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Abstract 

Network connectivity is a key issue in wireless sensor networks (WSNs). Nodes have to 

establish and maintain a connected topology in a WSN while dealing with interference 

and packet loss. Topology control techniques allow the network nodes to reduce their 

transmission power while preserving the network connectivity. In this paper, we present a 

reinforcement-learning-based communication range control (RL-CRC) algorithm to 

adaptively adjust the communication range at each sensor node while ensuring the 

network connectivity in dynamic WSNs. In the proposed RL-CRC, the reinforcement 

learning is exploited to discover neighbors with low interference, and the network 

topology is effectively obtained in presence of interference. The reinforcement learning 

based on the so-called Q-learning adapts to changes of node connectivity and, thus, the 

nodes discover their neighbors and then adaptively control their communication range 

accordingly. The simulation results show that RL-CRC reduces energy consumption 

significantly compared to the conventional schemes while maintaining almost the same 

average communication range and node degree. 

 

Keywords: Wireless sensor network, topology control, network connectivity, 
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1. Introduction 

Wireless sensor networks (WSNs) are broadly used in many application areas such as 

environmental monitoring, disaster surveillance, traffic control and health care. In WSNs, 

the process of data gathering normally involves multi-hop communication from sensors to 

the sink node and, thus, nodes have to discover their neighbors to create a topology which 

aims to ensure the network coverage and connectivity [1]. The topology control 

algorithms aim to provide the network coverage to sensor node while maintaining the 

energy resource of each node. The network coverage refers to the sensors‟ placement and 

the cooperation among sensors whereas the network connectivity relates to the message 

delivery in the network. However, there exist some issues of topology control such as the 

energy conservation of sensor nodes, limited bandwidth, dynamic network topology, and 

interference. Because the topology control can affect the connectivity and lifetime of 

network, it is highly needed to improve energy utilization for prolonging network lifetime 

and to reduce interference between nodes by considering the network link characteristics. 

The node degree in a network means the number of neighbors that one node can 

communicate directly in a single hop. The k-connected network is the network that is still 

connected after we remove (k – 1) nodes. If the node degree is the order of (log n), 

where n is the total number of nodes in a network, the network is connected with high 

probability [2]. Therefore, many algorithms have been used to achieve the desired node 

degree in which the network connectivity is obtained with high probability [3-4]. 

In dynamic WSNs, the machine learning becomes a new solution for optimizing 

resource utilization and minimizing the energy consumption of sensor nodes [5]. In [6], 

the theory of reinforcement learning algorithm is introduced to adapt to an unknown 
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environment. The new state is predicted on the basis of the present state while interacting 

with the unknown environment, the probability of changing to a new state, and the reward 

of changing. Usually, the reinforcement learning uses Q-learning method to get the 

optimal actions. In WSNs, the reinforcement learning algorithm has been applied to 

medium access control protocols, clustering algorithms, localization and object targeting, 

and data integrity and fault detection solutions [5]. In addition, the reinforcement learning 

has been applied to some protocols in WSNs such as routing and rate control [6].  

In this paper, we exploit the reinforcement learning to maintain the connected topology 

with the desired degree, which aims to save the transmission power of nodes. The 

proposed reinforcement-learning-based communication range control (RL-CRC) 

algorithm learns the varying network link characteristics using the reinforcement learning 

technique and gives an optimal choice of node degree. The RL-CRC algorithm calculates 

the node degree or the number of neighbors and ensures the connectivity and reachability 

between any two nodes. The less the degree is, the less the number of neighbors is in the 

node‟s communication range. Therefore, the number of interfered links can be decreased. 

According to our performance study, RL-CRC consumes much less energy than the 

conventional schemes while maintaining almost the same average communication range 

and node degree with the desired number of neighbors. 

The rest of this paper is organized as follows: In the following section, we review the 

existing works for topology control in WSNs. In Section 3, the RL-CRC algorithm is 

presented and discussed. In Section 4, the performance of the proposed RL-CRC is 

evaluated via computer simulation and compared to that of the conventional algorithms. 

Finally, the paper is concluded in Section 5. 

 

2. Related Works 

A WSN usually consists of a large number of sensor nodes which communicate to the 

sink node by one-hop or multi-hop links. In WSNs, some aspects should be taken into 

design consideration while maintaining the communication links, which include energy 

conservation, limited bandwidth, unstructured and time-varying network topology, low-

quality communications, and scalability. However, two main issues of the topology 

control in WSNs are network coverage and network connectivity [1]. The taxonomy of 

network coverage consists of blanket coverage, barrier coverage, and sweep coverage 

which describe the quality of network coverage. In addition, the network connectivity can 

be categorized as temporal control and spatial control. The temporal control is considered 

as power management mechanism by controlling the duration of active mode and sleep 

mode of sensor nodes. The spatial control mainly aims to adjust the transmission power of 

sensor nodes. In [8], the topology control algorithms focus on maintaining a connected 

topology with the minimal energy consumption at nodes. The first task of performing 

topology control is to guarantee the connectivity of a network by adapting the 

communication range of each node so that the network is completely connected. As a 

consequence, the communication range or network connectivity can affect the network 

topology and the communication quality. However, increasing the communication range 

of nodes can cause interference to other simultaneous transmissions. Therefore, it is 

necessary to control the topology in WSNs to reduce the interference and to guarantee the 

network connectivity. 

Some topology control algorithms for wireless ad hoc networks are summarized in [9]. 

The algorithms use the set of neighbor nodes with their locations to create the topology. 

However, the neighbor discovery at each node is based on a number of broadcast 

messages, resulting in more energy dissipation. Recently, machine learning techniques are 

applied to WSNs to maximize the utilization of network resources [5]. In fact, some 

algorithms based on the machine learning techniques for topology control have been 

studied for minimizing the transmission power and communication range by maintaining 
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the set of neighbors. In [10], a distributed algorithm is used to calculate the per-node 

minimum transmission power in the topology control. A new link interference model and 

a centralized topology control algorithm are presented to reduce link interference over the 

network in [11]. The algorithm is based on the centralized topology control which updates 

the interference links according to the interference weight. The communication links 

between two nodes can be updated or deleted to preserve the energy resource. In [12], the 

network topology is controlled by using a learning-based method which broadcasts 

request messages and receives acknowledgement from the receiver. The algorithm 

consists of message broadcasting steps during which each node discovers its neighbors 

according to the received messages. At first, nodes use the maximum communication 

range and then decrease the communication range by half. This algorithm is simple and 

needs only the received messages of neighbors, but it does not guarantee the energy 

efficiency. In [13], a self-organized backbone node capable of topology control (STAB-

WIN) aims to reconstruct the backbone and topology in wireless networks. The operation 

of STAB-WIN consists of three steps as follows: The first step is backbone formation 

which creates a connected dominated set. The second step is called backbone 

reconstruction, and topology control aims to identify the one hop nodes for alternate 

routing. The last step is self-organization to build a scalable network. 

In [14], the reinforcement learning technique is applied to discover the varying network 

link. A node discovers the network and then selects its neighbors based on the desired 

node degree while preserving the network connectivity. Each node considers the packet 

delivery and the energy usage in choosing its neighbors. Another reinforcement learning 

technique is used to establish the connected topology in the presence of interference [15]. 

This method focuses on multi-channel switching to avoid interference, and each node is 

capable to switch the working channel and to connect to another node. In [16], a graph-

based topology construction algorithm is used to formulate the communication topology 

for WSNs. In the fuzzy logic topology control (FTC) scheme [3], it is shown that the node 

degree in dynamic WSNs can be maintained to achieve high connectivity with low 

communication range. The fuzzy logic controller is used in each node to adapt the 

network connectivity without the information of neighbors. Each node has a training data 

set for the design of network construction. The local minimum spanning tree (LTRT) 

scheme [4] also maintains the network degree by applying the spanning tree construction 

algorithm k times. 

However, some topology control algorithms are mainly localized, in which it is 

difficult to adapt to the time-varying network topology. Most of the algorithms use the 

information of neighbors to create a topology. Unlike the other works that focus on the 

number of interference links in the communication range, our work in this paper focuses 

on minimizing the communication range. Our work also tries to maintain the node degree 

by using the reinforcement learning algorithm, rather than using a training data set as in 

[3]. By exploiting the reinforcement learning, nodes can learn the environment and, thus, 

discover their neighbors and adjust their communication range adaptively. Therefore, our 

proposed RL-CRC algorithm is energy-efficient and adaptive to dynamic networks. 

 

3. Communication Range Control 

In this section, our topology control algorithm based on reinforcement learning, which 

is named RL-CRC as introduced in Section 3.1, is presented and discussed in detail.  

 

3.1. Network Model 

A WSN consists of many sensor nodes and a sink node where the sensor nodes send 

the sensed data to sink node. The sensor nodes have a certain limitation such as energy, 

storage, and radio communication capabilities. A WSN can be modeled as an undirected 

network G(V, E) with a set of vertices V as its nodes and a set of edges E as links between 



International Journal of Control and Automation 

Vol. 10, No. 5 (2017) 

 

 

236   Copyright ⓒ 2017 SERSC 

nodes. In this paper, a reinforcement learning algorithm is designed to achieve the desired 

node degree. The algorithm aims to check for strong connectivity and to select the optimal 

topology. This algorithm runs at each sensor node which collects information from its 

neighbors and adjusts the communication range to achieve the desired node degree. 

Because this algorithm requires only the information of one-hop neighbors, it can be 

effectively used in large-scale WSNs while saving energy. 

The system model for topology control consists of two main phases: topology 

construction and topology learning. Given a network n nodes, the network topology is 

controlled by an algorithm at each node to ensure the network connectivity. In the first 

phase, the system will generate a random topology. Each node broadcasts the HELLO 

message with the maximum communication range Rmax and, then, it collects the 

information of its neighbors. In the second phase, the sensor nodes run the reinforcement 

learning algorithm to construct an optimal topology with low communication range and 

high connectivity. In this paper, we only consider undirected links, and node x is the 

neighbor of node y if node x is in the communication range of node y. However, the 

communication range of node y can be updated after sometime and, then, node x may not 

be a neighbor of node y. Therefore, the reinforcement algorithm is used to update the 

neighbors of nodes x and y while their communication ranges are changed. 

 

3.2. Reinforcement Learning for Communication Range Control 

In our proposed RL-CRC, the network connectivity in a WSN is established as follows: 

The agents of the reinforcement learning (RL) are the nodes which carry out the task to 

establish the network connectivity. The state of environment (S) of each agent (node i) is 

given by set Ni of its neighbors so that S = {k1, k2, …, kmax}, where kmax is the maximum 

desired node degree. At each state s  S, a node performs an action (a) which changes the 

communication range of the node. The agent performs an action that interacts with the 

environment and, then, gets the reward (RW) as shown in Figure 1. Hence, the agent will 

decide to take an action based on this reward to reach the desired state. In this paper, the 

desired state or the objective of RL is to ensure the k-connected network where the node 

degree of each node is k. 

 

Agent

Environment

Action atState st Reward RWt

st+1

RWt+1

 

Figure 1. Interaction between the Agent and the Environment in RL 

 

Reward Function A reward function is used by RL agents to calculate the immediate 

reward of taking an action. Both the network coverage and the network connectivity are 

critical for topology control. Because the node degree or the number of neighbors of a 

node is highly correlated with the communication range of the node, we choose to employ 

the node‟s degree k as the state s and the communication range r represents the action a 

generated.  

To evaluate the effective communication range and the number of neighbors at time t, 

we denote the number of neighbors of node i as the node‟s degree kt,i with the 
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communication range rt,i. The reward function of node i, RWt,i, comprises of two 

independent components as follows 

max
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where Kmax is the desired node degree, Rmax is the maximum communication range of 

node i, and k and r are weighting coefficients of the node degree and the 

communication range, respectively. 

Q-Learning Algorithm In our reinforcement learning, the RL agent evaluates the 

temporal difference, updates the Q-value and selects the next action according to the -

greedy method [7]. The action space A(s) for a given state s is specified to be a subset of 

A. In the communication range control strategy based on the Q-learning, a node is 

assumed to use the -greedy method to choose its communication range, where the 

communication range with the maximum Q-value taken in the state st is chosen with a 

high probability (1 – t) while other communication ranges are taken with an equal low 

probability. Q-learning methods applies the -greedy action selection, where  = 0.1 as in 

[7]. By considering the maximum Q-value at state s for all the possible actions A(s), the 
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where γ is the learning constant in order to adapt to the non-stationary environment. In 

this algorithm, we use learning constant γ = 0.5. The Q-learning is calculated by the 

summation of the expected reward at state s with action a and the highest Q-value for the 

next state with all possible actions in subset A(s). The Q-learning algorithm for 

communication range control is given in Figure 2.  

Topology Control at a Sensor Node Each node broadcast the HELLO message with 

the maximum communication range Rmax and, then, it collects the information of its 

neighbors. According to the received information, each node runs the RL algorithm to 

modify its communication range to achieve the desired node degree. The proposed RL-

CRC algorithm for topology control is shown in detail in Figure 3. This algorithm runs at 

each node in a WSN. After receiving the messages from the neighbors, each node chooses 

an initial state s which is equal to the number of neighbors of the node as in lines 4-5. 

From lines 7 to 9, the node chooses an action amax and then runs the Q-learning algorithm 

as in Figure 2. The chosen communication range of the node is amax at state s. 
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 Figure 2. Q-Learning Algorithm for Communication Range Control 

 

Figure 3. Algorithm for Topology Control at each Sensor Node 

 

4. Performance Evaluation 

In this section, the proposed RL-CRC algorithm is evaluated and compared to the 

existing works by using Matlab. That is, the proposed algorithm is compared with the 

conventional algorithms of FTC [3] and LTRT [4] as well as the case without topology 

control. The FTC algorithm [3] uses fuzzy logic control and a training data set to maintain 

the desired node degree of around 3. The LTRT algorithm [4] performs the spanning tree 

construction algorithm multiple times to construct the topology which achieves low 

degree and low communication range. 

1. Initialize A(s) for all s  S; Initialize , ; 

2. Set Q(s, a) = 0 s  S, a  A(s); 

3. Loop for t = 1, 2 .. 

4. While (sk ~= Kmax) 

5. Choose current state sk = kt;  

6. For rr in 0 to Rmax  

7.  Choose action ak  = rr using the policy derived from Q (-greedy) as in (2) 

8. End For  

9. Take action ak = rr, and observe reward r(sk, ak) and next state st+1(kt+1, rr) 

10.  Update Q: ),(max*),(),( 1 tttkktt rsQasrrsQ     

11. Update next state st+1 to current state 

12.  End While 

13.  End Loop 

Initialize: Rmax, rounds 

1. rt  Rmax 

2. Broadcast HELLO message with current transmission power and communication 
range 

3. Receive the messages from the others 

4. Calculate the number of current neighbors 

5. Choose an initial state s  

6. While rounds > 0 

7.  Choose amax for s 

8.  Update communication range by Q-learning algorithm 

9.  rounds = rounds – 1 

10.  End while 
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4.1. Simulation Environment 

In our simulation, nodes are uniformly deployed at random in a 100  100 m
2
 field as 

in [3]. The communication ranges vary from 0 to 30 m (which is the maximum 

communication range Rmax in our simulation). Each node is capable to adjust the 

communication range within [0, Rmax]. As in [3] and [4], a network is fully connected 

when the node degree is 4. Therefore, we set the desired degree of nodes as Kmax = 4. In 

order to simulate different node densities, the number of nodes deployed in the area varies 

from 50 to 90 nodes. In the Q-learning algorithm, we choose the learning constant γ = 0.5, 

and the weighting coefficients k and r in reward functions are 0.5 and 0.5, respectively. 

The simulation has been iterated 40 times for each scenario. The number of rounds for 

RL-CRC is chosen as 10 to achieve the desired node degree. The simulation parameters 

are summarized in Table 1. 

Table 1. Simulation Parameters 

Parameter Value 

Number of nodes 50 ~ 90 

Maximum communication range 30 m 

Network area 100  100 m
2
 

Desired node degree 4 

Learning constant 0.5 

Weighting coefficient of the node degree (k) 0.5 

Weighting coefficient of the communication range (r) 0.5 

Number of rounds  10 

 

4.1. Simulation Results and Discussion 

Figure 4 shows the examples of the resulting topology when both no topology control 

and the proposed RL-CRC are applied to the network of 50 nodes with k = 4. With RL-

CRC, the network is fully covered and every node connects to the nearest nodes. It is 

clearly shown in the figure that the communication ranges of nodes with RL-CRC are 

reduced significantly compared to those with no topology control. 
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(a) No Topology Control 
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(b) RL-CRC 

Figure 4. Examples of the Resulting Topology (n = 50, k = 4) 

In [17], energy expended ratio (EER), which is the ratio of the average power of a node 

over the maximum power of a node in a network, is used for a metric of energy 

efficiency. For simplicity of comparison, in this paper, EER is calculated as the ratio of 

average communication range to the maximum communication range, and it should be as 

small as possible. Figure 5 shows EER for different topology control schemes. RL-CRC 

achieves the lowest EER compared to FTC and LTRT as well as no topology control. 

That is, the proposed RL-CRC algorithm reduces energy consumption significantly 

compared to the conventional schemes. This is mainly due to the relatively short average 

communication range of RL-CRC. 
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Figure 5. Energy Expended Ratio 



International Journal of Control and Automation 

Vol. 10, No. 5 (2017) 

 

 

Copyright ⓒ 2017 SERSC      241 

Figure 6 shows that the node degree is ensured at Kmax even when the number of nodes 

increases from 50 to 90. As a result, RL-CRC can achieve the desired node degree in any 

type of node deployment in the network. As expected, in comparison to no topology 

control (denoted „NONE‟ in the graphs), the network with topology control algorithms 

can reduce the node degree remarkably as shown in the figure. Thanks to the Q-learning 

algorithm at each node, the node controls its communication range to adapt the desired 

number of neighbors, and the average node degree of RL-CRC is nearly close to that of 

FTC but it is better than that of LTRT.  
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Figure 6. Average Node Degree (K = 4) 
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Figure 7. Average Communication Range 
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As shown in Figure 7, the average communication range is expected to decrease as the 

number of nodes increases. The network without topology control needs to communicate 

with the maximum communication range while that with topology control can reduce the 

communication range as shown in Figure 7. It is also shown in the figure that the average 

communication range with topology control decreases when the number of nodes 

increases due to the dense deployment of nodes. Compared to FTC and LTRT, RL-CRC 

can achieve the shortest average communication range independent of the number of 

nodes. 

In summary, it is easily inferred from the three performance plots that the proposed 

RL-CRC reduces energy consumption remarkably compared to the conventional schemes 

while maintaining almost the same average communication range and node degree. 

 

4. Conclusion 

In this paper, we have proposed a reinforcement-learning-based communication range 

control algorithm to energy-efficiently solve the connectivity problem in WSNs. The 

proposed RL-CRC algorithm controls the communication range of sensor nodes with less 

energy consumption, improving the network connectivity significantly. RL-CRC can 

achieve the desired node degree and shorten the average communication range in a WSN, 

which reduces the wasted energy while ensuring the network connectivity. As a future 

work, we are going to exploit the mobility of nodes and devise a more resilient topology 

control protocol without degrading performance. 
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