
International Journal of Control and Automation

Vol. 10, No. 5 (2017), pp.199-208

http//dx.doi.org/10.14257/ijca.2017.10.5.19

ISSN: 2005-4297 IJCA

Copyright © 2017 SERSC

High-Throughput Architecture of HEVC CABAC Binary

Arithmetic Encoder

Hyungu Jo, Seungyong Park and Kwangki Ryoo

Graduate School of Information and Communication, Hanbat National University,

Korea

iookie@nate.com, srrr.kr@gmail.com, kkryoo@hanbat.ac.kr

Abstract

This paper proposes an efficient binary arithmetic encoder hardware architecture for

CABAC (Context-based Adaptive Binary Arithmetic Coding) encoding. UHD (Ultra High

Definition) images require very high throughput for standard video encoder. CABAC is

an entropy coding method that is used in HEVC standard. Entropy coding removes

statistical redundancy and supports a high compression ratio of images. However, the

binary arithmetic encoder causes a delay in real time processing, making parallel

processing difficult, because of the high dependency between data. The function of the

proposed CABAC BAE hardware structure is to separate the renormalization and process

the conventional iterative algorithm in parallel. In addition, it generates an information

bit for outputting a bitstream, and outputs a variable bitstream in one cycle. The new

scheme was designed as a four-stage pipeline structure that can reduce critical path

optimally. The proposed CABAC BAE hardware architecture was designed with Verilog-

HDL and synthesized in 65nm technology. Its gate count is 11.2K and maximum clock

frequency is 625MHz. It processes 4 Bins per clock cycle, with a 36% increase in

maximum processing speed compared to existing hardware architectures.

Keywords: HEVC, CABAC, Binary Arithmetic Encoder, Entropy Coding

1. Introduction

Recent times have seen rapid developments in the network industry (image processing

technology and communication technology for broadcasting and communication),

coupled with the popularization of high definition television (HDTV) and support for high

resolution service of multimedia devices. This has sparked the interest of users in the

ultra-high resolution video service and led to the development of Ultra-High Definition

UHD) class images with a resolution over 4 times higher than full high definition (FHD)

which has resolution of 1920×1080 [1]. Due to the increased interest of these users in

ultra-high resolution image services, image compression standards with higher

performance than the existing image compression standard H.264/AVC have become

necessary. HEVC supports various image compression from low-resolution 176×144

images to ultra-high resolution 4K and 8K images. Compared with H.264/AVC, the

previous image compression standard, it has an improved compression efficiency of about

50% or more [2]. However, there is an increase in complexity and computation time,

making it difficult to process in real time. The entropy coding method of H.264/AVC

standard uses both context-based adaptive binary arithmetic coding (CABAC) and

context-based adaptive variable length coding (CAVLC), but HEVC adopts only CABAC

with higher compression efficiency [3]. CABAC eliminates statistical redundancy and

provides high compressibility of video. After encoding one Bin, the probability model is

updated, and the next Bin is encoded with the updated probability model. This method

improves the compression efficiency, but after the encoding of the current Bin is finished,

the probability model of the next Bin can be updated and the encoding of the next Bin can

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

200 Copyright ⓒ 2017 SERSC

be performed. [4]. In this paper, we propose a hardware design of a CABAC binary

arithmetic encoder with high throughput by applying a four-stage pipeline structure that

can operate optimally by separating delayed sections in the computation process - this

paper is an elaborate version of our previous work [5]. In order to optimize critical path

and output the variable bitstream in one cycle, the information bit is generated and output

simply through the LUT. Contents of this paper are as follows. Chapter 2 describes a

CABAC Encode, Chapter 3 describes the proposed binary arithmetic encoder (BAE) and

Chapter 4 describes Hardware Implementation. Finally, Chapter 5 describes the

conclusion of this paper.

2. CABAC Encode

2.1. CABAC Encoder

The CABAC encoder performs adaptive binary arithmetic coding through a context-

based modeling method that selects a probability model for each context element.

CABAC Encoder consists of Binarizer, Context Modeler, and BAE as shown in Figure 1.

Figure 1. Block Diagram of CABAC Encoder

The Binarizer outputs a syntax element (not a binary value) as a Bin string of a binary

sequence. If the syntax element has a binary value, it passes the binarization process. The

context modeler estimates the context model probability using the context, which is the

surrounding information value of the encoding block [6]. The binary arithmetic encoder

performs encoding while setting a range using Bin (1-bit binary value) and the probability

value of the context modeler. The binary arithmetic encoder performs encoding while

setting a range using Bin (1-bit binary value) and the probability value of the context

modeler. When the range becomes smaller than the predetermined size 256,

renormalization for updating the range is performed, and a bitstream is generated in the

renormalization process. Bin performs binary arithmetic encoding in three modes,

Regular mode, Bypass mode, and Terminate mode. The Regular mode encodes with the

probability values (pStateIdx, ValMPS) generated in the context modeler. The bypass

mode does not use the context modeler and encodes Bin with equal probability. The

Terminate mode encodes a Bin of a syntax element (end_of_slice_flag) that determines

whether a slice is terminated.

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright ⓒ 2017 SERSC 201

2.2. BAE Process

Binary arithmetic encoder takes a probability value from the context modeler and

performs binary arithmetic encoding on the current Bin. Figure 2 shows a flowchart of

binary arithmetic encoding. qRangeIdx represents the upper 3 bits of ivlCurrRange and is

used to generate rLPS (LPS range). rMPS (MPS range) is calculated as ivlCurrRange -

rLPS. The rMPS (MPS range) is calculated as ivlCurrRange - rLPS. If the current Bin is

an MPS, Update pStateIdx, and if the current Bin is an LPS, update ivlLow and pStateIdx.

Figure 2. Flowchart of BAE

Figure 3 shows an example of a binary arithmetic encoding process. The binary

arithmetic encoding process in the case where the input Bin value (binVal) is '1, 0, 0, 0'

and the initial context model value has pStateIdx = 0 and valMPS = 0 is as follows [7].

Since the first input Bin is '1', we compare valMPS with binVal to determine MPS (Most

Probable Symbol) and LPS (Least Probable Symbol). Because the current Bin (binVal)

and MPS values (ValMPS) are different, the LPS is selected and the LPS range (240) is

less than 256, so renormalization is performed. Also, through Update CM (Context

Model), valMPS and pStateIdx are updated to the probability model values for the next

Bin. CABAC outputs a bitstream whenever it performs renormalization, or updates the

ready bit (BitOutStanding) for bitstream output. Binary arithmetic encoding can calculate

Low after calculating Range, and can encode next Bin after Range and Low are updated.

In addition, the renormalization process can be repeated up to 6 in regular mode, so that

the time and output per binary arithmetic encoding process are not constant. Therefore,

CABAC binary arithmetic encoder has high data dependency between the current Bin and

the previous Bin, which makes parallel processing and high-speed operation difficult in

hardware implementation.

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

202 Copyright ⓒ 2017 SERSC

Figure 3. Process of Binary Arithmetic Encode

2.3. Bottleneck in CABAC BAE

The main bottleneck of CABAC is binary arithmetic encoding. Figure 4 and Figure 5

show the pipeline strategy of Single-Bin BAE and Multi-Bin BAE [8-9]. Features of this

structure are as follow:

1) Status updates (pStateIdx) and MPS indicators (ValMPS) are pre-executed with

context modeling.

2) Updates of range and low, and output of bitstream are processed in separate stages

of the pipeline.

3) The output of rLPS (range LPS) is divided into two stages. The first half produces

four candidates of rLPS. The second half uses the simpler 4-1 MUX to make the

final decision according to bits 7 and 6.

The critical path of CABAC BAE occurs during the renormalization process. The

existing algorithm is repeatedly executed until the value of the range becomes 256 or

more to occurs a critical path. In this paper, we propose a parallel processing architecture

that can reduce the critical path generated in the renormalization process and output the

variable bitstream in one clock cycle.

Figure 4. Simplified Architecture of Pipelined Single-Bin BAE

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright ⓒ 2017 SERSC 203

Figure 5. Pipelined Multi-Bin BAE Architecture

3. Proposed CABAC BAE

The function of the proposed CABAC BAE hardware structure is to separate the

renormalization and process the conventional iterative algorithm in parallel. The new

scheme was designed as a four-stage pipeline structure that can reduce critical path

optimally. The existing structure outputs the bitstream through the memory. This structure

outputs the number of valid bitstream and bitstream, thereby reducing the hardware area

by not using the memory. Figure 6 shows architecture of the proposed BAE.

The proposed BAE generates the information bits necessary to the bitstream output

while performing the renormalization. Using the information bits, the bitstream generator

can simply output the bitstream. However, the generation of information bits causes a

critical path by up to 7 iterative comparisons according to the number of variable used for

renormalization. To reduce the critical path, a dedicated LUT can be used to reduce the

operational time involved.

Figure 6. Propose Block Diagram of BAE

3.1. Probable Symbol and rLPS Decide

In Stage 1, MPS and LPS for current Bin are determined as shown in equation (1).

Also, as shown in Table 1, four LPS range candidates are output based on the probability

value (pStateIdx) from the context modeler.
..... ()

...... ()

bin MPS if ValMPS bin

bin LPS if ValMPS bin

 

 
 (1)

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

204 Copyright ⓒ 2017 SERSC

Table 1. rLPS Table

pStateIdx
qRangeIdx

0 1 2 3

0 128 176 208 240

1 128 167 197 227

2 128 158 187 216

…

61 6 7 9 10

62 6 7 8 9

63 2 2 2 2

3.2. Range Update

Stage 2, performs renormalization when the range of binary arithmetic coding becomes

smaller than a certain range, and outputs the number of renormalization (Cnt_RenormE)

and the range of MPS (rMPS) required for calculating the low value. If the current

encoding Bin is LPS or MPS, then rMPS is equal to (2).
...... ()

0.. ()

rMPS ivlCurrRange ivlLPSRange if bin LPS

rMPS if bin MPS

  

 
 (2)

The four LPS candidates determine ivlLPSRange with the 7th and 8th bits of the input

range (qRangeIdx). If the current encoding Bin is LPS or MPS, then ivlCurrRange is

equal to (3).
............................... ()

..... ()

ivlCurrRange ivlLPSRange if bin LPS

ivlCurrRange ivlCurrRange ivlLPSRange if bin MPS

 

   (3)

In the regular mode of binary arithmetic coding, existing algorithms generate a critical

path by repeatedly performing a maximum of 6 left shift operations until ivlCurrRange

becomes 256 or more. In the proposed scheme, to solve the variable operation of

renormalization, the renormalization number is calculated by finding the first '1' position

from the MSB (Most Significant Bit) of ivlCurrRange, and left renormalization is

performed by left shift by the number of iterations. Figure 7 shows the renormalization

flowchart of the Range.

Figure 7. Range Renormalization flow chart, (a) Conventional
Renormalization Algorithm (b) Propose Renormalization Algorithm

3.3. Low Update

Stage 3 adds the value of rMPS and low to generate the value of ivlLow, and outputs

information bits necessary for bitstream generation with ivlLow and the number of

renormalization. If the current encoding Bin is LPS or MPS, then ivlLow is equal to (4).
..... ()

................... ()

ivlLow ivlLow rMPS if bin LPS

ivlLow ivlLow if bin MPS

  

 
 (4)

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright ⓒ 2017 SERSC 205

The CABAC encoder generates a bitstream according to the number of

renormalization. In the proposed structure, renormalization(B) is performed by left-

shifting ivlLow by the number of renormalization as shown in Table 2, and the MSB is set

to 0, and renormalization(A) is performed while maintaining the MSB without changing

the MSB.

Table 2. Low Renormalization Table According to Number of
Renormalization

ivlLow Index
Number of Renormalization (Cnt_RenormE)

0 1 2 3 4 5 6

[9]=1 or [0]=0 ivlLow A B B B B B

[9:7]=111 or [7]=0 ivlLow B A B B B B

[9:6]=1111 or [6]=0 ivlLow B B A B B B

[9:5]=11111 or [5]=0 ivlLow B B B A B B

[9:4]=111111 or [4]=0 ivlLow B B B B A B

[9:3]=1111111 or [3]=0 ivlLow B B B B B A

A : ivlLow << Cnt_RenormE

B : (ivlLow << Cnt << RenormE) [MSB] <= 0

The generation of information bits for bitstream output determines bit_cnt (Number of

bitstreams to be output) and bos_cnt (Number of bits whose bitstream value has not been

determined) according to the number of renormalization and ivlLow. Table 3 shows the

output of information bits according to the number of renormalization.

Table 3. Bitstream Information bit Table According to Number of
Renormalization

ivlLow [9 : 9-i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
n

t_
R

en
o

rm
E

(i
) 1

bit 1 0 1 1

bos 0 1 0 0

2
bit 2 1 0 1 2 1 2 2

bos 0 1 2 1 0 1 0 0

3
bit 3 2 3 1 3 2 3 0 3 2 3 1 3 2 3 3

bos 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0

4
bit 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0

bos 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

ivlLow [9 : 9-i] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

i

4
bit 4 3 4 2 4 3 4 1 4 1 4 2 4 3 4 4

bos 0 1 0 2 0 1 0 3 0 3 0 2 0 1 0 0

5 ...

6 ...

3.4. Bitstream Generation

Stage 4 outputs a bitstream through an information bit for generating a bitstream for

the current Bin. The bit generator receives Low_data (upper 7 bits of ivlLow), bos_cnt

(Number of bits whose bitstream value has not been determined) and bit_cnt (Number of

bitstreams to be output) and outputs a bitstream. The number of bitstream output

according to the Bin to be encoded is not constant. The proposed architecture reduces the

hardware area by generating an output signal (valid_bit_cnt) indicating the number of

variable bitstreams and outputting the bitstream without using the memory. Figure 8

shows the structure of Bitstream Generator and Table 4 shows the table for bitstream

output.

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

206 Copyright ⓒ 2017 SERSC

Figure 8. Architecture of Bitstream Generation

Table 4. Table for Bitstream Output

bos_cnt Bitstream

0 {Low_data[6:0], 0}

1 {Low_data[6], ((1)~Low_data[6], Low_data[5:0], ((30)0)}

2 {Low_data[6], ((2)~Low_data[6], Low_data[5:0], ((29)0)}

3 {Low_data[6], ((3)~Low_data[6], Low_data[5:0], ((28)0)}

... ...

28 {Low_data[6], ((28)~Low_data[6], Low_data[5:0], ((3)0)}

29 {Low_data[6], ((29)~Low_data[6], Low_data[5:0], ((2)0)}

30 {Low_data[6], ((30)~Low_data[6], Low_data[5:0], ((1)0)}

31 {Low_data[6], ((31)~Low_data[6], Low_data[5:0]}

4. Hardware Implementation

4.1. Comparison of Multi-Bin Architecture

Applying the structure for multi-Bin processing to the proposed BAE increases the

maximum Bin processing to 2,499Mbin/s. Table 5 shows the gate count, maximum clock

frequency, and maximum Bin processing according to Bin per Clock Cycle (BPCC).

Figure 9 shows graphs of maximum clock frequency, and maximum Bin processing

according to BPCC.

Table 5. Gate Count, Maximum Bin Processing and Maximum Clock
Frequency According to BPCC, Synthesized in 65nm

BPCC 1 2 3 4 5 6

Gate Count (NAND gate) 3.17K 5.7K 8.07K 11.2K 13.3K 16.4K

Max. Clock Freq. (Mhz) 1,530 1,110 769 625 500 434

Max. Processing (Mbin/s) 1,530 2,220 2,307 2,499 2,499 2,603

Figure 9. Graphs of Maximum Clock Frequency and Maximum Bin
Processing According to BPCC, synthesized in 65nm

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

Copyright ⓒ 2017 SERSC 207

4.2. Implementation Results and Comparison with Prior Architecture

In the proposed BAE designed with Verilog HDL. A test vector was created using the

HEVC standard model HM16.9. RTL simulation was performed on 1920x1080 and

2560x1600 test sequences for HEVC. It was synthesized in 65nm technology with support

from IDEC providing CAD tools. Its gate count is 11.2K and it processes 4 Bins per clock

cycle. Maximum clock frequency is 625MHz and the maximum processing time is

2,499Mbin/s. The structure of Zhou [9] performs 4.37 Bins per clock cycle with a

maximum clock frequency of 420MHz and 1,836Mbin/s maximum processing time.

Maximum processing speed therefore increased by 36% compared to the best

performance of existing hardware structure, Zhou [9]. Table 6 compares the hardware

implementation results with other structures.

Table 6. Hardware Comparison

 Chen[8] Zhou[9] Fei[10] Peng[11] Proposed

Throughput (Bin/Clock Cycle) 1.42 4.37 4 1.18 3.99

Max. Clock Freq. (Mhz) 222 420 279 357 625

Technology (nm) 130 90 90 130 65

Max. Processing (Mbin/s) 315 1,836 1,116 440 2,499

Gate Count (NAND gate) 14.7K - 8.22 24.9K 11.2K

5. Conclusion

The proposed CABAC binary arithmetic encoder hardware structure has a four-stage

pipeline structure that can reduce the critical path optimally by separating the

renormalization process in order to reduce the computation time and computation amount

of the standard binary arithmetic encoding technique. In CABAC, the number of output

bitstreams varies depending on the Bin to be encoded. An information bit is generated to

output the variable bitstream in one cycle, and the number of valid bitstreams and the

bitstream are output using the LUT. The proposed CABAC binary arithmetic encoder

hardware structure was verified by comparison with HEVC reference software HM16.9

and verified by Xilinx ISE simulator (ISIM). Designed with Verilog HDL and synthesized

in 65nm technology, it has been implemented with about 11,210 gates and has a

maximum operating frequency of 625MHz and processes four Bins per clock cycle.

Compared with the existing Zhou CABAC encoder hardware structure, the maximum

Processing increased by 36%. CABAC is the only entropy coding method adopted in the

HEVC standard. This has high compression performance, but it has high computational

complexity and high dependency between data, which makes parallel processing difficult.

The proposed CABAC binary arithmetic encoder hardware architecture works faster by

reducing computational complexity. This improves the performance of the HEVC

CABAC Encoder and is applicable to multimedia devices and system for real-time image

processing.

Acknowledgments

This paper is a revised and expanded version of a paper entitled [Hardware

Architecture of CABAC Binary Arithmetic Encoder for HEVC Encoder] presented at

[The Third International Mega-Conference on Green and Smart Technology (GST 2016),

Jeju Island, Korea and December 22, 2016]. And, this research was supported by the

MSIP (Ministry of Science, ICT and Future Planning), Korea, under the Global IT Talent

support program(IITP-2016-R0134-16-1019) and Human Resource Development Project

for Brain scouting program(IITP-2016-R2418-16-0007) supervised by the IITP (Institute

for Information and Communication Technology Promotion.

International Journal of Control and Automation

Vol. 10, No. 5 (2017)

208 Copyright ⓒ 2017 SERSC

References

[1] J.-W. Kim, Y.-H. Kim, B.-H. Choi and J.-H. Park, “Application View for High Efficiency Video

Coding,” Journal of Broadcast Engineering, vol. 15, no. 4, (2010), pp. 135-145.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, “Overview of the High Efficiency Video Coding

(HEVC) Standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, (2012), pp. 1649-1668.

[3] V. Sze and M. Budagavi, “High Throughput CABAC Entropy Coding in HEVC,” IEEE Transactions on

Circuits and System for Video Technology, vol. 22, no. 12, (2012), pp. 1755-1764.

[4] Yongseok Choi and Jongbum Choi, “High-throughput CABAC codec architecture for HEVC”,

Electronics Letters, vol. 49, no. 18, (2013), pp. 1145-1147.

[5] Hyungu Jo, Gookyi Dennis A.N and Kwangki Ryoo, “Hardware Architecture of CABAC Binary

Arithmetic Encoder for HEVC Encoder”, Proceedings of the Third International Mega-Conference on

Green and Smart Technology (GST 2016), Jeju Island, Korea, (2016) December 21-23.

[6] J. Stankowski, D. Karwowski, K. Wegner, O. Stankiewicz, K. Klimaszewski and T. Grajek, “Analysis

of CABAC Context Models Efficiency in the HEVC”, Proceedings of the 57th International Symposium

ELMAR, Zadar, Croatia, (2015) September 28-30.

[7] Jeon-Hak Moon, Yoon-Sup Kim and Seong-Soo Lee, "Design of an Efficient Binary Arithmetic

Encoder for H.264/AVC," Journal of the Institute of Electronics Engineers of Korea-SD, vol.46, no.12,

(2009), pp. 66-72.

[8] J.-W. Chen, L.-C. Wu, P.-S. Liu and Y.-L. Lin, “A high-throughput fully hardwired CABAC encoder

for QFHD H.264/AVC main profile video,” IEEE Transactions on Consumer Electronics. vol. 56, no. 4,

(2010), pp. 2529-2536.

[9] D. Zhou, J. Zhou, W. Fei and S. Goto, “Ultra-High Throughput VLSI Architecture of H.265/HEVC

CABAC Encoder for UHDTV Applications,” IEEE Transactions on Circuits and System for Video

Technology, vol. 25, no. 3, (2015), pp. 497-507.

[10] W. Fei, D. Zhou and S. Goto, “A 1 Gbin/s CABAC encoder for H.264/AVC,” in European Signal

Processing Conference (EUSIPCO), (2011), pp. 1524-1528.

[11] B. Peng, D. Ding, X. Zhu and L. Yu, “A hardware CABAC encoder for HEVC,” in Processing IEEE

International Symposium on Circuits and Systems (ISCAS), (2013), pp. 1372-1375.

Authors

Hyungu Jo, received a BS Degree in Semiconductor Engineering

from Chongju University, South Korea, in 2014. He is currently

pursuing a MENG Degree in Information and Communication

Engineering at Hanbat National University, South Korea. His

research interests include SoC Design and Verification Platforms,

Image Signal Processing and Multimedia Codec Design.

Seungyong Park, received a BS Degree and MENG Degree in

Information and Communication Engineering from Hanbat National

University, South Korea, in 2010 and 2012 respectively. He is

currently pursuing a PhD Degree in Information and Communication

Engineering at Hanbat National University, South Korea. His

research interests include SoC Design and Verification Platforms,

Image Signal Processing and Multimedia Codec Design.

Kwangki Ryoo, received BS, MS and PhD Degrees in Electronic

Engineering from Hanyang University, South Korea in 1986, 1988

and 2000 respectively. From 1991 to 1994, he was an Assistant

Professor at the Military Academy in South Korea. From 2000 to

2002, he worked as a Senior Researcher at ETRI, South Korea. From

2010 to 2011, he was a Visiting Professor at University of Texas at

Dallas. Since 2003, he has been a Professor at Hanbat National

University, South Korea. His research interests include Engineering

Education, SoC Design and Verification Platforms, Image Signal

Processing and Multimedia Codec Design.

