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Abstract 

This paper presents a general purpose of modeling and simulating multibody dynamics 

in Maple and Maplesim. The method is exemplified by modeling 2DOF Robot arm in 

Maple using Newton-Euler formulation algorithm. Drag-and-drop Physical modeling tool 

in Maplesim is used to simulate the dynamics of the same robotic system. Results from 

both Maple and Maplesim model are compared. The paper shows in tutorial form how 

Maple and Maplesim are very excellent environment for modeling and simulating 

multibody systems. 
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1. Introduction 

Dynamic modeling means deriving equations that clearly describes the relationship 

between force and motion. These equations are important to consider in robot simulation, 

and robot control design algorithms. There are several methods to formulate the robot 

motion dynamic, such as the Euler-Lagrange formulation [1-4], and Newton-Euler 

formulation [5-8] which are the most familiar methods. Euler-Lagrange formulation is 

energy based approach which describe the evolution of a mechanical system subject to 

holonomic constraints, while The Newton-Euler formulation is quite different because 

each link of the manipulator is studied in turn. To derive the dynamic model of a 

manipulator robot with n-link using Newton-Euler formulation; first we need to do a 

forward recursion which represent the linear and angular motion of the robot, then we do 

the backward recursion to compute the forces and torques. 

In this work we show how to develop and implement the Newton-Euler recursive 

technique in Maple software and how to generate the differential equations of motion in 

state-space form and solve them. This paper shows how we can create and simulate the 

same robotic system by Drag-and-Drop physical modeling tools in Maplesim and get 

faster results equivalent to Maple results. 

 

2. Newton-Euler Algorithm 

The dynamics equations of the robot can be generated iteratively by Newton-Euler 

formalism. For m equal the mass, I the inertia tensor, v the velocity,   the angular 

velocity, and F and N are the external forces and moments acting in each link of the robot, 

the Newton equation is: 

 

 

 

 

And the Euler equation is: 

  (1)                                                         
ext

d
m v F

dt
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These two equations can be solved iteratively in two loop circle. First the velocities and 

accelerations are determined by calculating in an outward direction from the base of the 

robot to its end-effector. Then, the forces and moments are gained by inward calculations 

in the opposite direction. 

The resulting equations can be combined as matrix-vector differential equations, the so 

called state-space form: 

 

 

 

 

Where M is (nхn) positive definite mass matrix, V is (nх1) vector of centripetal and 

Coriolis terms, and G is (nх1) vector of the gravity components. 

In Newton-Euler algorithm we define R as the transformation matrix for neighboring 

link coordinate frame, (theta) and d are free Denavit-Hartenberg parameters for rotational 

and prismatic joints, respectively. P is coordinating system origins of neighboring frames, 

f and n are external forces and moment, and k is the unit vector of a link coordinates 

system pointing along the joint axis. 

 

2.1. Outward Iterations 

Velocities and Accelerations for each joint prismatic or revolute can be calculated from 

base to end-effector in outward direction by the next equations [9-11]: 

1. Angular velocity for revolute joint or prismatic joint: 

        

 

 

 

 

 

 

2. Angular acceleration for the two kind of joints: 

 

 

 

 

 

 

3. Linear acceleration can be calculated by the next equation system: 

 

 

 

 

 

 

 

4. Linear acceleration for center of gravity: 

 

 

 

5. Force at the center of gravity: 
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6. Moment at the center of gravity: 

 

 

 

2.2. Inward Iterations 

Forces and Moments Calculation for each joint prismatic or revolute can be calculated 

from base to end-effector in inward direction by the next equations: 

1. Forces and moments for revolute and prismatic joint: 

 

 

 

 

2. Controlling forces and moments for revolute and prismatic joint: 

 

 

 

 

If the base is not rotating the initial value is: 

 

 

 

 

 

Influence of gravitational acceleration g: 

 

 

 

If the robot moving freely in space, then the Forces and moments acting on the end 

effector are: 

 

 

 

 

 

3. Newton-Euler Algorithm in Maple 

Maple is an interactive mathematical problem solving environment with rich sets of 

data structures and powerful programming language developed by Maplesoft [12]. The 

highly nonlinear differential equation No.3 can be solved in Maple with (dsolve) 

command [13] and visualized with (plot) command. In this paper Maple 18 has been used 

to model an example of a Frictionless double pendulum, which is equivalent to 2dof robot 

arm to show how we can model and simulate robotic system in Maple. 

The coordinate systems of the pendulum are shown in Figure 1. The masses M1 and 

M2 are concentrated at the center of each link. The two links with length L1 and L2 

respectively. Spring damper has been added to joint 1 to simulate torque in joint1. 
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Figure 1. Double Pendulum Coordinates 

Outward iterations and inward iterations in the previous section can be implemented in 

Maple programing as follows: 

 
3.1. Outward Procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2. Inward Procedure 

 

 

 

 

 

 

 
 

 

 

 

> restart:

> with(LinearAlgebra):

> outward := proc (m::scalar, I_C::matrix, P::Vector, P_C::Vector, 

R::matrix, o::Vector, odot::Vector, tdot::scalar, tddot::scalar, 

vdot::Vector, o_p::name, odot_p::name, vdot_p::name, F_p::name,

 N_p::name) 

local vdot_C, Z ; 

Z := Vector([0, 0, 1]) ; 

o_p := R.o + tdot*Z ; 

odot_p := (R.odot) + (R.o) &x (tdot*Z)+ tddot*Z ; 

vdot_p := R.(odot &x P) + R.(o &x (o &x P)) + R.vdot ;

vdot_C := (odot_p &x P_C) + o_p &x (o_p &x P_C) + vdot_p; 

F_p := m *vdot_C ; 

N_p := I_C.odot_p + Z &x (I_C.o_p) ; 

end

> inward:= proc(F::Vector,N::Vector,R::matrix,p::Vector,

p_C::Vector,f_p::Vector,n_p::Vector,f::name,n::name)

f:= F + (R.f_p);

n:= N + (R.n_p)+(p_C &x  F) + p  &x (R.f_p);

n[3] 

end
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> outward(m1, I1, P1, PC1, R1, O0, O0d,T1d, 

   T1dd, v0d, O1, O1d, v1d, F1,N1)

3.3. Define Some Matrices and Vectors for the Pendulum 
 

 

 

 

 

 

 

 

 

 

3.4. Perform First Outward Iteration 

 

 

 
3.4. Define Further Entries 

 

 

 

 

 

 
3.5. Perform a Second Outward Iteration 

 

 
 

 
3.6. Define Further Entries 

 

 
 

 
3.7. Perform First Inward Iteration 

 

 
 

 

3.8. Perform a Second Inward Iteration 

 

 

 
3.9. Add rotational Spring Damper to joint1 

 

 
Where d is the damping constant and c is the spring constant. 

 

> I1 := matrix(3, 3, 0);

> P1 := Vector(3, 0);

L1> PC1 := Vector([0, , 0]);
2

> R1 := matrix([[cos(T1), sin(T1), 0], [-sin(T1), cos(T1), 0], [0, 0, 1]] );

> O0 := Vector(3, 0);

> O0d := Vector(3, 0);

> v0d := Vector([0, -g, 0]);

> I2 := matrix(3, 3, 0):

> P2 := Vector([0, L1, 0]):

L2> PC2 := Vector([0, , 0]):
2

> R2 := matrix([[cos(T2), sin(T2), 0], [-sin(T2), cos(T2), 0], [0, 0, 1]] ):

> outward(m2, I2, P2, PC2, R2, O1, O1d, T2d,

   T2dd, v1d, O2, O2d, v2d, F2, N2)

> f3 := Vector(3,0) :  n3:= Vector(3,0) :

> R3:= matrix(3, 3, 0) :  P3:= Vector(3) :

> with(MTM):

> tau[2] := inward(F2, N2, transpose(R3), P3, PC2, f3, n3, f2, n2) :

> with(MTM):

> tau[1] := inward(F1,N1,transpose(R2),P2,PC1,f2,n2,f1,n1):

> tau[1] := T1*c+T1d*d+tau[1]
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3.10. Find M the Mass Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.11. Invert of the Mass Matrix: 

 

 

 
3.12. Find V the Centripetal and Coriolis terms: 

 

 

 

 

 

 

 
 

 
3.13. Extract G the Gravity Terms 

 

 

 

 

 

 

 

 

 
3.14. Set the Differential Equations 

 

 

 

 

 

 

> tau[1] := combine(tau[1], trig):

> tau[2] := combine(tau[2], trig):

> tau[1] := collect(tau[1], [T1dd, T2dd, g], distributed):

> tau[2] := collect(tau[2], [T1dd, T2dd, g], distributed):

> M := matrix([[coeff(tau[1], T1dd, 1), coeff(tau[1], T2dd, 1)],

            [coeff(tau[2], T1dd, 1), coeff(tau[2], T2dd, 1)]] ) :

Result is Mass matrix :

M 
 
 
 

2 2 2 2

1 2 2 2 2 1 1 1 2 2 2 1 2 2

2 2

2 2 1 2 2 2 2

1 1 1 1

4 4 4 2

1 1 1

4 2 4

( T2 ) ( T2 )

( T2 )

LL m cos L m L m L m L m LL m cos

LL m cos L m

+ + +

L m +

+

v
>  := MatrixInverse(M):M

> V := Vector([tcoeff(tau[1], [T1dd, T2dd, g]), tcoeff(tau[2],

         [T1dd, T2dd, g] )] ):

 

Centripetal and Coriolis  Vector:


 
 
 

1 2 2

2

1 2 2

1

2

1
2

-L L .T2 . T2) T1 + T2 c.T1 + d.T2

T2 (T2)

m d sin( d d d

LL m. d.sin

+
V

> G := Vector([coeff(tau[1], g, 1), coeff(tau[2], g, 1)]):

> G := ScalarMultiply(G, g);

GravityVector:


 
 
 

2 2 1 1 1 2

2 2

1 1
2 2

T1 + T2) (T1)+ (T1) g

T1 + T2
1
2

sin( sin sin

sin( )gL m

L m + L m L m
G

)(

v
> RH := M .(-Add(V, G)): # right hand side of the state equation

> RH[1] := subs({T1 = theta[1](t), T2 = theta[2](t)}, RH[1]):

> RH[2] := subs({T1 = theta[1](t), T2 = theta[2](t)}, RH[2]):

> RH[1] := subs({T1d = diff(theta[1](t), t), 

                   T2d = diff(theta[2](t), t)}, RH[1]):

> RH[2] := subs({T1d = diff(theta[1](t), t), 

                   T2d = diff(theta[2](t), t)}, RH[2]):

> ode[1] := diff(theta[1](t), t, t) = RH[1]:

> ode[2] := diff(theta[2](t), t, t) = RH[2]:



International Journal of Control and Automation 

Vol. 10, No. 5 (2017) 

 

 

Copyright © 2017 SERSC 89 

3.15. Assign the Numerical Values 

 

 

 

 
3.16. Solve the Differential Equations 

 

 

 

 

 

 

 

 

 

 
3.17. Plotting Graphs of Trajectories for Joint1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Shoulder Trajectories: a: Angle, b: Speed, C: Acceleration, d: 
Torque 

 

 

1 2
> L1 := 1: L2 := 1: m  := 1: m  := 1: c := 1: d := 1: g := 9.8

> st := time( )

> F := dsolve({ode[1], ode[2], theta[1](0) = 0.05, theta[2](0) = 0.05

   ,(D(theta[1]))(0) = 0, (D(theta[2]))(0) = 0},{theta[1](t), theta[2](t)}

   ,type = numeric, method = dverk78, output = listprocedure) :

Solution

 

 

1 1

2 2

d
F:=[t = proc (t)...end proc, (t) = proc (t)...end proc, (t) = proc (t)...end proc,

dt

d
(t) = proc (t)...end proc, (t) = proc (t)...end proc]

dt

> X := eval(theta[1](t),F): 

    Z := eval(diff(theta[1](t),t),F): 

> plot(X, 0 .. 10,title = "shoulder angle")# fig.2a

> plot(Z, 0 .. 10,title = "shoulder speed")# fig.2b

> plot(D(Z), 0 .. 10,title = "shoulder acceleration")# fig.2c

> plot(-(d.Z+c.X), 0 .. 10,title = "shoulder torque")# fig.2d
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3.17. Plotting Graphs of Trajectories for Joint 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Elbow Trajectories: a: Angle, b: Speed, C: Acceleration, d: Torque 

 

4. System Simulation in Maplesim 

Maplesim is a high-performance, multi-domain modeling and simulation environment. 

It is automatically generated system equations with real-time simulation code for complex 

systems, developed by Maplesoft. Figure 4 shows the physical modeling of the double 

pendulum in Maplesim. It was created in Maplesim 6.4 by adding and connecting two 

revolute joints and two rigid bodies for each link with mass in the center, spring damper is 

added to simulate the torque in joint 1, and two probes have been added to show the 

graphs of the simulation result. In each probe angle, angular speed, angular acceleration 

and torque are selected as required measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The Double Pendulum Model in Maplesim 

> Y := eval(theta[2](t),F):

  Q := eval(diff(theta[2](t),t),F): 

> plot(Y, 0 .. 10,title ="elbow angle")  # fig.3a

> plot(Q, 0 .. 10,title ="elbow speed")  # fig.3b

> plot(D(Y), 0 .. 10,title ="elbow acceleration")  # fig.3c

> plot(0, 0 .. 10,title ="elbow torque")  # fig.3d
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The selected measurements in probes will be generated automatically during the 

simulation as shown in Figure 5, and Figure 6. One can notice that the result graphs from 

Maplesim are equivalent to Maple results in Figure 2 and Figure 3 which confirm the 

validity of the method followed for modeling the robot dynamics in Maple. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Probe1 Results: a: Angle, b: Speed,C: Acceleration, d: Torque 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Probe2 Results: a: Angle, b: Speed, C: Acceleration, d: Torque 

 

5. Conclusion 

It has been shown that Maple and Maplesim are an excellent environment for modeling 

and simulating multibody systems. These kind of symbolic programming gives a much 

deeper understanding of multibody dynamics than pure numeric equations, also the use of 

drag-and-drop tool in maplesim is bringing your model to live and make it easy for you to 

change the parameters and update your model. 
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