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Abstract 

Frequent pattern mining is the area studied the most in the data stream mining area, 

and it is important to explore frequent itemsets rapidly. This paper proposes a method to 

rapidly explore frequent items by expressing transaction items as bit sequence, based on 

sliding window which considers a certain number of transactions as window to explore 

frequent itemsets in data stream. Frequent itemsets are explored focusing on items 

changed by sliding window by expressing transaction items deleted and inserted by 

sliding window as bit sequence and applying bitwise exclusive OR operation. As the 

proposed method discovers frequently generated items focusing on the changed items 

using sliding window, it improves performance of mining, compared with existing 

algorithms. It was found by experiments that it improves performance at least 13% over 

the performance using existing algorithms using bit sequence. 
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1. Introduction 

Data stream mining is the big issue in data mining. A large amount of data stream is 

generated real-time. Some examples are sensor data in sensor network, medical data in the 

medical field, web record and web click stream data of web application. Data stream is an 

infinite set where items are continuously generated, and a large amount data is generated 

rapidly real-time. To analyze data generated real-time, we need data stream mining 

technique [1-12]. Data stream mining is the technique of getting useful information by 

processing data transmitted real-time, and frequent itemset mining belongs to data stream 

mining technique. It is the technique to find out what kind of data is generated the most, 

or what kind of data is generated above a certain level of frequency [2-7]. 

Stream data has the following characteristics. Data stream is continuous and unlimited. 

Unlike static data, this kind of data is generated limitlessly, and there is no division on 

transaction. In the stream, data distribution changes over time. And, people are usually 

interested in recent data. Owing to such characteristics of data, we cannot make 

knowledge exploration using the whole stream data. Thus, in order to useful knowledge 

from data stream, we need a technique to explore it real-time. 

Considering the continuous characteristics of data stream, we can define a certain of 

transaction as a window. Sliding window method is applying data, using a window with a 

static size in data stream [15]. If a user requests information, sliding window-based 

mining mines all the frequent pattern items satisfying the threshold from recent data 

stored in the window. Therefore, as data is stored in regular window, it is possible to save 

memory. 
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Frequent pattern is the pattern frequently generated pattern in a dataset, that is, item set. 

It is important to discover a frequent pattern in exploring connectedness of data and data 

stream prediction. In the case of most of frequent pattern algorithms, mining is performed 

using tree structures like FP-growth and prefix tree. In [16], Closed Enumeration Tree 

(CET) which maintains only dynamically closed frequent itemsets which is different from 

prefix tree maintaining all itemsets is suggested. And, [17] suggests a method of not 

constructing a new tree, but restructuring tree using only transactions which will be 

deleted and transactions which will be inserted. The proposed method uses bit and makes 

it possible to explore real-time frequent patterns by reconstructing deleted and inserted 

parts, instead of restructuring the whole tree by using bit. But, it is costly because it 

requires that the order of inserting all the transactions be expressed with bits, and that, 

whenever a new transaction is inserted, it traverse the whole tree. 

[18] proposed MFI-TimeSW algorithm which detects frequent itemsets real-time 

within sliding window using bit sequence expression of item. By expressing whether 

items contained in transactions within a window as 0, 1, that is, as bit sequence, and using 

bitwise and operator, it discovers items of frequent pattern using bitwise and operator.  

This paper, to extract real-time useful information from stream data, expresses items 

contained in transaction as bit sequence, which is similar to the method of [18]. But, to 

detect items changed by sliding window, we propose a method to detect frequent items 

using bitwise Exclusive OR(XOR) operation. That is, unlike [18] which does operation on 

all the transactions in a related window, our method discovers frequent items by doing bit 

operation focusing on items in transaction deleted and inserted by sliding window. As the 

method proposed in this paper performs bit operation on items changed in transactions, it 

reduces cost of memory use and improves performance speed of frequent item mining. 

 

2. Related Works 

As stream data has the characteristics that, as it is generated continuously and rapidly, 

and it has no limit in its length, it is difficult to process it referring to existing data. Such 

characteristics necessitates minimal access to data and quick processing. There is limits in 

storing the whole data in memory and treat it. To solve such problems, various stream 

mining techniques have been suggested such as landmark window model [13], damped 

model [14], and sliding window model [15]. 

Among data mining techniques, frequent pattern mining is the method of detecting 

pattern-typed meaningful information from a huge database. Patterns are itemsets, and an 

item is a good in market database, or a disease or symptom in medical database. 

Traditional frequent pattern mining mines information on patterns which occur over 

minimum frequency the user FP-Growth is to overcome the scan problem of Apriori, the 

best-known technique for frequent pattern mining mines frequent pattern items without 

generating candidate through two times scanning of data base using tree structure-based 

depth first search method. 

And, prefix-tree structure is the structure of lexicographic order, and allows one to 

insert transaction data without restructuring tree. But, in the method of exploring frequent 

item set using prefix-tree, as tree should be managed in the memory while exploration is 

performed, the tree size should be smaller than limited memory space. As the tree 

structure to detect items of frequent pattern depends on the number of itemsets above 

minimum support showing in data stream, if the tree size showing itemsets which should 

be managed is bigger than limited memory size, it becomes problematic. 

[16] constituted compact prefix-tree-based CET and includes four types of nodes: 

infrequent gateway nodes, unpromising gateway nodes, intermediate nodes, and closed 

nodes. When a new transaction arrives, moment algorithm traverse nodes related with 

items of the new transaction of CET, and renews support, tid-sum about related nodes. 

And, when the oldest transaction in the current window is deleted, moment algorithm 
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traverses related nodes and judges the type of related nodes. Tree exploration and node 

type checking are expensive. [19] proposed CFP-tree (compressed FP-tree) to process a 

large number of transactions. The method makes it possible to do incremental mining 

without re-scanning of original database. But, it has problem of restructuring Item-

Frequent list (IF-list) and CFP-tree. [18] expressed item-containing transactions as bit 

sequence and detects itemsets of frequent pattern using bitwise AND operator on the bit 

sequence. It was found that the method of bit sequence in [18] needs smaller memory and 

increases performance speed compared with [17]. 

 

3. Frequent Pattern Mining using Sliding Window-Based Bit Operation 

We consider a certain number of transactions as a window, and describes a method to 

quickly find frequent items in the transactions contained in the related window. If sliding 

window is defined as the window size containing 3 transactions for the exampled data sets 

in Figure 1, transactions contained in the series of windows are W1={T1, T2, T3}, W2={T2, 

T3, T4}, W3={T3, T4, T5}, as shown in Figure 2. 

 

  

Figure 1. Transaction Data Figure 2. Example of Window Sliding 

3.1. Detecting the Frequent Itemsets in a Window 

The mining process using sliding window-based bit operation to detect frequent items 

in the N data stream transactions is as follows. The basic definition to detect frequent 

itemsets from transactions contained in a window are as follows. Item set is expressed as 

I={i1, i2, i3, .., ii}, and transaction is expressed as T={ T1, T2, T3, .., Tn}. 

 

Definition 1. Window Size 

A window contains a certain number of transactions. The number of transactions 

contained in the window is defined as window size, and expressed as |W|. And, a window 

has a serial number. 

 

Definition 2. Frequent Pattern Itemset 

The ratio of the number of transactions containing item Ii in a window is called support 

of the item, and expressed as Supp(Ii). If Supp(Ii) satisfies pre-defined minimum support 

min_sup, it is called frequent item. The equation expression of them is as follows 

equation 1. 

 
(1) 

To extract frequent pattern items from transactions in a window, those items are 

expressed as bit sequence. In Figure 1, W1={T1, T2, T3}, T1={a, c, d}, T2={b, c}, T3={a, b, 

c, e}. Items can be expressed as bits, as follows: Bit(a) = 101, Bit(b) = 011, Bit(c) = 111, 

Bit(d) = 100, Bit(e) = 001. The method to express an item as bit sequence is as follows: 

tid number matches the order of bit sequence. If an item is contained in the transaction, it 
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is expressed as 1, and, if it is not included in the transaction, it is expressed as 0. For 

example, Bit(a) = 101 means that a exists in T1 and T3, but not in T2. 

If we assume that minimum support for the transaction contained in W1 is 0.5, frequent 

items satisfying min_sup among items expressed as bit sequence Bit(a) = 101, Bit(b) = 

011, Bit(c) = 111, Bit(d) = 100, Bit(e) = 001 are a, b, c. Using bitwise AND operation, we 

discover length_2 items from these items. Bit(a) = 101 and Bit(b) = 011 => 001, Bit(a) = 

101 and Bit(c) = 111 => 101, Bit(b) = 011 and Bit(c) = 111 => 011. Thus, length_2 items 

satisfying min_sup are ac, bc. Figure 3 summarizes above discussions. 

 

Freq. 1_item Freq. 2_item 

item Supp item Supp 

Bit(a) = 101 

Bit(b) = 011 

Bit(c) = 111 

2 

2 

3 

Bit(a) = 101 and Bit(c) = 111 => 101 

Bit(b) = 011 and Bit(c) = 111 => 011 

2 

2 

Figure 3. Frequent Items and Frequency in W1 

As Figure 3 shows, the method to explore frequent items among transaction items 

included in a window is to express each item as bit sequence indicating its order in the 

transaction, and extract length_1 item satisfying min_sup, and find length_2 item with the 

extracted item. From length_2 item, we need to check whether each item satisfies critical 

value using bitwise AND operator to bit sequence expressing the location where it is 

generated, and determines frequent item. Algorithm of it is as follows algorithm 1. 
 

Algorithm 1. Detect Frequent Itemsets by Bit Sequence (FIBS) 

Input : |w|, Tk in wi, Ij in each transaction Tk , min_sup  

Output : frequent itemsets FIS 

 

Step 1: detect the length_1 frequent items 

1. initiate window wi  

2. for each item Ij ∈ T in wi 

translate items into Bit sequence, Bit(Ij) 

3. if Supp(Ij) ≥ min_sup  

put item into FIS 

 

Step 2: detect the frequent itemsets more than length_2 items 

1. for each item in FIS 

compute Supp(IiIj) by bitwise Bit(Ii) and Bit(Ij) 

if Supp(IiIj) ≥ min_sup 

put item IiIj into FIS 

2. repeat step 1 by increasing the length of item until no more frequent itemsets  

 

3.2. Insert and Delete a Transaction by Sliding Window 

Data stream is infinite set composed of transactions which are generated continuously. 

Consequently, it is impossible to store all the transaction in a data stream, it is necessary 

to generate mining results by scanning all the information contained in a transaction. 

As the number of transactions contained in a window is fixed, if a new transaction is 

inserted by sliding window, the oldest transaction is deleted. We illustrate the method of 

detecting frequent items in the inserted transaction and the deleted transaction with 

transaction example of Figure 4. If window size is 4, the formula is W1={T1, T2, T3, T4}. 

If items contained in T1 to T4 are expressed as bit sequence, they can be expressed as 

Bit(a)= 1110, Bit(b)= 1010, Bit(c)= 1111, Bit(d)= 0101, Bit(e)= 0101. And, from items 
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expressed as bit sequence, frequent items are detected using FIBS algorithm as shown in 

Figure 5, and the detected items are stored in hash table. Keys of hash table is ordered as 

arranged length_1 items, and frequent items including related items are stored in the order 

of their lengths. To rapidly reflect the changes of frequent items by sliding window, it is 

necessary to store frequent items in efficient hash table, which allows detection, insertion, 

and deletion of frequent items to be done. 

By sliding window, transaction T5 is inserted and T1, the oldest one, in W2 is deleted. 

T1 is efficiently deleted by bitwise left shift operation. W2 ={T2,T3,T4,T5}, and new 

inserted transaction T5 includes item set{a, b, f}. To quickly detect frequent items in the 

deleted transaction and the inserted transaction, we use bitwise XOR operation. 

The processes of detecting frequent items on changes of transactions are as follows. 

First, items in T1, the deleted transaction, and T5, the inserted transaction, are expressed 

as bit sequence in columns: T1={111000}, T5={100101}. T1 contains a, b, c items, and 

T5 contains a, d, f. Second, bitwise XOR operation is applied to T1 and T5 whose items 

are expressed as bit sequence to detect changed items. That is, T1={111000} XOR 

T5={100101} = {011101}. Thus, we can notice that there are changes in b, c, d, f items. 

Third, calculate supports for the changed items b, c, d, and f, and, delete frequent items 

including related items which do not satisfies min_sup from hash table. As Supp(b)=1 and 

Supp(f)=1, items b and f do not satisfy the threshold that min_sup=0.5, they are deleted. 

Forth, among changed items (b, c ,d, f), b, f were deleted because they did not satisfy the 

threshold, and among the remaining values c and d, d which comes later in the item order, 

becomes the standard in detecting the scope of frequent items. That is, applying FIBS 

algorithm, we explore frequent items among items a, c, d (b is deleted because it does not 

satisfy min_sup.). Consequently, we leave e, frequent item in W1, as a frequent item, and 

we do not explore the frequent item any more. Because the items coming after d, which is 

standard in the item order, do not change, it is not necessary to explore them again. 

 
 

Tid items 

T1 a b c 

T2 a c d e 

T3 a b c 

T4 c d e 

Key Frequent Itemsets 

a a, ab, ac, abc 

b b, bc 

c c, cd, ce, cde 

d d, de 

e e 
 

Figure 4. Transaction in W1 Figure 5. Frequent itemsets in W1 

In such a way, through the changes of window sliding, we detect change of items 

contained in deleted transaction and newly inserted transaction. As we detect item 

changes and whether an item occurs frequently by using bitwise XOR operation on bit 

sequence of items, and we only check frequency only for the items satisfying threshold 

values, we need not re-explore all the items of transactions belonging to new window. So, 

by reducing exploration scope, we improve performance of frequent item exploration. 

 

4. Experimental Results 

The experiment compares FIBS suggested in this paper and TimeSW algorithm 

suggested in [15]. The experiment was performed on the Window 10, 16GB RAM, 

3.40GHz CPU system. As experimental datasets, we used T10I4100K and T40I10D100K 

created by the data generator of the IBM Almaden Quest Research Group. Parameters for 

the experiment are listed in Table 1.  
 



International Journal of Control and Automation 

Vol. 11, No. 8 (2018) 

 

 

90   Copyright © 2018 SERSC Australia 

Table 1. Simulation Parameters 

Parameter Description Value 

D Number of transactions in data streams 100K 

N Number of distinct items 1K 

I Average length of maximal frequent itemsets 4, 10 

T Average length of transactions 10, 40 

s Minimum support thresholds 0.01~0.1 

w Window Size 5K~10K 
 

The number of transactions in each dataset is 100K, and the number of items is 1K. 

The length of transactions ranges from 10 items to 40 items. The numbers of the 

maximum frequent items consist of 4 and 10. We tested them while changing the critical 

value of minimum support s from 0.01 to 0.1, and window sizes from 5k to 10k. 

First, we checked the trend of changes of frequent items. While existing TimeSW seeks 

frequent items in every window, FIBS algorithm performs frequency checks only for 

items which are inserted or deleted. If there is a large number of changed items, FIBS 

technique needs many operations like TimeSW. So, as shown in Figure 6, we observed 

the trend of changes of the single frequent item in each data. 

 

 

Figure 6. Changes in the Number of Frequent Items 

Figure 6 shows part of trend changes of frequent items in the following cases: the case 

of T10I4D100K’s w=5K, s=0.01; the case of T40I10D100K’s w=5k, s=0.05. In 

T10I4D100K, the average number of items constituting a transaction is 10, and the 

numbers of frequent items ranges from 370 to 385. In T40I10D100K, the average number 

of items constituting a transaction is 40. As it is a dataset where many items are occurred 

at the same time, the experiment showed that, when s is low, there is little change in 

frequent items. The experiment changed in a range from 290 to 303. The experiment 

showed that many frequent items in each window do not change. 

To test performance of FIBS, we experimented generation time of frequent items 

depending on the size of window as illustrated in Figure 7 and Figure 8. Figure 7 is the 

findings of T10I4D100K dataset. In this case, as the window size becomes larger, the 

number of transactions satisfying minimum support also gets larger. Thus, processing 

time tended also to increase. This finding shows that FIBS is considerably better than 

TimeSW. Such findings are caused by the fact that in the data where the number of items 

in a transaction is small, the changes of frequent items rarely occur. And, with the 

increase of minimum support, the difference of performance between FIBS and TimeSW 

rapidly increases from 42% to 92%. The reason is from the fact that as support gets larger, 

the number of items satisfying minimum support decreases, and frequent items do not 

change. These findings tell us that FIBS perform excellently in the case where frequent 

items do not change. 
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Figure 7. Processing Time According to Minimum Support with T10I4D100K 
Dataset 

Figure 8 shows that FIBS perform more excellently than TimeSW, from T40I4D100K 

data. This experiment is to evaluate FIBS performance in the data where there are many 

items per transaction, and there are many changes in items in each transaction. It was 

found that, in the case where many changes of items occur within a transaction as well, 

FIBS perform more excellently than TimeSW. 

 

 

Figure 8. Processing Time According to Minimum Support with 
T40I10D100K Dataset 

We also compared performance time depending on minimum support. As the minimum 

support gets higher, the number of frequent items decreases. Thus, these tests evaluate 

performance times. It is shown that FIBS perform better than TimeSW, based on 

T10I4D100K. In particular, when s=0.1, as the number of items satisfying minimum 

support increases, performance of FIBS improves from minimum 13% to maximum 59%. 

The reason is from the fact that, as minimum support gets lower, more items get frequent. 

So, the changes of frequent items get smaller. And also, we conduct an experiment for the 
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data, T40I10D100K where there are smaller changes in frequent items, and it was found 

that, in the case where many changes of items occur within a transaction as well, FIBS 

perform more excellently than TimeSW. 

 

 
(a) T10I4D100K Dataset 

 
(b) T40I10D100K Dataset 

Figure 9. Processing Time According to Window Size 

We compared performance time depending on minimum support. As the minimum 

support gets higher, the number of frequent items decreases. Thus, this test evaluates 

performance times. Figure 9(a) is based on T10I4D100K. It is shown that in all the cases, 

FIBS perform better than TimeSW. In particular, when s=0.1, as the number of items 

satisfying minimum support increases, performance of FIBS improves from minimum 

13% to maximum 59%. The reason is from the fact that, as minimum support gets lower, 

more items get frequent. So, the changes of frequent items get smaller. Figure 9(b) is 

based on T40I10D100K. This is an experiment for the data where there is smaller changes 

in frequent items, and it was found that, in this case as well, FIBS performs better than 

TimeSW. The above experiments proved that, compared with TimeSW, FIBS which only 

checks frequency on item changes within transaction is better, whether the changes in 

frequent items are big or small.  
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5. Conclusions 

This paper proposed a method to find frequent itemset on data stream based on sliding 

window. The proposed method expresses transaction items as bit sequence, and detects 

frequent itemset inserted or deleted by window sliding using bitwise exclusive OR 

operation. To evaluate the performance of the algorithm proposed in this paper, we did 

experiment comparing it with existing algorithm. The experiment showed at least 13% 

improvement of performance over the existing algorithm. This finding is from the fact 

that, unlike the existing method where all the transactions are explored again and again 

whenever window sliding is applied, the method proposed in this paper detects frequent 

items by selecting items which have changed. 
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