
International Journal of Control and Automation

Vol. 10, No. 5 (2017), pp.83-92

http//dx.doi.org/10.14257/ijca.2017.10.5.08

ISSN: 2005-4297 IJCA

Copyright © 2017 SERSC

Multibody Dynamics Modeling and Simulating Using Maple and

Maplesim

Liu Shaogang
1

and Edris Farah
2
,

1
College of Mechanical & Electrical Engineering, Harbin Engineering University,

Harbin, China
2
Department of Mechanical Engineering, Karary University, Khartoum, Sudan

edrisfarah@yahoo.com

Abstract

This paper presents a general purpose of modeling and simulating multibody dynamics

in Maple and Maplesim. The method is exemplified by modeling 2DOF Robot arm in

Maple using Newton-Euler formulation algorithm. Drag-and-drop Physical modeling tool

in Maplesim is used to simulate the dynamics of the same robotic system. Results from

both Maple and Maplesim model are compared. The paper shows in tutorial form how

Maple and Maplesim are very excellent environment for modeling and simulating

multibody systems.

Keywords: Robotic; Newton-Euler; Maple; Maplesim; Dynamic Modeling

1. Introduction

Dynamic modeling means deriving equations that clearly describes the relationship

between force and motion. These equations are important to consider in robot simulation,

and robot control design algorithms. There are several methods to formulate the robot

motion dynamic, such as the Euler-Lagrange formulation [1-4], and Newton-Euler

formulation [5-8] which are the most familiar methods. Euler-Lagrange formulation is

energy based approach which describe the evolution of a mechanical system subject to

holonomic constraints, while The Newton-Euler formulation is quite different because

each link of the manipulator is studied in turn. To derive the dynamic model of a

manipulator robot with n-link using Newton-Euler formulation; first we need to do a

forward recursion which represent the linear and angular motion of the robot, then we do

the backward recursion to compute the forces and torques.

In this work we show how to develop and implement the Newton-Euler recursive

technique in Maple software and how to generate the differential equations of motion in

state-space form and solve them. This paper shows how we can create and simulate the

same robotic system by Drag-and-Drop physical modeling tools in Maplesim and get

faster results equivalent to Maple results.

2. Newton-Euler Algorithm

The dynamics equations of the robot can be generated iteratively by Newton-Euler

formalism. For m equal the mass, I the inertia tensor, v the velocity,  the angular

velocity, and F and N are the external forces and moments acting in each link of the robot,

the Newton equation is:

And the Euler equation is:

 (1)
ext

d
m v F

dt
 

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

84 Copyright © 2017 SERSC

These two equations can be solved iteratively in two loop circle. First the velocities and

accelerations are determined by calculating in an outward direction from the base of the

robot to its end-effector. Then, the forces and moments are gained by inward calculations

in the opposite direction.

The resulting equations can be combined as matrix-vector differential equations, the so

called state-space form:

Where M is (nхn) positive definite mass matrix, V is (nх1) vector of centripetal and

Coriolis terms, and G is (nх1) vector of the gravity components.

In Newton-Euler algorithm we define R as the transformation matrix for neighboring

link coordinate frame, (theta) and d are free Denavit-Hartenberg parameters for rotational

and prismatic joints, respectively. P is coordinating system origins of neighboring frames,

f and n are external forces and moment, and k is the unit vector of a link coordinates

system pointing along the joint axis.

2.1. Outward Iterations

Velocities and Accelerations for each joint prismatic or revolute can be calculated from

base to end-effector in outward direction by the next equations [9-11]:

1. Angular velocity for revolute joint or prismatic joint:

2. Angular acceleration for the two kind of joints:

3. Linear acceleration can be calculated by the next equation system:

4. Linear acceleration for center of gravity:

5. Force at the center of gravity:

 (2)
ext

I I N
t

   



    (3)M q q V q,q G q 
 
  
 

  

:

:

1
1 1

 (4)

1
1 1

Revolute

Prismatic

i i iR Zii ii i

i i iR
i i i











   
 

   
 

•• • ••
1

1 1

••
1

1 1

:

:

 (5)

i i i i
i i i i i ii i

i i i
i i i

Revolute

Prismatic

R k k

R

 
 


 

  
   

 



    

  

1

1 1 1 1 1:

1 1 1 1i i
i i i i i iRev R a p p

i ii i i i
a

 
  
       
 

            
   

1 1 1 1 1: 2 11 1 1 1

 (6)

i
i ii i i i iR a p p d Z d Zi i ii i ii ii i i i

Pri a
  

 
  
  

  
 








                   




1
 (7)Ci c

i i i i i i iR v p pci i i i i ii
a

  
  
    

 

     


 (8)Cii aF m
i



International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright © 2017 SERSC 85

6. Moment at the center of gravity:

2.2. Inward Iterations

Forces and Moments Calculation for each joint prismatic or revolute can be calculated

from base to end-effector in inward direction by the next equations:

1. Forces and moments for revolute and prismatic joint:

2. Controlling forces and moments for revolute and prismatic joint:

If the base is not rotating the initial value is:

Influence of gravitational acceleration g:

If the robot moving freely in space, then the Forces and moments acting on the end

effector are:

3. Newton-Euler Algorithm in Maple

Maple is an interactive mathematical problem solving environment with rich sets of

data structures and powerful programming language developed by Maplesoft [12]. The

highly nonlinear differential equation No.3 can be solved in Maple with (dsolve)

command [13] and visualized with (plot) command. In this paper Maple 18 has been used

to model an example of a Frictionless double pendulum, which is equivalent to 2dof robot

arm to show how we can model and simulate robotic system in Maple.

The coordinate systems of the pendulum are shown in Figure 1. The masses M1 and

M2 are concentrated at the center of each link. The two links with length L1 and L2

respectively. Spring damper has been added to joint 1 to simulate torque in joint1.

 (9)i
i iiI Ii i i ii

N


    

1 1 1:
1 1

1 1 1:
1

(10)

i i i iForce f R f Fi ii i

i i i iTorque n R n pi i i ii

   
 

    


1 1 1 1
1 1 1

i i i i iR f p F Nci i i i





      
  

1:
1 1 1

1:

1 1 1

(11)

T

T

iRev n Z
i i i

iPri f Z
i i i





 
  


 

  

0 0 0,
0 0

0 0 ,
0 0 0

 Else (12)



 

   

     0








 

0 0 0
0

(13)
T

v , ,g




 Else
,0

(14)
 ,

n n
n n

n n
n n n n

f n

f f n n






 

 

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

86 Copyright © 2017 SERSC

Figure 1. Double Pendulum Coordinates

Outward iterations and inward iterations in the previous section can be implemented in

Maple programing as follows:

3.1. Outward Procedure

3.2. Inward Procedure

> restart:

> with(LinearAlgebra):

> outward := proc (m::scalar, I_C::matrix, P::Vector, P_C::Vector,

R::matrix, o::Vector, odot::Vector, tdot::scalar, tddot::scalar,

vdot::Vector, o_p::name, odot_p::name, vdot_p::name, F_p::name,

 N_p::name)

local vdot_C, Z ;

Z := Vector([0, 0, 1]) ;

o_p := R.o + tdot*Z ;

odot_p := (R.odot) + (R.o) &x (tdot*Z)+ tddot*Z ;

vdot_p := R.(odot &x P) + R.(o &x (o &x P)) + R.vdot ;

vdot_C := (odot_p &x P_C) + o_p &x (o_p &x P_C) + vdot_p;

F_p := m *vdot_C ;

N_p := I_C.odot_p + Z &x (I_C.o_p) ;

end

> inward:= proc(F::Vector,N::Vector,R::matrix,p::Vector,

p_C::Vector,f_p::Vector,n_p::Vector,f::name,n::name)

f:= F + (R.f_p);

n:= N + (R.n_p)+(p_C &x F) + p &x (R.f_p);

n[3]

end

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright © 2017 SERSC 87

> outward(m1, I1, P1, PC1, R1, O0, O0d,T1d,

 T1dd, v0d, O1, O1d, v1d, F1,N1)

3.3. Define Some Matrices and Vectors for the Pendulum

3.4. Perform First Outward Iteration

3.4. Define Further Entries

3.5. Perform a Second Outward Iteration

3.6. Define Further Entries

3.7. Perform First Inward Iteration

3.8. Perform a Second Inward Iteration

3.9. Add rotational Spring Damper to joint1

Where d is the damping constant and c is the spring constant.

> I1 := matrix(3, 3, 0);

> P1 := Vector(3, 0);

L1> PC1 := Vector([0, , 0]);
2

> R1 := matrix([[cos(T1), sin(T1), 0], [-sin(T1), cos(T1), 0], [0, 0, 1]]);

> O0 := Vector(3, 0);

> O0d := Vector(3, 0);

> v0d := Vector([0, -g, 0]);

> I2 := matrix(3, 3, 0):

> P2 := Vector([0, L1, 0]):

L2> PC2 := Vector([0, , 0]):
2

> R2 := matrix([[cos(T2), sin(T2), 0], [-sin(T2), cos(T2), 0], [0, 0, 1]]):

> outward(m2, I2, P2, PC2, R2, O1, O1d, T2d,

 T2dd, v1d, O2, O2d, v2d, F2, N2)

> f3 := Vector(3,0) : n3:= Vector(3,0) :

> R3:= matrix(3, 3, 0) : P3:= Vector(3) :

> with(MTM):

> tau[2] := inward(F2, N2, transpose(R3), P3, PC2, f3, n3, f2, n2) :

> with(MTM):

> tau[1] := inward(F1,N1,transpose(R2),P2,PC1,f2,n2,f1,n1):

> tau[1] := T1*c+T1d*d+tau[1]

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

88 Copyright © 2017 SERSC

3.10. Find M the Mass Matrix

3.11. Invert of the Mass Matrix:

3.12. Find V the Centripetal and Coriolis terms:

3.13. Extract G the Gravity Terms

3.14. Set the Differential Equations

> tau[1] := combine(tau[1], trig):

> tau[2] := combine(tau[2], trig):

> tau[1] := collect(tau[1], [T1dd, T2dd, g], distributed):

> tau[2] := collect(tau[2], [T1dd, T2dd, g], distributed):

> M := matrix([[coeff(tau[1], T1dd, 1), coeff(tau[1], T2dd, 1)],

 [coeff(tau[2], T1dd, 1), coeff(tau[2], T2dd, 1)]]) :

Result is Mass matrix :

M 
 
 
 

2 2 2 2

1 2 2 2 2 1 1 1 2 2 2 1 2 2

2 2

2 2 1 2 2 2 2

1 1 1 1

4 4 4 2

1 1 1

4 2 4

(T2) (T2)

(T2)

LL m cos L m L m L m L m LL m cos

LL m cos L m

+ + +

L m +

+

v
> := MatrixInverse(M):M

> V := Vector([tcoeff(tau[1], [T1dd, T2dd, g]), tcoeff(tau[2],

 [T1dd, T2dd, g])]):

 

Centripetal and Coriolis Vector:


 
 
 

1 2 2

2

1 2 2

1

2

1
2

-L L .T2 . T2) T1 + T2 c.T1 + d.T2

T2 (T2)

m d sin(d d d

LL m. d.sin

+
V

> G := Vector([coeff(tau[1], g, 1), coeff(tau[2], g, 1)]):

> G := ScalarMultiply(G, g);

GravityVector:


 
 
 

2 2 1 1 1 2

2 2

1 1
2 2

T1 + T2) (T1)+ (T1) g

T1 + T2
1
2

sin(sin sin

sin()gL m

L m + L m L m
G

)(

v
> RH := M .(-Add(V, G)): # right hand side of the state equation

> RH[1] := subs({T1 = theta[1](t), T2 = theta[2](t)}, RH[1]):

> RH[2] := subs({T1 = theta[1](t), T2 = theta[2](t)}, RH[2]):

> RH[1] := subs({T1d = diff(theta[1](t), t),

 T2d = diff(theta[2](t), t)}, RH[1]):

> RH[2] := subs({T1d = diff(theta[1](t), t),

 T2d = diff(theta[2](t), t)}, RH[2]):

> ode[1] := diff(theta[1](t), t, t) = RH[1]:

> ode[2] := diff(theta[2](t), t, t) = RH[2]:

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright © 2017 SERSC 89

3.15. Assign the Numerical Values

3.16. Solve the Differential Equations

3.17. Plotting Graphs of Trajectories for Joint1

Figure 2. Shoulder Trajectories: a: Angle, b: Speed, C: Acceleration, d:
Torque

1 2
> L1 := 1: L2 := 1: m := 1: m := 1: c := 1: d := 1: g := 9.8

> st := time()

> F := dsolve({ode[1], ode[2], theta[1](0) = 0.05, theta[2](0) = 0.05

 ,(D(theta[1]))(0) = 0, (D(theta[2]))(0) = 0},{theta[1](t), theta[2](t)}

 ,type = numeric, method = dverk78, output = listprocedure) :

Solution

 

 

1 1

2 2

d
F:=[t = proc (t)...end proc, (t) = proc (t)...end proc, (t) = proc (t)...end proc,

dt

d
(t) = proc (t)...end proc, (t) = proc (t)...end proc]

dt

> X := eval(theta[1](t),F):

 Z := eval(diff(theta[1](t),t),F):

> plot(X, 0 .. 10,title = "shoulder angle")# fig.2a

> plot(Z, 0 .. 10,title = "shoulder speed")# fig.2b

> plot(D(Z), 0 .. 10,title = "shoulder acceleration")# fig.2c

> plot(-(d.Z+c.X), 0 .. 10,title = "shoulder torque")# fig.2d

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

90 Copyright © 2017 SERSC

3.17. Plotting Graphs of Trajectories for Joint 2

Figure 3. Elbow Trajectories: a: Angle, b: Speed, C: Acceleration, d: Torque

4. System Simulation in Maplesim

Maplesim is a high-performance, multi-domain modeling and simulation environment.

It is automatically generated system equations with real-time simulation code for complex

systems, developed by Maplesoft. Figure 4 shows the physical modeling of the double

pendulum in Maplesim. It was created in Maplesim 6.4 by adding and connecting two

revolute joints and two rigid bodies for each link with mass in the center, spring damper is

added to simulate the torque in joint 1, and two probes have been added to show the

graphs of the simulation result. In each probe angle, angular speed, angular acceleration

and torque are selected as required measurements.

Figure 4. The Double Pendulum Model in Maplesim

> Y := eval(theta[2](t),F):

 Q := eval(diff(theta[2](t),t),F):

> plot(Y, 0 .. 10,title ="elbow angle") # fig.3a

> plot(Q, 0 .. 10,title ="elbow speed") # fig.3b

> plot(D(Y), 0 .. 10,title ="elbow acceleration") # fig.3c

> plot(0, 0 .. 10,title ="elbow torque") # fig.3d

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright © 2017 SERSC 91

The selected measurements in probes will be generated automatically during the

simulation as shown in Figure 5, and Figure 6. One can notice that the result graphs from

Maplesim are equivalent to Maple results in Figure 2 and Figure 3 which confirm the

validity of the method followed for modeling the robot dynamics in Maple.

Figure 5. Probe1 Results: a: Angle, b: Speed,C: Acceleration, d: Torque

Figure 6. Probe2 Results: a: Angle, b: Speed, C: Acceleration, d: Torque

5. Conclusion

It has been shown that Maple and Maplesim are an excellent environment for modeling

and simulating multibody systems. These kind of symbolic programming gives a much

deeper understanding of multibody dynamics than pure numeric equations, also the use of

drag-and-drop tool in maplesim is bringing your model to live and make it easy for you to

change the parameters and update your model.

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

92 Copyright © 2017 SERSC

Acknowledgment

The authors gratefully acknowledge the financial support of the International Exchange

Program of Harbin Engineering University for innovation and talents cultivation.

References

[1] V. Falkenhahn, “Dynamic modeling of constant curvature continuum robots using the Euler-Lagrange

formalism”, in Intelligent Robots and Systems, 2014 IEEE/RSJ International Conference on, (2014).

[2] H. Li, “Dynamics and optimization of a 2-DOF parallel robot with flexible links”, In Intelligent Control

and Automation, 7th World Congress on, IEEE, (2008).

[3] D. Li, “Dynamic Model of a 3 DOF Direct Drive Robot and Its Control Mode”, In Control and

Automation, IEEE International Conference on, IEEE, (2007).

[4] B. Dasgupta and T. S. Mruthyunjaya, “A Newton-Euler formulation for the inverse dynamics of the

Stewart platform manipulator”, Mechanism and Machine Theory, vol. 33.8, (1998), pp. 1135-1152.

[5] W. Khalil, “Dynamic Modeling of Robots Using Newton-Euler Formulation”, Informatics in Control,

Automation and Robotics. Springer Berlin Heidelberg, (2011), pp. 3-20.

[6] E. Stoneking, “Newton-euler dynamic equations of motion for a multi-body spacecraft”, AIAA

Guidance, Navigation, and Control Conference, (2007).

[7] A. De Luca and L. Ferrajoli, “A modified newton-euler method for dynamic computations in robot fault

detection and control”, Robotics and Automation, ICRA'09, IEEE International Conference on, (2009).

[8] V. Aslanov, G. Kruglov and V. Yudintsev, “Newton–Euler equations of multibody systems with

changing structures for space applications”, Acta Astronautica, vol. 68.11, (2011), pp. 2080-2087.

[9] F. L. Lewis, D. M. Dawson and C. T. Abdallah, “Robot manipulator control: theory and practice”, CRC

Press, (2003).

[10] M. W. Spong, S. Hutchinson and M. Vidyasagar, “Robot modeling and control”, New York: Wiley, vol.

3, (2006).

[11] J. J. Craig, “Introduction to robotics: mechanics and control”, Upper Saddle River, NJ, USA:

Pearson/Prentice Hall, (2005),.

[12] Available from: http://www.maplesoft.com/. 15, Sep, (2015).

[13] A. Heck and W. Koepf, “Introduction to MAPLE”, New York: Springer-Verlag, (1993).

Authors

Liu Shaogang, he is Professor, doctoral tutor. Harbin Engineering

University, mechanical design and theory research on design and

theory of mechanical discipline leaders, director of the Institute and

the government of Heilongjiang province science and Technology

Economic Advisory Committee of experts. Currently engaged in

mechanical and electronic engineering, mechanical design and theory,

computer control system, pneumatic emission (ejection) research

technology, fire protection technology, ecological protection

technology and equipment. He has many publication in a scholar

journal in the above research areas.

Edris Farah, his nationality is Sudanese. He received his B.S.

degree in mechanical engineering from KARARY University Sudan

in 2001, his M.S. degree from KARARY University in mechanical

design in 2010, and his Ph.D. degree in mechatronic engineering is

from Harbin engineering University China in 2015. His research area

interest is in surgical robotic systems.

