access Control (1995).

[13] P. Samarati1 and S. de Capitani di Vimercati, “Access Control: Policies, Models, and Mechanisms“,
Foundations of Security Analysis and Design, Springer Berlin / Heidelberg, 2001 Page(s):137-196.

[14] D. Bell and L. LaPadula, ldquoSecure Computer Systems: unified Exposition and Multics Interpretation,
rdquo Tech. Rep. MTR-2997,MITRE Co., July 1975.

[15] Paul Ammann, Duminda Wijesekera, and Saket Kaushik, “Scalable, Graph-Based Network Vulnerability
Analysis,” Proceedings of the 9th ACMConference on Computer and Communications Security, 2002, pp.
217–224.

[16] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars and
Computing by Graph Transformations. Vol. II: Applications, Languages, and Tools. World Scientific, 1999.
236,242.

