
International Journal of Control and Automation 

Vol.10, No.3 (2017), pp.101-114 

http://dx.doi.org/10.14257/ijca.2017.10.3.09 
 

 

ISSN: 2005-4297 IJCA 

Copyright ⓒ 2017 SERSC 

Ontology Vector Learning Scheming Using General Lasso Method 

and Applied to Multiple Disciplines 

 

 

Linli Zhu
1
, Xiaozhong Min

1
, Wei Gao

2
 and Haixu Xi

1
 

1
 School of Computer Engineering  

Jiangsu University of Technology 

Changzhou, Jiangsu 213001, China 
2
 School of Information 

Yunnan Normal University 

Kunming, Yunnan 650500, China 

zhulinli@jsut.edu.cn
1
,gaowei@ynnu.edu.cn

2
 

Abstract 

In information retrieval and other computer applications, ontology acts as an effective 

role to retrieve the concepts that have highly semantic similarity with the original query 

concept, and return the results to the user. Ontology mapping is used to connect the 

relationship between different ontologies, and similarity computation is the essence of 

such applications. In this article, we present a new ontology sparse vector scheming for 

ontology similarity measure and ontology mapping in terms of general fusion lasso. The 

solution of ontology optimization problem is obtained via learning its Lagrangian 

version. The implementation procedure is based on gradient computating and fusion step, 

and the parameters in the ontology framework are chosen by means of cross-vaildation 

and bayesian information criterion. The simulation experiment results show that the 

newly proposed method has high efficiency and accuracy in ontology similarity measure 

and ontology mapping in multiple disciplines. 

 

Keywords: Ontology, Similarity measure, Ontology mapping, General lasso, Cross-

vaildation 

 

1. Introduction 

Ontology, known as a kind of knowledge representation and conceptual shared model 

is used in image retrieval, knowledge management and information retrieval search 

extension. With high effectiveness as a concept semantic model, ontology is also 

extensively used in other research fields such as social science, medical science, biology 

science, pharmacology science and geography science (for instance, see [1-5]). 

The ontology model is in fact a graph G=(V,E), in which the vertex v represents a 

concept and each edge e=vivj represents a relationship between concepts vi and vj. To find 

a similarity function Sim: V×V 

 {0} is the target of ontology similarity measure 

as it maps each pair of vertices to a real number. Bridging the link between two or more 

ontologies is the purpose of ontology mapping. İt is necessary to make G1 and G2 be two 

ontology graphs corresponding respectively to ontology O1 and O2. There is a need to find 

a set Sv
 V(G2) for each v  G1 as concepts corresponding to vertices in Sv are 

semantically close to the concept corresponding to v. In order to get such mapping, 

compute the similarity S(v,vj) where vj V(G2) and choose a parameter 0<M<1 for each 

vG1. Sv is a collection like the element in Sv satisfies S(v,vj)M. İt can be seen from this 

point of view that the essence of ontology mapping is to obtain a similarity function S and 

to select a suitable parameter M.  
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There are several effective learning tricks in ontology similarity measure and ontology 

mapping. [6] proposed that the function of a score which maps each vertex to a real 

number and the similarity between two vertices can be measured according to the 

difference of real number they correspond to. [7] presented ontology similarity can be 

calculated by in fast ontology algorithm in a short time. [8] raised that optimizing NDCG 

measure determines the optimal ontology function and this idea can be applied in 

education of physics. [9] used the regression approach and deduced the ontology function. 

İn the research of [10], new ontology mapping algorithm with the use of harmonic 

analysis and diffusion regularization on hypergraph were presented. New ontology 

similarity computation technology such as the new calculation model was proposed in the 

research of [11], which put the operational cost of real implement into consideration. The 

ontology similarity measuring and ontology mapping algorithms on the basis of minimum 

error entropy criterion were presented in the latest research of [12]. Several theoretical 

analysis of ontology algorithm by [13-16] can be referred to.  

New ontology similarity computation and ontology mapping algorithms based on 

general fused lasso tricks are determined in this paper. Furthermore, we design four 

experiments to show the efficiency of the algorithm in the applications. 

 

2. Setting 

Let V be instance space. A p dimension vector expresses the information of each vertex 

in ontology graph (its name, instance, attribute, structure, and semantic information of the 

concept which corresponds to the vertex and is contained in name and attribute 

components of its vector are included). Let v= 1{ , , }pv v
 be a vector corresponding to a 

vertex v. To facilitate the representation, the notations are slightly confused by us and v is 

used to denote both the ontology vertex and its corresponding vector. The aim of ontology 

learning algorithms is to get an optimal ontology (score) function f: V  , the 

difference between two real numbers that they correspond to judges the similarity 

between two vertices. Dimensionality reduction is the essence of this algorithm, i.e., p 

dimension vector is expressed by one dimension vector. An ontology function f is 

specifically a dimensionality reduction function f: 
p  . 

As all the information of the vertex concept, attribute and the neighborhood structure in 

the ontology graph are contained within the vector corresponding to a vertex of ontology 

graph, high dimension is always with it. In the biological ontology, for example, the 

information of all genes is contained in a vector. In addition, ontology structure can be 

very complicated because of ontology graph with large number of vertices, and the GIS 

(Geographic Information System) ontology can be the most typical example. The fact that 

the similarity calculation of ontology application is very large may be led to by these 

factors. But in fact, only a small part of the vector components determines the similarity 

between the vertices. In the application of biological ontology, for example, a small 

number of genes often causes a genetic disease while most of the other genes are 

irrelevant. Moreover, in the geographic information system ontology, if an accident 

happens in a place and casualties are caused, it is necessary for us to find the nearest 

hospital regardless of schools and shops nearby, i.e., neighborhood information that meets 

specific requirements on the ontology graph needs to be found by us. Therefore, research 

the sparse ontology algorithm attracts tremendous academic and industrial interests. 

In the practice implement, one sparse ontology function is expressed by 

( )f v
w = 1

p

i i

i

v 


 w

.                                                         (1) 
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Here w = 1( , , )pw w
 is a sparse vector and   is a noise term. The sparse vector w  

is to shrink irrelevant component to zero. To determine the ontology function f, sparse 

vector w  should be learnt at first. 

One popular model with the penalize term via the 1l -norm of the unknown sparse 

vector w 
p

: 

Yw = 1
( )l w w

   0  .                                                  (2) 

Here,  > 0 is a regularization parameter (or, balance parameter) and l is the principal 

function (in many articles, it is called loss function) to measure the quality of w . The 

balance term 1
 w

 measures the sparsity of sparse vector w . 

 

3. Algorithm Description 

In what follows, we assume that we observe ontology data 1 1( , )v y
,…, 

( , )m mv y
, 

where jv
= 

T

1( , , )j jpv v  p
 and jy

 are the response variables. Then, the ontology 

linear model corresponding to ontology function expression can be denoted as (for 

j=1,2,…,m) jy
= 1

p

i ij j

i

w v 



,satisfies 

( )jE 
=0 and 

Var( )j =
2 . Furthermore, we 

suppose that the response variable is centered and the predictors are standardized, 

i.e., 1

m

j

j

y



=0, 1

m

ij

j

v



=0 and 

2

1

m

ij

j

v



=1 are established for each i=1,…,p. 

    The ontology sparse vector learning framework in our setting is obtained by 

minimizing the following euclidean norm 

ŵ =

2

1 2

arg min
p

i i
w i

y w v



,s.t. 1

p

i

i

w



 r,where y= 1( , , )my y

, jv
= 1( , , )i miv v

 and 

r 


 is a parameter to control the sparse of ontology vector w  (it restricts the number 

of non-zero components in w ).  

The view of elastic net (see [17-21] for more details), ontology sparse vector learning 

problem can be denoted as the following constrained least squares optimization problem: 

ŵ =

2

1 2

arg min
p

i i

i

y w v



w

,  s.t. 

2

1 1

(1 )
p p

i i

i i

w w 
 

  
 r. 

The first part causes a sparse ontology solution of these averaged predictors while the 

second part impels highly correlated predictors to be averaged. 

The elastic-net based scheme can be revised as the following clustering shrinkage 

algorithm: ŵ =

2

1 2

arg min
p

i i

i

y w v



w

, s.t. 1

max{ , }
p p

i i k

i i k

w c w w
 

 
 r. 

The fused lasso based ontology optimization algorithm is determined by solving (refer 

to [22-26] see more on fused lasso technology and its applications) 

ŵ =

2

1 2

arg min
p

i i

i

y w v



w

, s.t. 1

p

i

i

w



 1r  and 

1

2

p

i i

i

w w 




 2r . 

The clustered lasso as an extension of the fused lasso was introduced by [27]: 
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ŵ =

2

1 2

arg min
p

i i

i

y w v



w

, s.t. 1

p

i

i

w



 1r  and 

i k

i k

w w



 2r . 

[28] encapsulated the former tricks in the framework of the general lasso. The 

corresponding ontology problem can be expressed as: 

ŵ =

2

1 2

arg min
p

i i

i

y w v



w

, s.t. 1
Dw  r, 

where D
m p

 is a particular balance matrix. For example, 

D =

n



 
 
 F

, F =

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1

 
 

 
   . 

In this paper, our ontology framework is followed by the general fused lasso 

technologies, but new calculating tricks are used in our ontology scheme. Let d be a 

thresholding parameter and 

1

d    1. We use least-squares and linear combination 

balance term in our ontology optimization framework: 

ŵ =

2

1 2

arg min
p

i i

i

y w v



w

,                                                    (3) 

s.t. 1

(1 )
p

i i k

i i k

w w w 
 

   
 r. 

The balance term in the model above implies a geometric explanation of the constraint 

field which is unable to manifest the expression of the balance term. We emphasize that 

ontology problem (3) can be re-written as the following Lagrangian version: 
2

1 2

arg min{
p

i i

i

y w v



w

1

( (1 ) )}
p

i i k

i i k

w w w  
 

    
.                  (4) 

Now, we discuss the solution and persistence property of ontology problem (3) and (4). 

Let ( )R w =

2

1 2

1 p

i i

i

E v
m 

y w

, 
ˆ( )R w =

2

1 2

1 p

i i

i

w v
m 

y

, 
*

w =

arg min ( )
m

R
w

w

, where 

m
 is a constraint region of w . Then, ŵ  is persistent if  

*ˆ ˆ( ) ( )R Rw w p  0. 

In view of the technologies raised in [29], set z=(Z0,…, Zp) = (Y, V1, …, Vp). Set 0w
=-

1. Then, we infer ( )R w = 0 0

(Z Z )
p p

i k i k

i k

w w E
 


, 

ˆ( )R w = 1 0 0

1
Z Z

p pm

i k ij jk

j i k

w w
m   


, and 

*ˆ( ) ( )R Rw w


,

1
max ( )ij jk i k i k

i k
j i k

Z Z E Z Z w w
m

 
 

=

2

2 ,

1
max ( )ij jk i k

i k
j

Z Z E Z Z
m

w

. 

Suppose that  
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,
1

1
max ( )

m

ij jk i k
i k

j

Z Z E Z Z
m 


=

log
( )

m
O

m . Hence, we deduce that 

0

*ˆsup ( ) ( )
m

R R



w

w w


2

1

log
sup ( )

m

m
O

mw

w

. Let 
0

m
= 1

{ : }
p

i m

i

w r


w

. Then, the 

sufficient condition for persistence of our ontology problem is 

0

2

1
sup

mw

w

=
2

mr =

1

2( )
log

m
O

m , Set constraint regions of general fussed lasso based ontology 

problem as follows: 

m
=

T

1

{ : (1 ) ,
p

i i k m

i i k

v w w w r 
 

    w
1

1}
p

 

. 

'

m
=

T

1

{ : (1 ) max{ , }
p

i i k

i i k

v w w w 
 

  w
,0 1}mr   

. 

''

m
=

T 2

1 1

{ : (1 ) }
p

i i m

i i

v w w r 
 

   w

. 

We can verifies that 

2

1
w

 reaches the maximum value if 1w
 = 2w

 =…= pw
. From this 

point of view, we have 
'

2

1
sup

mw

w

=
2( )mpr
 and 

''

2

1
sup

mw

w

=
2

mpr
. Thus, the general fused 

lasso based ontology problem is persistent if mr  =

1

2
2

( )
log

m
O

p m . The maximum value is 

yielded if 1w
 = 2w

 =…= pw
=

mr

p . And hence, 

2

2
sup

nMw

w

= 

2( )mr

 =
2

mpr
if   take the 

value

1

p
.  

Next, we introduce the trick to implement the ontology problem by minimizing the 

prediction error with cross-validation. Since solving the following ontology procedure, 

ŵ =

2

1 2

arg min
p

i i

i

y w v



w

, s.t. 1

(1 )
p

i i k

i i k

w w w 
 

   
 r, is equivalent to 

determine its corresponding Lagrangian counterpart 

( )g w =

2

1

1 12

1

2

p p

i i i

i i

y w v w
 

  
 

2 i k

i k

w w


 
,                       (5) 

where 1 = , 2 = (1 )   and >0. 

We should take a descent step to solve (5). Let iw
 be the current estimates of the iw

 

and sgn(v) be the subgradient of |v|. Then, the derivative of Lagrangian version (5) with 

respect to kw
 given iw

= iw
, i k can be expressed as  

( )

k

g

w





w

=

T T

1( ) sgn( )k k k i i k k

i k

v v w y wv v w
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1

2 2

1 1

sgn( ) sgn( )
pk

i k k i

i i k

w w w w 


  

    
, (x) Clearly, the derivative version is 

piecewise linear in kw
with breaks at {0, iw

, i k} , or wise kw   {0, iw
, i k}. 

If there exists a solution for 

( )

k

g

w





w

= 0, an interval (c1, c2) can be determined as which 

contains its solution, and we further have 

kw
=

T

2sgn{ ( )}k ik ki

i k i k

y v s s
 

  

T

2 1

T

( ( ) )k ik ki

i k i k

k k

y v s s

v v

  

 

  



 

, 

where iks
=

1 2sgn( )
2

i

c c
w




 and y =
i i

i k

y w v



 . 

If we can’t find the solution for

( )

k

g

w





w

 = 0, then we set 

kw
=

  if ( ) min{ (0), ( ),  for }

0    if (0) ( ) for each  

l l i

i

w g w g g w i k

g g w i k

 


  . 

For the situation that the descent step lost to reduce the function ( )g w , we should 

discuss the fusion of pairs of kw
. For every single pair (k,l), l  k, we consider the 

constraint kw
= lw

 =  and discuss a descent change in  . By setting y = ,

i i

i k l

y w v



, 

the derivative of (5) with respect to   then becomes  

( )g







w

=
T T T

1( ) ( ) 2 sgn( )k k l l k lv v v v y v v     
 

2 2

, ,

2 sgn( ) 2 sgn( )i i

i k l i k l

w w   
 

    
. 

The change kw
= lw

 =  is permitted if the optimal value of   deduced by virtue of the 

descent step decreases the objective function. 

The last part in this section is to discuss the selection of parameters   and  . Our 

technology is based on K-fold cross-validation  which divides randomly the ontology data 

into K roughly with equal size and disjoint subcollections kD
(k=1, …, K) satisfies 

1

K

kk
D

 ={1,2,…, n} (readers can refer to [30-35] for more details about the method of 

cross-validation). Let 
( )ˆ ( , )k

iw  

 be the estimate of iw
 for a fixed parameter   and   

in terms of the ontology data set without kD
. Then, the statistic error for cross-validation 

is defined by ( , )CV   =

( ) 2

1 1

ˆ( ( , ) )
k

pK
k

j i ij

k j D i

y w v 

  

 
. 

Generalized cross-validation and Bayesian information criterion (BIC) (see [36-40] for 

more details) are other popular tricks. Let 
ˆ ( , )iw  

 be the estimate of iw
for a fixed 

parameter   and  , dg be the degree of freedom which is a measure of model 
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complexity, and ( , )RSS   =

2

1 1

ˆ( ( , ) )
pm

j i ij

j i

y w v 
 

 
. Then, generalized cross-

validation and Bayesian information criterion can be expressed as follows 

( , )GCV   =

( , )RSS

m dg

 

 , ( , )BIC   = log(RSS( , )) logm m dg    . 

 

4. Experiments 

In this section, we design four simulation experiments relevance ontology similarity 

measure and ontology mapping below. In order to adjacent to the setting of ontology 

algorithm, a vector with d dimension to express each vertex’s information is used. The 

information such as name, instance, attribute and structure of vertex is contained in this 

vector. Here the set of its reachable vertex in the directed ontology graph is represented 

by the instance of vertex. 

In the following four experiment, the effectiveness of main ontology algorithm in is 

verified in our paper. After getting the sparse vector w , then the  
( )f v

w = 1

p

i ii
v w


. 

causes the ontology function.  

 

4.1. Experiment on Biology Data 

“Go” ontology O1 which was constructed in http: //www. geneontology. org. (Figure 1 

shows the basic structure of O1) is used for our experiment. We use P@N (Precision 

Ratio, see [41] for more detail) to measure the equality of the experiment. First of all, the 

closest N concepts for every vertex was given on the ontology graph by expert, and then 

the first N concepts for every vertex on ontology graph by the algorithm and compute the 

precision ratio was obtained by us. [7-8] and [13] employed ontology algorithms to “Go” 

ontology, and the precision ratio which we got from four methods was compared. Several 

experiment results can be referred to Table 1. 

 

 

Figure. 1. “Go” Ontology 

Table 1. The Experiment Data for Ontology Similairty Measure 
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 P@3 average 

precision ratio 

P@5 average 

precision ratio 

P@10 

average 

precision 

ratio 

P@20 

average 

precision 

ratio 

Our Algorithm 47.24% 54.62% 64.95% 79.16% 

Algorithm in[7] 46.38% 53.48% 62.34% 74.59% 

Algorithm in[8] 43.56% 49.38% 56.47% 71.94% 

Algorithm in 

[13] 

42.13% 51.83% 60.19% 72.39% 

 

When N= 3, 5, 10 or 20, the precision ratio by virtue of our algorithm is higher than 

the precision ratio determined by algorithms as [7-8, 13] proposed in their research. 

Particularly, when N increases, such precision ratios will apparently increase. We can 

concluded that the algorithm described in our paper is superior to the method proposed by 

[7-8, 13].  

 

4.2. Experiment on Physical Education Data 

Physical education ontologies O2 and O3 (the structures of O2 and O3 are presented in 

Figure 2 and Figure 3 respectively) were used for our second experiment. Determining the 

ontology mapping between O2 and O3 We applied P@N criterion to measure the equality 

of the experiment. The closest N concepts for each vertex on the ontology graph with the 

help of experts was given by us, and then the first N concepts for every vertex on 

ontology graph by the algorithm and compute the precision ratio was obtained. [7-8, 10] 

also employed ontology algorithms to “physical education” ontology, and we made a 

comparison among the precision ratios which we get from four methods. Several 

experiment results can be referred to Table 2.  

 

 

Figure 2. “Physical Education” Ontology O2 
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Figure 3. “Physical Education” Ontology O3 

Table 2. The Experiment Data for Ontology Mapping 

 P@1 

average 

precision ratio 

P@3 average 

precision ratio 

P@5 average 

precision ratio 

Our Algorithm 69.13% 78.49% 93.55% 

Algorithm in [7] 61.29% 73.12% 79.35% 

Algorithm in [8] 69.13% 75.56% 84.52% 

Algorithm in [10] 67.74% 77.42% 89.68% 

 

That our algorithm is more efficiently than algorithms raised in [7-8, 10] especially 

when N is sufficiently large is revealed by the experiment results in Table 2. 

 

4.3. Experiment on Plant Data 

In this subsection, we use “PO” ontology O4 which was constructed in http: 

//www.plantontology.org. (Figure 4 shows the basic structure of O4) to test the efficiency 

of our new algorithm for ontology similarity measuring. We use the P@N standard again 

for this experiment. Furthermore, ontology method in [6-8] to the “PO” ontology is 

applied in our experiment. The accuracy by these three algorithms is calculated and the 

result to algorithm rose in our paper is compared, part of the data can be referred to Table 

3. 
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Figure 4. “PO” ontology O4 

Table 3. The Experiment Data for Ontology Similairty Measure 

 P@3 average 

precision ratio 

P@5 average 

precision ratio 

P@10 average 

precision ratio 

Our Algorithm 48.37% 57.13% 71.12% 

Algorithm in [6] 45.49% 51.17% 58.59% 

Algorithm in [7] 42.82% 48.49% 56.32% 

Algorithm in [8] 48.31% 56.35% 68.71% 

 

When N= 3, 5, or 10, the precision ratio in terms of our algorithm is higher than the 

precision ratio determined by algorithms that [6-8] proposed in their research. In 

particular, such precision ratios are increasing apparently as N increases. İt can be 

concluded that the algorithm described in our paper is superior to the method that [6-8] 

proposed in their research.  

 

4.4. Experiment on Humanoid Robotics Data 

Humanoid robotics ontologies O5 and O6 (constructed by [42], and the structures of O5 

and O6 are presented in Figure 5 and Figure 6 respectively) were used for our last 

experiment. This experiment is to determine ontology mapping between O5 and O6 via 

similarity matrix which Algorithm 1 deduces. We use P@N criterion to measure the 

equality of the experiment. We employ ontology algorithms in [43, 8, 10] to humanoid 

robotics ontologies, and the precision ratio which we get from four methods are 

compared. Several experiment results can be referred to Table 4. 

The experiment results in Table 4 reveal that our algorithm works with more efficiency 

than algorithms [43, 8, 10] raised in their research especially when N is sufficiently large. 
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Table 4. The Experiment Data for Ontology Mapping 

 P@1 average 

precision ratio 

P@3 average 

precision 

ratio 

P@5 average 

precision ratio 

Our Algorithm 27.78% 53.70% 68.89% 

Algorithm in [43] 27.78% 48.15% 54.44% 

Algorithm in [8] 22.22% 40.74% 48.89% 

Algorithm in [10] 27.78% 46.30% 53.33% 

 

 

Figure 5. “Humanoid Robotics” Robotics” Ontology O5 

 

Figure 6. “Humanoid Ontology O6. 

5. Conclusion 

In our article, a fused lasso based computation technology is manifested for ontology 

similarity measure and ontology mapping application. The detailed steps rely on the 

Lagrangian alternation, derivative calculation and parameter selection. At last, simulation 
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data shows that our ontology scheming has high efficiency in biology, physics education, 

plant science and humanoid robotics. The ontology sparse algorithm raised in our paper 

illustrates the promising application prospects in multiple disciplines. 
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