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Abstract 

This paper proposes an efficient binary arithmetic encoder hardware architecture for 

CABAC (Context-based Adaptive Binary Arithmetic Coding) encoding. UHD (Ultra High 

Definition) images require very high throughput for standard video encoder. CABAC is 

an entropy coding method that is used in HEVC standard. Entropy coding removes 

statistical redundancy and supports a high compression ratio of images. However, the 

binary arithmetic encoder causes a delay in real time processing, making parallel 

processing difficult, because of the high dependency between data. The function of the 

proposed CABAC BAE hardware structure is to separate the renormalization and process 

the conventional iterative algorithm in parallel. In addition, it generates an information 

bit for outputting a bitstream, and outputs a variable bitstream in one cycle. The new 

scheme was designed as a four-stage pipeline structure that can reduce critical path 

optimally. The proposed CABAC BAE hardware architecture was designed with Verilog-

HDL and synthesized in 65nm technology. Its gate count is 11.2K and maximum clock 

frequency is 625MHz. It processes 4 Bins per clock cycle, with a 36% increase in 

maximum processing speed compared to existing hardware architectures.  
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1. Introduction 

Recent times have seen rapid developments in the network industry (image processing 

technology and communication technology for broadcasting and communication), 

coupled with the popularization of high definition television (HDTV) and support for high 

resolution service of multimedia devices. This has sparked the interest of users in the 

ultra-high resolution video service and led to the development of Ultra-High Definition 

UHD) class images with a resolution over 4 times higher than full high definition (FHD) 

which has resolution of 1920×1080 [1]. Due to the increased interest of these users in 

ultra-high resolution image services, image compression standards with higher 

performance than the existing image compression standard H.264/AVC have become 

necessary. HEVC supports various image compression from low-resolution 176×144 

images to ultra-high resolution 4K and 8K images. Compared with H.264/AVC, the 

previous image compression standard, it has an improved compression efficiency of about 

50% or more [2]. However, there is an increase in complexity and computation time, 

making it difficult to process in real time. The entropy coding method of H.264/AVC 

standard uses both context-based adaptive binary arithmetic coding (CABAC) and 

context-based adaptive variable length coding (CAVLC), but HEVC adopts only CABAC 

with higher compression efficiency [3]. CABAC eliminates statistical redundancy and 

provides high compressibility of video. After encoding one Bin, the probability model is 

updated, and the next Bin is encoded with the updated probability model. This method 

improves the compression efficiency, but after the encoding of the current Bin is finished, 

the probability model of the next Bin can be updated and the encoding of the next Bin can 
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be performed. [4]. In this paper, we propose a hardware design of a CABAC binary 

arithmetic encoder with high throughput by applying a four-stage pipeline structure that 

can operate optimally by separating delayed sections in the computation process - this 

paper is an elaborate version of our previous work [5]. In order to optimize critical path 

and output the variable bitstream in one cycle, the information bit is generated and output 

simply through the LUT. Contents of this paper are as follows. Chapter 2 describes a 

CABAC Encode, Chapter 3 describes the proposed binary arithmetic encoder (BAE) and 

Chapter 4 describes Hardware Implementation. Finally, Chapter 5 describes the 

conclusion of this paper. 

 

2. CABAC Encode 
 

2.1. CABAC Encoder 

The CABAC encoder performs adaptive binary arithmetic coding through a context-

based modeling method that selects a probability model for each context element. 

CABAC Encoder consists of Binarizer, Context Modeler, and BAE as shown in Figure 1. 

 

 

Figure 1. Block Diagram of CABAC Encoder 

The Binarizer outputs a syntax element (not a binary value) as a Bin string of a binary 

sequence. If the syntax element has a binary value, it passes the binarization process. The 

context modeler estimates the context model probability using the context, which is the 

surrounding information value of the encoding block [6]. The binary arithmetic encoder 

performs encoding while setting a range using Bin (1-bit binary value) and the probability 

value of the context modeler. The binary arithmetic encoder performs encoding while 

setting a range using Bin (1-bit binary value) and the probability value of the context 

modeler. When the range becomes smaller than the predetermined size 256, 

renormalization for updating the range is performed, and a bitstream is generated in the 

renormalization process. Bin performs binary arithmetic encoding in three modes, 

Regular mode, Bypass mode, and Terminate mode. The Regular mode encodes with the 

probability values (pStateIdx, ValMPS) generated in the context modeler. The bypass 

mode does not use the context modeler and encodes Bin with equal probability. The 

Terminate mode encodes a Bin of a syntax element (end_of_slice_flag) that determines 

whether a slice is terminated. 
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2.2. BAE Process 

Binary arithmetic encoder takes a probability value from the context modeler and 

performs binary arithmetic encoding on the current Bin. Figure 2 shows a flowchart of 

binary arithmetic encoding. qRangeIdx represents the upper 3 bits of ivlCurrRange and is 

used to generate rLPS (LPS range). rMPS (MPS range) is calculated as ivlCurrRange - 

rLPS. The rMPS (MPS range) is calculated as ivlCurrRange - rLPS. If the current Bin is 

an MPS, Update pStateIdx, and if the current Bin is an LPS, update ivlLow and pStateIdx. 

 

 

Figure 2. Flowchart of BAE 

Figure 3 shows an example of a binary arithmetic encoding process. The binary 

arithmetic encoding process in the case where the input Bin value (binVal) is '1, 0, 0, 0' 

and the initial context model value has pStateIdx = 0 and valMPS = 0 is as follows [7]. 

Since the first input Bin is '1', we compare valMPS with binVal to determine MPS (Most 

Probable Symbol) and LPS (Least Probable Symbol). Because the current Bin (binVal) 

and MPS values (ValMPS) are different, the LPS is selected and the LPS range (240) is 

less than 256, so renormalization is performed. Also, through Update CM (Context 

Model), valMPS and pStateIdx are updated to the probability model values for the next 

Bin. CABAC outputs a bitstream whenever it performs renormalization, or updates the 

ready bit (BitOutStanding) for bitstream output. Binary arithmetic encoding can calculate 

Low after calculating Range, and can encode next Bin after Range and Low are updated. 

In addition, the renormalization process can be repeated up to 6 in regular mode, so that 

the time and output per binary arithmetic encoding process are not constant. Therefore, 

CABAC binary arithmetic encoder has high data dependency between the current Bin and 

the previous Bin, which makes parallel processing and high-speed operation difficult in 

hardware implementation. 
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Figure 3. Process of Binary Arithmetic Encode 

2.3. Bottleneck in CABAC BAE 

The main bottleneck of CABAC is binary arithmetic encoding. Figure 4 and Figure 5 

show the pipeline strategy of Single-Bin BAE and Multi-Bin BAE [8-9]. Features of this 

structure are as follow: 

1) Status updates (pStateIdx) and MPS indicators (ValMPS) are pre-executed with 

context modeling. 

2) Updates of range and low, and output of bitstream are processed in separate stages 

of the pipeline. 

3) The output of rLPS (range LPS) is divided into two stages. The first half produces 

four candidates of rLPS. The second half uses the simpler 4-1 MUX to make the 

final decision according to bits 7 and 6. 

The critical path of CABAC BAE occurs during the renormalization process. The 

existing algorithm is repeatedly executed until the value of the range becomes 256 or 

more to occurs a critical path. In this paper, we propose a parallel processing architecture 

that can reduce the critical path generated in the renormalization process and output the 

variable bitstream in one clock cycle. 

 

 

Figure 4. Simplified Architecture of Pipelined Single-Bin BAE 
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Figure 5. Pipelined Multi-Bin BAE Architecture 

3. Proposed CABAC BAE 

The function of the proposed CABAC BAE hardware structure is to separate the 

renormalization and process the conventional iterative algorithm in parallel. The new 

scheme was designed as a four-stage pipeline structure that can reduce critical path 

optimally. The existing structure outputs the bitstream through the memory. This structure 

outputs the number of valid bitstream and bitstream, thereby reducing the hardware area 

by not using the memory. Figure 6 shows architecture of the proposed BAE. 

The proposed BAE generates the information bits necessary to the bitstream output 

while performing the renormalization. Using the information bits, the bitstream generator 

can simply output the bitstream. However, the generation of information bits causes a 

critical path by up to 7 iterative comparisons according to the number of variable used for 

renormalization. To reduce the critical path, a dedicated LUT can be used to reduce the 

operational time involved. 

 

 

Figure 6. Propose Block Diagram of BAE 

3.1. Probable Symbol and rLPS Decide 

In Stage 1, MPS and LPS for current Bin are determined as shown in equation (1). 

Also, as shown in Table 1, four LPS range candidates are output based on the probability 

value (pStateIdx) from the context modeler. 
..... ( )

...... ( )

bin MPS if ValMPS bin

bin LPS if ValMPS bin

 

 
                                              (1) 
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Table 1. rLPS Table 

pStateIdx 
qRangeIdx 

0 1 2 3 

0 128 176 208 240 

1 128 167 197 227 

2 128 158 187 216 

… 

61 6 7 9 10 

62 6 7 8 9 

63 2 2 2 2 

 

3.2. Range Update 

Stage 2, performs renormalization when the range of binary arithmetic coding becomes 

smaller than a certain range, and outputs the number of renormalization (Cnt_RenormE) 

and the range of MPS (rMPS) required for calculating the low value. If the current 

encoding Bin is LPS or MPS, then rMPS is equal to (2). 
...... ( )

0.................................................. ( )

rMPS ivlCurrRange ivlLPSRange if bin LPS

rMPS if bin MPS

  

 
                        (2) 

The four LPS candidates determine ivlLPSRange with the 7th and 8th bits of the input 

range (qRangeIdx). If the current encoding Bin is LPS or MPS, then ivlCurrRange is 

equal to (3). 
............................... ( )

..... ( )

ivlCurrRange ivlLPSRange if bin LPS

ivlCurrRange ivlCurrRange ivlLPSRange if bin MPS

 

                 (3) 

In the regular mode of binary arithmetic coding, existing algorithms generate a critical 

path by repeatedly performing a maximum of 6 left shift operations until ivlCurrRange 

becomes 256 or more. In the proposed scheme, to solve the variable operation of 

renormalization, the renormalization number is calculated by finding the first '1' position 

from the MSB (Most Significant Bit) of ivlCurrRange, and left renormalization is 

performed by left shift by the number of iterations. Figure 7 shows the renormalization 

flowchart of the Range. 

 

 

Figure 7. Range Renormalization flow chart, (a) Conventional 
Renormalization Algorithm (b) Propose Renormalization Algorithm 

3.3. Low Update 

Stage 3 adds the value of rMPS and low to generate the value of ivlLow, and outputs 

information bits necessary for bitstream generation with ivlLow and the number of 

renormalization. If the current encoding Bin is LPS or MPS, then ivlLow is equal to (4). 
..... ( )

................... ( )

ivlLow ivlLow rMPS if bin LPS

ivlLow ivlLow if bin MPS

  

 
                                (4) 
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The CABAC encoder generates a bitstream according to the number of 

renormalization. In the proposed structure, renormalization(B) is performed by left-

shifting ivlLow by the number of renormalization as shown in Table 2, and the MSB is set 

to 0, and renormalization(A) is performed while maintaining the MSB without changing 

the MSB. 

Table 2. Low Renormalization Table According to Number of 
Renormalization 

ivlLow Index 
Number of Renormalization (Cnt_RenormE) 

0 1 2 3 4 5 6 

[9]=1 or [0]=0 ivlLow A B B B B B 

[9:7]=111 or [7]=0 ivlLow B A B B B B 

[9:6]=1111 or [6]=0 ivlLow B B A B B B 

[9:5]=11111 or [5]=0 ivlLow B B B A B B 

[9:4]=111111 or [4]=0 ivlLow B B B B A B 

[9:3]=1111111 or [3]=0 ivlLow B B B B B A 

A : ivlLow << Cnt_RenormE 

B : (ivlLow << Cnt << RenormE) [MSB] <= 0 

 

The generation of information bits for bitstream output determines bit_cnt (Number of 

bitstreams to be output) and bos_cnt (Number of bits whose bitstream value has not been 

determined) according to the number of renormalization and ivlLow. Table 3 shows the 

output of information bits according to the number of renormalization. 

Table 3. Bitstream Information bit Table According to Number of 
Renormalization 

ivlLow [9 : 9-i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C
n

t_
R

en
o

rm
E

(i
) 1 

bit 1 0 1 1             

bos 0 1 0 0             

2 
bit 2 1 0 1 2 1 2 2         

bos 0 1 2 1 0 1 0 0         

3 
bit 3 2 3 1 3 2 3 0 3 2 3 1 3 2 3 3 

bos 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0 

4 
bit 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0 

bos 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 

ivlLow [9 : 9-i] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

i 

4 
bit 4 3 4 2 4 3 4 1 4 1 4 2 4 3 4 4 

bos 0 1 0 2 0 1 0 3 0 3 0 2 0 1 0 0 

5 ... 

6 ... 

 

3.4. Bitstream Generation 

Stage 4 outputs a bitstream through an information bit for generating a bitstream for 

the current Bin. The bit generator receives Low_data (upper 7 bits of ivlLow), bos_cnt 

(Number of bits whose bitstream value has not been determined) and bit_cnt (Number of 

bitstreams to be output) and outputs a bitstream. The number of bitstream output 

according to the Bin to be encoded is not constant. The proposed architecture reduces the 

hardware area by generating an output signal (valid_bit_cnt) indicating the number of 

variable bitstreams and outputting the bitstream without using the memory. Figure 8 

shows the structure of Bitstream Generator and Table 4 shows the table for bitstream 

output. 
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Figure 8. Architecture of Bitstream Generation 

Table 4. Table for Bitstream Output 

bos_cnt Bitstream 

0 {Low_data[6:0], 0} 

1 {Low_data[6], ((1)~Low_data[6], Low_data[5:0], ((30)0)} 

2 {Low_data[6], ((2)~Low_data[6], Low_data[5:0], ((29)0)} 

3 {Low_data[6], ((3)~Low_data[6], Low_data[5:0], ((28)0)} 

... ... 

28 {Low_data[6], ((28)~Low_data[6], Low_data[5:0], ((3)0)} 

29 {Low_data[6], ((29)~Low_data[6], Low_data[5:0], ((2)0)} 

30 {Low_data[6], ((30)~Low_data[6], Low_data[5:0], ((1)0)} 

31 {Low_data[6], ((31)~Low_data[6], Low_data[5:0]} 

 

4. Hardware Implementation 

 

4.1. Comparison of Multi-Bin Architecture 

Applying the structure for multi-Bin processing to the proposed BAE increases the 

maximum Bin processing to 2,499Mbin/s. Table 5 shows the gate count, maximum clock 

frequency, and maximum Bin processing according to Bin per Clock Cycle (BPCC). 

Figure 9 shows graphs of maximum clock frequency, and maximum Bin processing 

according to BPCC. 

Table 5. Gate Count, Maximum Bin Processing and Maximum Clock 
Frequency According to BPCC, Synthesized in 65nm 

BPCC 1 2 3 4 5 6 

Gate Count (NAND gate) 3.17K 5.7K 8.07K 11.2K 13.3K 16.4K 

Max. Clock  Freq. (Mhz) 1,530 1,110 769 625 500 434 

Max. Processing (Mbin/s) 1,530 2,220 2,307 2,499 2,499 2,603 

 

Figure 9. Graphs of Maximum Clock Frequency and Maximum Bin 
Processing According to BPCC, synthesized in 65nm 
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4.2. Implementation Results and Comparison with Prior Architecture 

In the proposed BAE designed with Verilog HDL. A test vector was created using the 

HEVC standard model HM16.9. RTL simulation was performed on 1920x1080 and 

2560x1600 test sequences for HEVC. It was synthesized in 65nm technology with support 

from IDEC providing CAD tools. Its gate count is 11.2K and it processes 4 Bins per clock 

cycle. Maximum clock frequency is 625MHz and the maximum processing time is 

2,499Mbin/s. The structure of Zhou [9] performs 4.37 Bins per clock cycle with a 

maximum clock frequency of 420MHz and 1,836Mbin/s maximum processing time. 

Maximum processing speed therefore increased by 36% compared to the best 

performance of existing hardware structure, Zhou [9]. Table 6 compares the hardware 

implementation results with other structures. 

Table 6. Hardware Comparison 

 Chen[8] Zhou[9] Fei[10] Peng[11] Proposed 

Throughput (Bin/Clock Cycle) 1.42 4.37 4 1.18 3.99 

Max. Clock Freq. (Mhz) 222 420 279 357 625 

Technology (nm) 130 90 90 130 65 

Max. Processing (Mbin/s) 315 1,836 1,116 440 2,499 

Gate Count (NAND gate) 14.7K - 8.22 24.9K 11.2K 

 

5. Conclusion 

The proposed CABAC binary arithmetic encoder hardware structure has a four-stage 

pipeline structure that can reduce the critical path optimally by separating the 

renormalization process in order to reduce the computation time and computation amount 

of the standard binary arithmetic encoding technique. In CABAC, the number of output 

bitstreams varies depending on the Bin to be encoded. An information bit is generated to 

output the variable bitstream in one cycle, and the number of valid bitstreams and the 

bitstream are output using the LUT. The proposed CABAC binary arithmetic encoder 

hardware structure was verified by comparison with HEVC reference software HM16.9 

and verified by Xilinx ISE simulator (ISIM). Designed with Verilog HDL and synthesized 

in 65nm technology, it has been implemented with about 11,210 gates and has a 

maximum operating frequency of 625MHz and processes four Bins per clock cycle. 

Compared with the existing Zhou CABAC encoder hardware structure, the maximum 

Processing increased by 36%. CABAC is the only entropy coding method adopted in the 

HEVC standard. This has high compression performance, but it has high computational 

complexity and high dependency between data, which makes parallel processing difficult. 

The proposed CABAC binary arithmetic encoder hardware architecture works faster by 

reducing computational complexity. This improves the performance of the HEVC 

CABAC Encoder and is applicable to multimedia devices and system for real-time image 

processing. 
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