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Abstract 

The approximation of reliability value for an engineering system is significant to 

predicting its possible successful operation. Typically, such approximation is done by 

taking into account system attributes and, or factors that may influence the operation of 

the system. An example of such attribute is calendar age while an example of a factor that 

could influence system operation is shock. This paper investigates the effect of shock on 

the reliability of a system component and then the system in its entirety. A general shock 

model is introduced from where the reliability model is developed with the assumption 

that components and system failure follows the exponential distribution. The developed 

model is then evaluated on example case studies. 
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1. Introduction 

Safety-critical systems such as aircraft, nuclear power plants, military installations, 

computer-driven medical equipment etc., are characterized by high level of complexity. 

This could be attributed to the number of constituent components, number and types of 

function to perform number and types of inputs, etc. Thus, the complexity of such systems 

suggests that potential hazards are to be enumerated as exhaustive as possible with their 

effects and mitigations outlined. The analysis of such potential hazards would inform 

reliability and availability evaluations. Typically, the requirements for the availability and 

reliability of such systems are very high. The idea of a quantitative analysis of reliability 

dates back to about the 1940s, at which time mathematical techniques were applied to 

many operational and strategic problems in World War II [1]. Prior to this period, the 

concept of reliability was primarily qualitative and subjective, based on intuitive notions 

[1].  Actuarial methods had been used to estimate survivorship of railroad equipment and 

in other applications early in the twentieth century while extreme value theory was used 

to model fatigue life of materials beginning in the 1930s [1]. A more quantitative or 

mathematical and formal approach to reliability grew out of the demands of modern 

technology, and particularly out of the experiences in the Second World War with 

complex military systems [2]. Barlow [3] provides a historical perspective of 

mathematical reliability theory up to 1940s. Similar perspectives on reliability 

engineering in electronic equipment and on software reliability can be found in [4], [5], 

and [6]. Rackwitz [7] also provides a review and some prospects of reliability analysis in 

early years. 

Pharm, [8] defined reliability as the probability of success or the probability that the 

system will perform its intended function under specific design limits. In more specific 
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terms, reliability is the probability that a product or a part will operate properly for a 

specified period of time (design life) under the design operating conditions (such as 

temperature, volt, etc.,) without failure. In other words, reliability may be used as measure 

of the system in providing its function properly. Reliability is one of the quality 

characteristics that consumers require from the manufacturer of products [8]. 

The reliability performance of a system for a mission under various conditions is very 

important in many industries, for instance military and everyday life situations. Although 

the qualitative concept of reliability is not new, its quantitative aspects have been 

improved. Such development has resulted from the increasing needs for highly reliable 

systems and, safer and cheaper components [9]. 

There are several methods of improving system reliability, e.g., using large safety 

factors, reducing the complexity of the system, increasing the reliability of the 

components through a product improvement programme, using structural redundancy and 

practicing a planned maintenance and repair schedule. 

Maintenance modeling based on calendar age has been substantially investigated [10] 

however, certain component may deteriorate based on shock or combination of calendar 

age and shock. Hence, maintenance modeling based on calendar age alone may not be 

sufficient for certain systems. It is likely that a system will comprise of components that 

deteriorate subject to calendar age, some to shock while others to both. Therefore, there is 

need to investigate the shock model on system reliability. 

Shock is an event that causes perturbation to the system, leading to its deterioration, the 

effect of these shocks on the system is measured by a process called the wear or damage 

process [11]. For instance, the wheel of an automobile receives shock while moving. The 

level of shock depends on the impact with the object or road, e.g. pothole, rough road, etc. 

The wheel has a threshold beyond which if it receives further shock it will result into 

failure. This paper investigates the effect of shock model on system reliability by using 

existing mathematical models to further develop model for component reliability and 

subsequently, system reliability. 

This paper is organised as follows. Section 2 discusses component and system 

reliability and also gives their relationships. Sections 3 discusses shock model and gives 

the mathematical formula representing shock. A mathematical model for deriving the 

reliability of a parallel system using exponential distribution is introduced in Section 4. 

Conclusions are drawn in Section 5. 

 

2. Component and System Reliability 

The reliability of a component/system is based on precisely defined concepts. 

Sequel to the fact that in a population of supposedly identical components operating 

under similar conditions the components could fail at different points in time, then a 

failure phenomenon can only be described in probabilistic terms. Thus, the basic 

definitions of reliability can also depend on concepts from probability theory. These 

concepts provide the basis for quantifying the reliability of a component. 

Component performance may degrade with time due to some factors from 

component themselves or environment, which may include wear, erosion, shocks 

which correspondingly decrease component reliability. Component may also 

suddenly fail due to excessive loading, or some other related reasons. 

The main strenuous task of a systems engineer is to evaluate several reliability 

parameters of a given system. The system configuration may differ from simple 

(consisting of a fewer components) to complex (consisting of hundreds of 

components). One method for analysing such systems is to disintegrate them into 

subsystems of opportune size, each representing a precise function. Reliabilities of 

all the subsystems are evaluated and then integrated to find the reliability of the  

entire system, utilising certain probability laws. However, this approach requires 
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total information about the physical structure of the system. For all models , the 

assumption is that each component fails independently, i.e., the failure of any 

component does not alter the failure of the rest of the components.  

There are several models proposed by researchers to evaluate system reliability, 

these models include time dependent hazard, Gamma, stress dependent hazard, 

Markov, Weibull distribution, Exponential distribution, Duane’s and Bayesian, 

Poisson distribution, etc. [12]. 

The exponential distribution is widely used compared to other distribution 

because of it constant failure rate and simplicity, and thus, plays an important role 

in system reliability especially when maintenance is not taken into account. The 

lifetimes of electronic and electrical components and systems have been modeled 

using the exponential distribution. This distribution is good when a used component 

that has not failed is as good as a new component, a rather restrictive assumption. 

This implies that, it must be used diplomatically since numerous applications subsist 

where the restriction of the memoryless property may not apply [8] 

The time of failure by an exponential failure time density function was described 

by (Pharm, 2006). This is given as 
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Where θ =1/λ>0 is mean time to failure (MTTF) parameter and λ ≥ 0 is a 

constants failure rate (Pharm, 2006). 

The hazard function or failure rate for the exponential distribution on density 

function is constant. i.e., 
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The exponential distribution is an excellent model for the long flat “intrinsic failure” 

portion of the bathtub curve since most components and system spend some of their life 

time in this portion of the bathtub curve, and this justifies the frequent use of the 

exponential distribution (where early failure or wear out is not of concern) [8]. 

 

3. Shock Model 

According to Rangan and Tansu [13], shocks are events which cause perturbation to 

the system, leading to its deterioration and consequent failure. The effect of these shocks 

on the system is measured by a process called wear or damage process. The wear process 

is denoted by {D(t): t ≥  0 }, which is represented as the deterioration level or cumulative 

damage level at time t. The shock arrives at random time which are described by the 

associated counting process {N(t): t ≥  0}. A system will fail when the level of damage 

D(t) exceeds a damage threshold. A shock that leads to threshold crossing is referred 

to as lethal shocking [13]. 

Yehand Zhang [14] introduced a class of shock models and called them -shock 

models. The early shock models concentrated solely on the magnitude of the damage 
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caused by the shocks which generate attention to the frequency of the shocks. Thus, in a 

-shock model, a shock is a fatal shock if the time elapsed from the previous shock to the 

current shock is less than the specified value , hereafter referred to as the threshold 

value, and the system fails at the time of the occurrence of the fatal shock. This process is 

more practical because the cumulative damage process is abstract and usually not 

physically observable. In addition, system may not withstand successive shocks at short 

intervals. For instance, elastic material will stretch on the application of a shock and will 

take time to recover. Any further shock before the recovery is complete will make the 

material to break. In view of the relevance of this class of models in real systems, it seems 

worthwhile to make a comprehensive analysis of such a modeling approach [14]. 

A system suffers some damage due to shocks and the amount of shock impacted is 

cumulative, it fails when the total damage has exceeded it threshold, and the failure in 

time is obtain by cumulative process. However, it might be impossible to estimate the 

occurrence of shocks and the total damage occurred on the system at each shock [15]. 

Consider a system that is subjected to shocks and suffers some damage at each shock. 

Let Wj (j = 1, 2,.., m) denotes the damage produced by the jth shock, m being the 

maximum number of shocks experienced by the component, where W0 = 0. Let N(t) 

denote the total number of shocks up to time t (t≥ 0). The total damage is given as 

follows. 

                     
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Where Z(t) represent the total damage at time t. It is assumed that the system fails when 

the total damage at time t has exceeded a pre-specified level for the first time [15]. 

 

4. Reliability Modeling under Shock Model 

The various events that can cause shocks to engineering system have been 

reviewed in the previous chapter. Kodo and Nakagawa [15] compared three 

cumulative damage models of shocks while Ghorbani [16] investigated the impact 

of degradation process and random shocks on systems and determined the optimal 

maintenance policies for such systems. Tang and Lam [17] studied a -shock 

maintenance model for a deteriorating system, on the assumption that shocks arrived 

according to a renewal process and the inter-arrival time of shocks has a Weibull 

distribution or gamma distribution. Some more general shock models were studied 

by Barlow and Proschan [18]. A proposed model to evaluate the reliability of multi -

component degradation systems suffering two kinds of competing failure causes, 

which are internal degradation process and damage from external shocks, was 

investigated by Liu et al., [19]. Li et al., [20] studied the reliability distribution of 

an individual component subject to multiple degradation processes and random 

shocks.  

From literature, the inter-arrival time t is usually taken as the independent 

variable and the reliability R(t) is treated as a random variable. The connection of 

R(t) to shock is relevant to system reliability. Causality principle demands that  a 

response to damage exists only if there is a cause. It is not straight forward to 

assume that time is the cause of shock. Other factors such as friction, uneven line of 

motion, etc., may cause shock. Additionally, when shock occurs it causes damage to 

a certain level that is proportional to the magnitude of the shock.  

 

4.1. Derivation of Shock-Damage Model 

Assumptions of the Model 
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i This paper proposes that the variation of damage level D with respect to 

shock S is directly proportional to the sum of the damage level D0 that 

already exists and D due to the current shock. 

ii. A component or a system fails completely after it has reached a maximum 

damage level Dm having received the maximum number of shocks Sm. 

iii. The damage levels caused by individual shock are independent  

iv The sensitivity parameter β, Dm and Sm may or may not be the same for 

different components. 

Assumption (i) above can be expressed mathematically as: 
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One time integration of equation 8 gives: 
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The arbitrary constant A in equation 9 is determined by the requirement that in the 

absence of shock D(0) = D0; i.e., 
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Let Dm be the maximum level of damage at which the component/system fails 

completely and let this occur after Sm total number of shocks (assumption ii). This means 

            
 12)( 0  SeDsD  ;    0≤S≤Sm  

And  

               )12(0  mS

m eDD


 

D(s) can be normalised to a probability distribution as: 
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By integration, equation 10 becomes: 
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Solving for B gives: 
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Dn(s) in equation 12 is regarded as the damage probability distribution of the 

component/system, β is the reliability sensitivity parameter after Sk (k<m) number of 

shocks. The damage failure level F(Sk) is given by: 
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Where N is the denominator of the normalised damage distribution, which is given as: 
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4.2. Component Reliability under Shock Model 

The component of an engineering system may undergo multiple numbers of shock 

during operation. Therefore, after multiple numbers of damage due to shocks received, the 

cumulative failure distribution for each component is obtained using equation 14. From 

Ebeling [21], the reliability of each component becomes; 

                                               
)(1)( 11 kk sFsR  ,         

                                               )(1)( 22 kk sFsR  , 

                                               )(1)( 33 kk sFsR  , 

                                                     . 
 .  

 . 

 

                                              )(1)( kiki sFsR   (16) 

 

Where i refers to the ith component, 0 < i ≤ n, n is the total number of component in 

the system, )( ki sF  is the failure damage distribution of the ith  component  )( ki sR  is the 

reliability corresponding to number of shock Sk of the ith component. 

 

4.3. System Reliability under Shock Model 

In a parallel system structure, an active redundant system consisting of four 

components which are connected parallel to each other is considered in this paper as 

shown in Figure 1 below. 
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Figure 1. A Parallel System 

The damage failure level F(Sk) for each component is already established in equation 

14 as found in Ebeling [21]. Subsequently, the reliability of a component is established in 

equation 16. The redundant system in Figure 1 will fail when all the components reach 

their maximum damage level Dm. Hence, the reliability of the system under shock model 

could be obtained as follows using assumption (iii) [21]. 
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Where )(SR ks
 is the combine reliability of the entire component, corresponding to 

number of shock Sk. Equation 17 is transformed into its generalised form as shown in 

equation 18. 
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Where i refers to the ith component and m is the total number of components in the 

system. 

 

5. Model Evaluations 

The developed model of equation 16 for component reliability under shock model and 

that of system reliability as seen in equation 18 are evaluated in this section to 

demonstrate their applicability. 

 

5.1. Component Level Evaluation 

Typically, an engineering system comprises of more than one component. Their 

respective reliabilities could be evaluated using equation 16. When the magnitude of 

shocks impacted on each component varies, their respective cumulative failure 

distribution F(sk), could be evaluated using equation 14.  

The results for the evaluation of the component reliability under shock model using 

modified exponential distribution is shown in Table 1. These results were obtained for 

various values of the sensitivity parameter to demonstrate the effect it has on reliability. 

The sensitivity parameter values were arbitrarily chosen, however, its value has to be 

between 0 and 1. The number of shocks considered is 1000. Due to space limitation, it is 

impossible to show the component reliability for shock step of 1 unit, therefore a shock 

step of 50 units is considered. This implies that the shock sequence is 0, 50, 150, 200, 

250.......1000. 
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Table 1. Component Reliability 
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Figure 2. Components Reliability 

Figure 2 shows the component reliability Rj(sk) of different sensitivity parameters, with 

respect to shock Sk. Components C1, C2, C3 and C4 has sensitivity parameter as 0.001, 

0.004, 0.007 and 0.01 respectively. From the graph it could be observed that as each 

Shock 

(Sk) 

 

Component Reliability 

Rj(Sk) 

Comp 1 

β=0.001 

Comp 2 

β=0.004 

Comp 3 

β=0.007 

Comp 4 

β=0.01 

0 1.0000 1.0000 1.0000 1.0000 

50 0.9802 0.9979 0.9998 1.000 

100 0.9567 0.9947 0.9994 0.9999 

150 0.9309 0.9903 0.9988 0.9999 

200 0.9021 0.9845 0.9979 0.9998 

250 0.8720 0.9771 0.9966 0.9996 

300 0.8387 0.9675 0.9947 0.9992 

350 0.8027 0.9554 0.9917 0.9987 

400 0.7637 0.9403 0.9875 0.9978 

450 0.7217 0.9213 0.9816 0.9962 

500 0.6670 0.8322 0.9730 0.9937 

550 0.6279 0.7327 0.9608 0.9895 

600 0.5199 0.6652 0.9435 0.9826 

650 0.5199 0.5823 0.9187 0.9712 

700 0.4601 0.7327 0.8836 0.9524 

750 0.3962 0.6652 0.8336 0.9213 

800 0.3280 0.5823 0.7627 0.8702 

850 0.2553 0.4807 0.6617 0.7858 

900 0.1777 0.3588 0.5189 0.6407 

950 0.0951 0.2035 0.3159 0.4174 

1000 0.0055 0.0166 0.0277 0.0160 

----β=0.001 

----β=0.004 

----β=0.007 

----β=0.01 

Ri(Sk) 
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active component undergoes more shock the damage caused by the shock increases. The 

component reliability Ri(sk) decrease with increase in shock Sk. 

From the assumption made, the component fails completely after it has reached a 

maximum damage level Dm, having received a maximum number of shocks, Sm. Sm is 

assumed to be 1000 shock, the sensitivity parameter β was assumed to have varying 

values for each of the components.  

Component 1 which has the least sensitivity parameter is likely to be the first to 

experience failure after reaching its maximum shock Sm compared to 2, 3 and 4. The 

sequence of failure after component 1 would then be component 2, 3 and lastly 4. 

Therefore, from the graph the reliability of the components increases with increase in 

sensitivity parameter β. The sharp drop in the curve of each component infers that the 

component is close to failure before reaching its maximum shock Sm. 

The magnitude of individual shock has an effect on the components. The shock 

magnitude increases the accumulated damage created on it. When the component is closer 

to it maximum damage level Dm, any small amount of shock may have a greater impact 

on the component reliability, and this may cause a fast drop in the reliability. 

 

5.2. System Level Evaluation 

For a multi-component system with m components configured in parallel, assumption 

(iii) enables the use of two terms prescription for the total reliability of the system as in 

equation 18. Hence, the reliability for the system as used in this paper is evaluated using 

equation 18. The results of the evaluation are shown in Table 2 and the graph 

representation is shown in Figure 3. 

Table 2. System Reliability 
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System 

Reliability 

RS(Sk) 

0 1.0000 

50 1.0000 

100 1.0000 

150 1.0000 

200 1.0000 

250 1.0000 

300 1.0000 

350 1.0000 

400 1.0000 

450 1.0000 

500 1.0000 

Shock 

(Sk) 

 

System 

Reliability 

RS(Sk) 

550 1.0000 

600 0.9999 

650 0.9998 

700 0.9973 

750 0.9973 

800 0.9911 

850 0.9713 

900 0.9076 

950 0.7060 

1000 0.0450 
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Figure 3. Total Reliability of the Four Components (System Reliability) 

Figure 3 shows the resultant reliability of the four components configured in parallel, 

with respect to shock. This gives the system reliability. The sensitivity value used for each 

component was the same as that found in Figure 2. The system reliability in Figure 3 is 

higher than the components reliability in Figure 2. This implies that for an active 

redundant system, if one component attains its maximum damage level, the system will 

continue to function effectively but has a slight drop in reliability. The system fails 

completely when the entire components reach their maximum damage level. 

 

6. Conclusions 

In this paper, the effect of shock on component reliability was investigated. A 

model to evaluating the reliability was then mathematically established based on 

other established models found in literature. The modeling of component reliability 

is of significance since system reliability could be evaluated using individual 

component failure data and reliability evaluation model. Thus, a model to evaluating 

system reliability was also established. The system reliability that was modeled in 

this paper is focused on a parallel system. This does not imply that the developed 

component reliability could not be used to establishing system reliability for series 

system or a system that comprise of both series and parallel configurations. To 

demonstrate the applicability of the models, individual component reliabilities for 

four different components were evaluated with varying failure  data. Similarly, the 

reliability of a system comprising of the four components configured in parallel was 

evaluated. In general, the failure characteristics of the components were assumed to 

follow the exponential distribution. The results obtained show that reliability 

decreases with increased shock. This pattern was expected and thus, the evaluations 

performed demonstrated the sufficiency of the established models under shock and 

exponential distribution. However, further work will be required to investigate the 

effects of maintenance on shock.  
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