
International Journal of Control and Automation

Vol. 11, No. 8 (2018), pp.85-94

http//dx.doi.org/10.14257/ijca.2018.11.8.08

ISSN: 2005-4297 IJCA

Copyright © 2018 SERSC Australia

Finding Frequent Itemsets over Data Streams with Sliding

Window
1

Jeong Hee Hwang1, Hyeok Kim2 and Jeong Hee Chi3*

1Department of Computer Science, Namseoul University, Korea
2,3Department of Software, Konkuk University, Korea

1jhhwang@nsu.ac.kr, 2,3{gkdl1599, jhchi}@konkuk.ac.kr

Abstract

Frequent pattern mining is the area studied the most in the data stream mining area,

and it is important to explore frequent itemsets rapidly. This paper proposes a method to

rapidly explore frequent items by expressing transaction items as bit sequence, based on

sliding window which considers a certain number of transactions as window to explore

frequent itemsets in data stream. Frequent itemsets are explored focusing on items

changed by sliding window by expressing transaction items deleted and inserted by

sliding window as bit sequence and applying bitwise exclusive OR operation. As the

proposed method discovers frequently generated items focusing on the changed items

using sliding window, it improves performance of mining, compared with existing

algorithms. It was found by experiments that it improves performance at least 13% over

the performance using existing algorithms using bit sequence.

Keywords: Data stream, Data mining, Real-time mining, Frequent pattern

1. Introduction

Data stream mining is the big issue in data mining. A large amount of data stream is

generated real-time. Some examples are sensor data in sensor network, medical data in the

medical field, web record and web click stream data of web application. Data stream is an

infinite set where items are continuously generated, and a large amount data is generated

rapidly real-time. To analyze data generated real-time, we need data stream mining

technique [1-12]. Data stream mining is the technique of getting useful information by

processing data transmitted real-time, and frequent itemset mining belongs to data stream

mining technique. It is the technique to find out what kind of data is generated the most,

or what kind of data is generated above a certain level of frequency [2-7].

Stream data has the following characteristics. Data stream is continuous and unlimited.

Unlike static data, this kind of data is generated limitlessly, and there is no division on

transaction. In the stream, data distribution changes over time. And, people are usually

interested in recent data. Owing to such characteristics of data, we cannot make

knowledge exploration using the whole stream data. Thus, in order to useful knowledge

from data stream, we need a technique to explore it real-time.

Considering the continuous characteristics of data stream, we can define a certain of

transaction as a window. Sliding window method is applying data, using a window with a

static size in data stream [15]. If a user requests information, sliding window-based

mining mines all the frequent pattern items satisfying the threshold from recent data

stored in the window. Therefore, as data is stored in regular window, it is possible to save

memory.

Received (January 7, 2018), Review Result (March 13, 2018), Accepted (July 12, 2018)
* Corresponding Author

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

86 Copyright © 2018 SERSC Australia

Frequent pattern is the pattern frequently generated pattern in a dataset, that is, item set.

It is important to discover a frequent pattern in exploring connectedness of data and data

stream prediction. In the case of most of frequent pattern algorithms, mining is performed

using tree structures like FP-growth and prefix tree. In [16], Closed Enumeration Tree

(CET) which maintains only dynamically closed frequent itemsets which is different from

prefix tree maintaining all itemsets is suggested. And, [17] suggests a method of not

constructing a new tree, but restructuring tree using only transactions which will be

deleted and transactions which will be inserted. The proposed method uses bit and makes

it possible to explore real-time frequent patterns by reconstructing deleted and inserted

parts, instead of restructuring the whole tree by using bit. But, it is costly because it

requires that the order of inserting all the transactions be expressed with bits, and that,

whenever a new transaction is inserted, it traverse the whole tree.

[18] proposed MFI-TimeSW algorithm which detects frequent itemsets real-time

within sliding window using bit sequence expression of item. By expressing whether

items contained in transactions within a window as 0, 1, that is, as bit sequence, and using

bitwise and operator, it discovers items of frequent pattern using bitwise and operator.

This paper, to extract real-time useful information from stream data, expresses items

contained in transaction as bit sequence, which is similar to the method of [18]. But, to

detect items changed by sliding window, we propose a method to detect frequent items

using bitwise Exclusive OR(XOR) operation. That is, unlike [18] which does operation on

all the transactions in a related window, our method discovers frequent items by doing bit

operation focusing on items in transaction deleted and inserted by sliding window. As the

method proposed in this paper performs bit operation on items changed in transactions, it

reduces cost of memory use and improves performance speed of frequent item mining.

2. Related Works

As stream data has the characteristics that, as it is generated continuously and rapidly,

and it has no limit in its length, it is difficult to process it referring to existing data. Such

characteristics necessitates minimal access to data and quick processing. There is limits in

storing the whole data in memory and treat it. To solve such problems, various stream

mining techniques have been suggested such as landmark window model [13], damped

model [14], and sliding window model [15].

Among data mining techniques, frequent pattern mining is the method of detecting

pattern-typed meaningful information from a huge database. Patterns are itemsets, and an

item is a good in market database, or a disease or symptom in medical database.

Traditional frequent pattern mining mines information on patterns which occur over

minimum frequency the user FP-Growth is to overcome the scan problem of Apriori, the

best-known technique for frequent pattern mining mines frequent pattern items without

generating candidate through two times scanning of data base using tree structure-based

depth first search method.

And, prefix-tree structure is the structure of lexicographic order, and allows one to

insert transaction data without restructuring tree. But, in the method of exploring frequent

item set using prefix-tree, as tree should be managed in the memory while exploration is

performed, the tree size should be smaller than limited memory space. As the tree

structure to detect items of frequent pattern depends on the number of itemsets above

minimum support showing in data stream, if the tree size showing itemsets which should

be managed is bigger than limited memory size, it becomes problematic.

[16] constituted compact prefix-tree-based CET and includes four types of nodes:

infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and closed

nodes. When a new transaction arrives, moment algorithm traverse nodes related with

items of the new transaction of CET, and renews support, tid-sum about related nodes.

And, when the oldest transaction in the current window is deleted, moment algorithm

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

Copyright © 2018 SERSC Australia 87

traverses related nodes and judges the type of related nodes. Tree exploration and node

type checking are expensive. [19] proposed CFP-tree (compressed FP-tree) to process a

large number of transactions. The method makes it possible to do incremental mining

without re-scanning of original database. But, it has problem of restructuring Item-

Frequent list (IF-list) and CFP-tree. [18] expressed item-containing transactions as bit

sequence and detects itemsets of frequent pattern using bitwise AND operator on the bit

sequence. It was found that the method of bit sequence in [18] needs smaller memory and

increases performance speed compared with [17].

3. Frequent Pattern Mining using Sliding Window-Based Bit Operation

We consider a certain number of transactions as a window, and describes a method to

quickly find frequent items in the transactions contained in the related window. If sliding

window is defined as the window size containing 3 transactions for the exampled data sets

in Figure 1, transactions contained in the series of windows are W1={T1, T2, T3}, W2={T2,

T3, T4}, W3={T3, T4, T5}, as shown in Figure 2.

Figure 1. Transaction Data Figure 2. Example of Window Sliding

3.1. Detecting the Frequent Itemsets in a Window

The mining process using sliding window-based bit operation to detect frequent items

in the N data stream transactions is as follows. The basic definition to detect frequent

itemsets from transactions contained in a window are as follows. Item set is expressed as

I={i1, i2, i3, .., ii}, and transaction is expressed as T={ T1, T2, T3, .., Tn}.

Definition 1. Window Size

A window contains a certain number of transactions. The number of transactions

contained in the window is defined as window size, and expressed as |W|. And, a window

has a serial number.

Definition 2. Frequent Pattern Itemset

The ratio of the number of transactions containing item Ii in a window is called support

of the item, and expressed as Supp(Ii). If Supp(Ii) satisfies pre-defined minimum support

min_sup, it is called frequent item. The equation expression of them is as follows

equation 1.

(1)

To extract frequent pattern items from transactions in a window, those items are

expressed as bit sequence. In Figure 1, W1={T1, T2, T3}, T1={a, c, d}, T2={b, c}, T3={a, b,

c, e}. Items can be expressed as bits, as follows: Bit(a) = 101, Bit(b) = 011, Bit(c) = 111,

Bit(d) = 100, Bit(e) = 001. The method to express an item as bit sequence is as follows:

tid number matches the order of bit sequence. If an item is contained in the transaction, it

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

88 Copyright © 2018 SERSC Australia

is expressed as 1, and, if it is not included in the transaction, it is expressed as 0. For

example, Bit(a) = 101 means that a exists in T1 and T3, but not in T2.

If we assume that minimum support for the transaction contained in W1 is 0.5, frequent

items satisfying min_sup among items expressed as bit sequence Bit(a) = 101, Bit(b) =

011, Bit(c) = 111, Bit(d) = 100, Bit(e) = 001 are a, b, c. Using bitwise AND operation, we

discover length_2 items from these items. Bit(a) = 101 and Bit(b) = 011 => 001, Bit(a) =

101 and Bit(c) = 111 => 101, Bit(b) = 011 and Bit(c) = 111 => 011. Thus, length_2 items

satisfying min_sup are ac, bc. Figure 3 summarizes above discussions.

Freq. 1_item Freq. 2_item

item Supp item Supp

Bit(a) = 101

Bit(b) = 011

Bit(c) = 111

2

2

3

Bit(a) = 101 and Bit(c) = 111 => 101

Bit(b) = 011 and Bit(c) = 111 => 011

2

2

Figure 3. Frequent Items and Frequency in W1

As Figure 3 shows, the method to explore frequent items among transaction items

included in a window is to express each item as bit sequence indicating its order in the

transaction, and extract length_1 item satisfying min_sup, and find length_2 item with the

extracted item. From length_2 item, we need to check whether each item satisfies critical

value using bitwise AND operator to bit sequence expressing the location where it is

generated, and determines frequent item. Algorithm of it is as follows algorithm 1.

Algorithm 1. Detect Frequent Itemsets by Bit Sequence (FIBS)

Input : |w|, Tk in wi, Ij in each transaction Tk , min_sup

Output : frequent itemsets FIS

Step 1: detect the length_1 frequent items

1. initiate window wi

2. for each item Ij ∈ T in wi

translate items into Bit sequence, Bit(Ij)

3. if Supp(Ij) ≥ min_sup

put item into FIS

Step 2: detect the frequent itemsets more than length_2 items

1. for each item in FIS

compute Supp(IiIj) by bitwise Bit(Ii) and Bit(Ij)

if Supp(IiIj) ≥ min_sup

put item IiIj into FIS

2. repeat step 1 by increasing the length of item until no more frequent itemsets

3.2. Insert and Delete a Transaction by Sliding Window

Data stream is infinite set composed of transactions which are generated continuously.

Consequently, it is impossible to store all the transaction in a data stream, it is necessary

to generate mining results by scanning all the information contained in a transaction.

As the number of transactions contained in a window is fixed, if a new transaction is

inserted by sliding window, the oldest transaction is deleted. We illustrate the method of

detecting frequent items in the inserted transaction and the deleted transaction with

transaction example of Figure 4. If window size is 4, the formula is W1={T1, T2, T3, T4}.

If items contained in T1 to T4 are expressed as bit sequence, they can be expressed as

Bit(a)= 1110, Bit(b)= 1010, Bit(c)= 1111, Bit(d)= 0101, Bit(e)= 0101. And, from items

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

Copyright © 2018 SERSC Australia 89

expressed as bit sequence, frequent items are detected using FIBS algorithm as shown in

Figure 5, and the detected items are stored in hash table. Keys of hash table is ordered as

arranged length_1 items, and frequent items including related items are stored in the order

of their lengths. To rapidly reflect the changes of frequent items by sliding window, it is

necessary to store frequent items in efficient hash table, which allows detection, insertion,

and deletion of frequent items to be done.

By sliding window, transaction T5 is inserted and T1, the oldest one, in W2 is deleted.

T1 is efficiently deleted by bitwise left shift operation. W2 ={T2,T3,T4,T5}, and new

inserted transaction T5 includes item set{a, b, f}. To quickly detect frequent items in the

deleted transaction and the inserted transaction, we use bitwise XOR operation.

The processes of detecting frequent items on changes of transactions are as follows.

First, items in T1, the deleted transaction, and T5, the inserted transaction, are expressed

as bit sequence in columns: T1={111000}, T5={100101}. T1 contains a, b, c items, and

T5 contains a, d, f. Second, bitwise XOR operation is applied to T1 and T5 whose items

are expressed as bit sequence to detect changed items. That is, T1={111000} XOR

T5={100101} = {011101}. Thus, we can notice that there are changes in b, c, d, f items.

Third, calculate supports for the changed items b, c, d, and f, and, delete frequent items

including related items which do not satisfies min_sup from hash table. As Supp(b)=1 and

Supp(f)=1, items b and f do not satisfy the threshold that min_sup=0.5, they are deleted.

Forth, among changed items (b, c ,d, f), b, f were deleted because they did not satisfy the

threshold, and among the remaining values c and d, d which comes later in the item order,

becomes the standard in detecting the scope of frequent items. That is, applying FIBS

algorithm, we explore frequent items among items a, c, d (b is deleted because it does not

satisfy min_sup.). Consequently, we leave e, frequent item in W1, as a frequent item, and

we do not explore the frequent item any more. Because the items coming after d, which is

standard in the item order, do not change, it is not necessary to explore them again.

Tid items

T1 a b c

T2 a c d e

T3 a b c

T4 c d e

Key Frequent Itemsets

a a, ab, ac, abc

b b, bc

c c, cd, ce, cde

d d, de

e e

Figure 4. Transaction in W1 Figure 5. Frequent itemsets in W1

In such a way, through the changes of window sliding, we detect change of items

contained in deleted transaction and newly inserted transaction. As we detect item

changes and whether an item occurs frequently by using bitwise XOR operation on bit

sequence of items, and we only check frequency only for the items satisfying threshold

values, we need not re-explore all the items of transactions belonging to new window. So,

by reducing exploration scope, we improve performance of frequent item exploration.

4. Experimental Results

The experiment compares FIBS suggested in this paper and TimeSW algorithm

suggested in [15]. The experiment was performed on the Window 10, 16GB RAM,

3.40GHz CPU system. As experimental datasets, we used T10I4100K and T40I10D100K

created by the data generator of the IBM Almaden Quest Research Group. Parameters for

the experiment are listed in Table 1.

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

90 Copyright © 2018 SERSC Australia

Table 1. Simulation Parameters

Parameter Description Value

D Number of transactions in data streams 100K

N Number of distinct items 1K

I Average length of maximal frequent itemsets 4, 10

T Average length of transactions 10, 40

s Minimum support thresholds 0.01~0.1

w Window Size 5K~10K

The number of transactions in each dataset is 100K, and the number of items is 1K.

The length of transactions ranges from 10 items to 40 items. The numbers of the

maximum frequent items consist of 4 and 10. We tested them while changing the critical

value of minimum support s from 0.01 to 0.1, and window sizes from 5k to 10k.

First, we checked the trend of changes of frequent items. While existing TimeSW seeks

frequent items in every window, FIBS algorithm performs frequency checks only for

items which are inserted or deleted. If there is a large number of changed items, FIBS

technique needs many operations like TimeSW. So, as shown in Figure 6, we observed

the trend of changes of the single frequent item in each data.

Figure 6. Changes in the Number of Frequent Items

Figure 6 shows part of trend changes of frequent items in the following cases: the case

of T10I4D100K’s w=5K, s=0.01; the case of T40I10D100K’s w=5k, s=0.05. In

T10I4D100K, the average number of items constituting a transaction is 10, and the

numbers of frequent items ranges from 370 to 385. In T40I10D100K, the average number

of items constituting a transaction is 40. As it is a dataset where many items are occurred

at the same time, the experiment showed that, when s is low, there is little change in

frequent items. The experiment changed in a range from 290 to 303. The experiment

showed that many frequent items in each window do not change.

To test performance of FIBS, we experimented generation time of frequent items

depending on the size of window as illustrated in Figure 7 and Figure 8. Figure 7 is the

findings of T10I4D100K dataset. In this case, as the window size becomes larger, the

number of transactions satisfying minimum support also gets larger. Thus, processing

time tended also to increase. This finding shows that FIBS is considerably better than

TimeSW. Such findings are caused by the fact that in the data where the number of items

in a transaction is small, the changes of frequent items rarely occur. And, with the

increase of minimum support, the difference of performance between FIBS and TimeSW

rapidly increases from 42% to 92%. The reason is from the fact that as support gets larger,

the number of items satisfying minimum support decreases, and frequent items do not

change. These findings tell us that FIBS perform excellently in the case where frequent

items do not change.

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

Copyright © 2018 SERSC Australia 91

Figure 7. Processing Time According to Minimum Support with T10I4D100K
Dataset

Figure 8 shows that FIBS perform more excellently than TimeSW, from T40I4D100K

data. This experiment is to evaluate FIBS performance in the data where there are many

items per transaction, and there are many changes in items in each transaction. It was

found that, in the case where many changes of items occur within a transaction as well,

FIBS perform more excellently than TimeSW.

Figure 8. Processing Time According to Minimum Support with
T40I10D100K Dataset

We also compared performance time depending on minimum support. As the minimum

support gets higher, the number of frequent items decreases. Thus, these tests evaluate

performance times. It is shown that FIBS perform better than TimeSW, based on

T10I4D100K. In particular, when s=0.1, as the number of items satisfying minimum

support increases, performance of FIBS improves from minimum 13% to maximum 59%.

The reason is from the fact that, as minimum support gets lower, more items get frequent.

So, the changes of frequent items get smaller. And also, we conduct an experiment for the

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

92 Copyright © 2018 SERSC Australia

data, T40I10D100K where there are smaller changes in frequent items, and it was found

that, in the case where many changes of items occur within a transaction as well, FIBS

perform more excellently than TimeSW.

(a) T10I4D100K Dataset

(b) T40I10D100K Dataset

Figure 9. Processing Time According to Window Size

We compared performance time depending on minimum support. As the minimum

support gets higher, the number of frequent items decreases. Thus, this test evaluates

performance times. Figure 9(a) is based on T10I4D100K. It is shown that in all the cases,

FIBS perform better than TimeSW. In particular, when s=0.1, as the number of items

satisfying minimum support increases, performance of FIBS improves from minimum

13% to maximum 59%. The reason is from the fact that, as minimum support gets lower,

more items get frequent. So, the changes of frequent items get smaller. Figure 9(b) is

based on T40I10D100K. This is an experiment for the data where there is smaller changes

in frequent items, and it was found that, in this case as well, FIBS performs better than

TimeSW. The above experiments proved that, compared with TimeSW, FIBS which only

checks frequency on item changes within transaction is better, whether the changes in

frequent items are big or small.

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

Copyright © 2018 SERSC Australia 93

5. Conclusions

This paper proposed a method to find frequent itemset on data stream based on sliding

window. The proposed method expresses transaction items as bit sequence, and detects

frequent itemset inserted or deleted by window sliding using bitwise exclusive OR

operation. To evaluate the performance of the algorithm proposed in this paper, we did

experiment comparing it with existing algorithm. The experiment showed at least 13%

improvement of performance over the existing algorithm. This finding is from the fact

that, unlike the existing method where all the transactions are explored again and again

whenever window sliding is applied, the method proposed in this paper detects frequent

items by selecting items which have changed.

Acknowledgments

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under

the Seoul Accord Vitalization Program(IITP-2018-2012-1-00593) supervised by the

IITP(Institute for Information & communications Technology Promotion).

References

[1] S. Muthukrishnan, “Data streams: algorithms and applications”, Foundations and Trends® in

Theoretical Computer Science, vol. 1, no. 2, (2005), pp. 117-236.

[2] G. Cormode and S. Muthukrishnan, “What's hot and what's not: tracking most frequent items

dynamically”, Proceeding of the twenty-second ACM SIGMOD-SIGART symposium on Principles of

database systems, (2003), pp. 296-306.

[3] R. Karim, M. Cochez, O. Beyan, C. F. Ahmed and S. Decker, “Mining maximal frequent patterns in

transactional databases and dynamic data streams: A spark-based approach”, Information Sciences, vol.

432, (2018), pp. 278-300.

[4] C. Jin, W. Qian, C. Sha, J. X. Yu and A. Zhou, “Dynamically maintaining frequent items over a data

stream”, Proceeding of the 2003 ACM CIKM International Conference on Information and Knowledge

Management, (2003), pp. 287-294.

[5] G. S. Manku and R. Motwani, “Approximate frequency counts over data streams”, Proceeding of the

28th International Conference on Very Large Data Bases, (2002), pp. 346-357.

[6] E. Demaine, A. Lopex-Ortiz and J. Munro, “Frequency estimation of internet packet streams with

limited space”, Proceeding of the 10th Annual European Symposium, (2002), pp.348-360.

[7] A. Metwally, D. Agrawal and A. E. Abbadi, “Efficient computational of frequent and top-k elements in

data streams”, Proceeding of the 10th International Conference on Database Theory, (2005), pp. 398-

412.

[8] G. Chen, X. Wu and X. Zhu, “Mining Sequential Patterns Across Data Streams”, University of Vermont

Computer Science Technical Report(CS-05-04), (2005).

[9] M. C. Hsieh, Y. H. Wu and A. L. Chen, “Discovering Frequent Tree Patterns over Data Stream”,

Proceeding of SIAM International Conference on Data Mining, (2006), pp. 629-633.

[10] A. Deligiannakis, Y. Kotidis and N. Roussopoulos, “Hierarchical In-Network Data Aggregation with

Quality Guarantees”, LNCS(EDBT 2004), (2004), pp. 658-675.

[11] C. K. Chiou and J. C. R. Tseng, “An Incremental Mining Algorithm for Association Rules Based on

Minimal Perfect Hashing and Pruning”, LNCS, vol. 7234, (2002), pp. 106-113.

[12] Y. Li, Z. H. Zhang, W. B. Chen and M. Fan, “TDUP: an approach to incremental mining of frequent

itemsets with three-way-decision pattern updating”, International Journal of Machine Learning and

Cybernetics, vol. 8, (2017), pp. 441-453.

[13] E. T. Wang and A. P. Chen, “A novel hash-based approach for mining frequent itemsets over data

streams requiring less memory space”, Data Mining and Knowledge Discovery, vol. 19, no. 1, (2009),

pp. 132-172.

[14] J. H. Chang and W. S. Lee, “Detecting Recently Frequent Itemsets adaptively over online transactional

data streams”, Information Systems, vol. 31, (2006), pp. 849-869.

[15] J. Chang and W. Lee, “A Sliding Window Method for detecting Recently Frequent Itemsets over Online

Data Streams”, Journal of Information Science and Engineering, vol. 20, no. 4, (2004), pp. 753-762.

[16] Y. Chi, H. Wang, P. S. Yu and R. R. Muntz, “Moment: Maintaining Closed Frequent Itemsets over a

Stream Sliding Window”, Proceeding of the Fourth IEEE International Conference on Data Mining

(ICDM’4), (2004), pp. 59-66.

[17] C. F. Ahmed, S. K. Tanbeer and B. S. Jeong, “Efficient Mining of Weighted Frequent Patterns Over

Data Streams”, 11th IEEE International Conference on High Performance Computing and

Communications, (2009), pp. 400-406.

International Journal of Control and Automation

Vol. 11, No. 8 (2018)

94 Copyright © 2018 SERSC Australia

[18] H. F. Li and S. Y. Lee, “Mining Frequent Itemset over Data Stream using Efficient Window Sliding

Techniques”, Expert Systems with Applications, vol. 36, (2009), pp. 1466-1477.

[19] C. M. Lin, Y. L. Hsieh and K. C. Yin, “ADMiner:An Incremental Data Mining Approach Using a

Compressed FP-tree”, Journal of Software, vol. 8, no. 8, (2013), pp. 2095-2103.

Authors

Jeonghee Hwang, she received Ph.D degrees from Chungbuk

National University in 2005 in computer science. In 2006 joined the

faculty of Namseoul University, where she is now an assistant

professor. Her research interests include data mining, semantic web,

ubiquitous computing and big data processing.

Hyeok Kim, he is undergraduate student, Konkuk University,

Korea. His research interests include data mining and big data mining.

Jeonghee Chi, she received Ph.D degrees from Chungbuk

National University in 2006 in computer science. In 2007 she joined

the faculty of Konkuk University, where she is now an assistant

professor. Her research interests include IoT, stream data mining,

machine learning and big data analysis.

