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Abstract 

In this paper, GA-based SOPNN was constructed and applied to model a pH 

neutralization process. The pH neutralization process can be found in a variety of 

practical areas including wastewater treatment, biotechnology processing, and chemical 

processing. It is the measurement of the acidity or alkalinity of a solution containing a 

proportion of water. It is mathematically defined as the negative decimal logarithm of the 

hydrogen ion concentration [H+] in the solution. The strong nonlinearity in the pH 

process is characterized by its steady state titration curve. The performance of GA-based 

SOPNN was compared with other models including conventional polynomial neural 

network(PNN), and adaptive network based fuzzy inference system models. In all 

comparisons, the GA-based SOPNN demonstrated significantly improved performance. 

Moreover, the network complexity of conventional PNN could be significantly reduced. 

 

Keywords: pH neutralization process, genetic algorithm, self-organizing polynomial 

neural network 

 

1. Introduction 

High performance process control and supervision often require accurate process 

models. Most processes are nonlinear and their model should be nonlinear [9]. The 

problem of regulating and controlling a pH process can be found in a variety of practical 

areas including waste water treatment, biotechnology processing, and chemical processing 

[4, 8]. Also there are many difficulties in controlling the pH process because of heavy 

nonlinearity and uncertainty. In many pH control strategies, having a good computational 

model is imperative for implementing an effective control. Recently, the issue of efficient 

techniques has been a focal point of a vast number of research endeavors in the area of the 

model identification of complex and nonlinear systems. The main research agendas 

include various important tasks such as an efficiency of learning, significant 

approximation and generalization abilities of the designed networks. While fuzzy sets, 

neural networks and evolutionary computing have augmented a field of modeling quite 

immensely, they have also gave rise to a number of new methodological issues and 

increased awareness about tradeoffs. When the dimensionality of the model goes up (say, 

the number of variables increases), so do the difficulties.  

This paper is concerned with modeling and identification of pH process by genetic 

algorithm (GA) based self-organizing neural networks (SOPNN). There have been many 

reports on constructing pH models using intelligent systems such as fuzzy- neural 

approach [8]. Recently, a polynomial neural network (PNN) [1] has been applied and 

demonstrated improved performance over conventional statistical regression models or 

conventional neural network. The PNN provides an automated selection of essential input 

variables and builds hierarchical polynomial regressions of required complexity. In 



International Journal of Control and Automation 

Vol.10, No.3 (2017) 

 

 

80   Copyright ⓒ 2017 SERSC 

addition, high-order regression often leads to a severely ill-conditioned system of 

equations. However, the PNN avoids this problem by constantly eliminating variables at 

each layer. Therefore, complex systems can be modeled without specific knowledge of 

the system or massive amount of data. But the PNN algorithm is a heuristic method and it 

does not guarantee that the obtained PNN model is the best one for modeling and 

prediction. Therefore, more attention must be paid to solve the drawbacks. Several 

methodologies to circumvent the drawbacks of the PNN stated earlier are presented by the 

author [10-14].  

GA based SOPNN is another method to alleviate the handicap of the PNN [12-14]. The 

structure and parameter of the PNN are optimized and accomplished by using a genetic 

algorithm (GA) to optimize the training factors. The performance of GA based PNN is 

compared to conventional PNN, and adaptive network based fuzzy models. Model 

performance is evaluated with pH process data.  

 

2. Experimental Study 

The experimental study examined here is obtained from pH dynamics in a continuous 

stirred tank reactor (CSTR) and discussed. We apply GA based SOPNN to a highly 

nonlinear process of pH neutralization of a weak acid and a strong base. This model can 

be found in a variety of practical areas including wastewater treatment, biotechnology 

processing, and chemical processing [4-8].  

pH is the measurement of the acidity or alkalinity of a solution containing a proportion of 

water. It is mathematically defined, for dilute solution, as the negative decimal logarithm 

of the hydrogen ion concentration [H
+
] in the solution, that is, 

pH=-log10[H
+
]                                                           (1) 

In the CSTR investigated, shown in Figure 1, acetic acid (HAC) of concentration 

aC
flows into the tank at flow rate aF

, and is neutralized by sodium hydroxide(NaOH) of 

concentration bC
 which flows into the tank at rate bF

. The equations of the CSTR can be 

described as follows (here we assume that the tank is perfectly mixed and isothermal).  

 

acid base

~ ~ ~ ~ ~ ~ ~ ~

Effluent

Influent Reagent

 

Figure 1. Continuous Tank Reactor for pH Neutralization 

The process equations for the CSTR is given by 

abaaa
a WFFCF

dt

Vdw
)( 

                                             (2a) 

    
bbabb

b WFFCF
dt

Vdw
)( 

                                             (2b) 
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where the constant V is the volume of the content in the reactor, aw
 and bw

 are the 

concentrations of the acid and the base, respectively. 

The above equation describes how the concentrations of aw
 and bw

 changes 

dynamically with time subject to the input streams aF
and bF

. To obtain the pH in the 

effluent, we need to find a relation between instantaneous concentrations aw
 and bw

 and 

pH values. This relationship can be described by a nonlinear algebra equation known as 

the titration or characteristic curve. Depending on the chemical species used, the titration 

curve varies. 

 Here we consider the case that a weak influent is neutralized by a strong reagent. The 

words strong and weak are used to characterize the degree of ionic dissociation in an 

aqueous solution. Strong reagents completely dissociate into their hydrogen or hydroxyl 

ions whereas weak reagents are only partially ionized. 

Consider an acetic acid (weak acid) denoted by HAC being neutralized by a strong 

base NaOH(sodium bydroxide)in water. The reactions are 

H2O  H
+
 + OH

- 
                                                        (3a) 

HAC  H
+
 + AC

-
                                                        (3b) 

NaOH  Na
+
 + OH

- 
                                                     (3c) 

According to the electroneutrality condition, the sum of the charges of all ions in the 

solution must be zero, i.e. 

 [Na
+
]+[H

+
] = [OH

-
] + [AC

-
]                                                 (4) 

where the symbol [X] denotes the concentration of the ion X. 

On the other hand, the following equilibrium relationships hold for water and acetic 

acid: 

aK
= [AC-][H+] / [HAC]                                               (5a) 

 wK
= [H+][OH-]                                                         (5b) 

where aK
and wK

are the dissociation constants of the acetic acid and water with 

aK
=1.76*10

-5
 and wK

=10
-14

. 

Defining aw
=[HAC]+[AC

-
] as the total acetate and bw

=[Na
+
] and inserting Eqs. (5 a) 

and (5 b) into Eq. (4), we have 

 [H
+
]

3
+[H

+
]

2
{ aK

+ bw
}+[H

+
]{ aK

 ( bw
- aw

)- wK
}- aK wK

=0                 (6) 

Using Eq. (1), Eq. (6) becomes 

0
101

1010 







pHpK

apKpHpH

b
a

w
W

W
                             (7) 

where akpKa 10log
. The static relationship between base flow rate and pH in the 

reactor is plotted in Figure 2. It can be seen that the strong nonlinearity inherent in the pH 

process is characterized by its steady state titration curve. 
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Figure 2. Titration Curve for pH Neutralization 

We consider the weak acid-strong base neutralization process described by Eqs. (2 a), 

(2 b) and (7). By fixing the acid flow-rate aF
(81cc/min) at a specific value, the process is 

regarded as a single variable system with base flow-rate bF
and the pH in the effluent 

being the input and output, respectively. The ( bF
, pHy

) data pairs were produced by 

using the process physical model with the parameter values given in Table 1.  

Table 1. Parameters and Initial Values for pH Process 

Variables Meaning Initial setting 

V 

Fa 

Fb 

Ca 

Cb 

Ka 

Kw 

Wa(0) 

Wb(0) 

Volume of tank 

Flow rate of acid 

Flow rate of base 

Concentration of acid in Fa 

Concentration of base in Fb 

Acid equilibrium constant 

Water equilibrium constant 

Concentration of acid 

Concentration of base 

1000 cc 

81 cc/min 

515 cc/min 

0.32 mole/l 

0.05 mole/l 

1.76*10
-5

 

1.0*10
-14

 

0.0435 mole/l 

0.0432 mole/l 

 

The base flow rate bF
was given by 

150)25/2sin(5.51515  tfortFb                                    (8a) 
150)10/2sin(75.25)25/2sin(75.25515  tforttFb 

                 (8b) 

For obtaining such a data pairs, we applied Newton-Raphson method that is given by 

Eq. (9). 

)(

)(
1

i

i
ii

pHf

pHf
pHpH




                                                     (9) 

The system inputs of the GA based SOPNN structure consist of the delayed terms of 

)(tFb and pHy
(t) which are input and output of the process, i. e. 

))1(),2(),3(),1(),2(),3(()(ˆ  tytytytFtFtFty pHpHpHbbbpH 
             (10) 

where, pHŷ
 and pHy

 denote model output and the actual process output, respectively. 

500 data pairs are generated from Eqs. (8a), (8b), and (9) where total data are used for 

training. 



International Journal of Control and Automation 

Vol.10, No.3 (2017) 

 

 

Copyright ⓒ 2017 SERSC      83 

3. GA Based Self-organizing Polynomial Neural Network 

The brief process to construct GA based SOPNN is presented in this section. Detailed 

descripts can be found in [12, 14]. When we design the SOPNN using GA, the most 

important consideration is the representation strategy, that is how to encode the key 

factors of the PNN into the chromosome. We employ a binary coding for the available 

design specification. We code the order and the inputs of each node in the PNN as a 

finite-length string. Our chromosomes are made of three sub-chromosomes. The first one 

is consisted of 2 bits for the order of polynomial (PD), the second one is consisted of 3 

bits for the number of inputs of PD, and the last one is consisted of N bits which are equal 

to the number of entire input candidates in the current layer. These input candidates are 

the node outputs of the previous layer. The representation of binary chromosomes is 

illustrated in Figure 3.  

 

00 11 0 1 01



10

The 1st sub-chromosome:

2 bits for the order of PD

The 2nd sub-chromosome:

3 bits for the number of

inputs of PD

The 3rd sub-chromosome: N bits

equal to input candidates in the

current layer

 

Figure 3. Structure of Binary Chromosome for a PD 

The 1st sub-chromosome is made of 2 bits. It represents several types of order of PD. 

The relationship between bits in the 1st sub-chromosome and the order of PD is shown in 

Table 2. Thus, each node can exploit a different order of the polynomial. The 3rd sub-

chromosome has N bits, which are concatenated a bit of 0’s and 1’s coding. The input 

candidate is represented by a 1 bit if it is chosen as input variable to the PD and by a 0 bit 

it is not chosen. This way solves the problem of which input variables to be chosen.  

Table 2. Relationship between Bits in the 1st Sub-Chromosome and Order 
of PD 

Bits in the 1st sub-

chromosome 
Order of polynomial(PD) 

00 Type 1 – Linear 

01 
Type 2 – Quadratic 

10 

11 
Type 3 – Modified 

quadratic 
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Table 3. Relationship between Bits in the 2nd Sub-chromosome and 
Number of inputs to PD 

Bits in the 2nd sub-

chromosome 

Number of inputs to 

PD 

000 1 

001 2 

010 2 

011 3 

100 3 

101 4 

110 4 

111 5 

 

If many input candidates are chosen for model design by the 3rd sub-chromosome, the 

modeling is computationally complex, and normally requires a lot of time to achieve good 

results. In addition, it causes improper results. Good approximation performance does not 

necessarily guarantee good generalization capability. To overcome this drawback, we 

introduce the 2nd sub-chromosome into the chromosome. The 2nd sub-chromosome is 

consisted of 3 bits and represents the number of input variables to be selected. The 

number based on the 2nd sub-chromosome is shown in the Table 3. Input variables for 

each node are selected among entire input candidates as many as the number represented 

in the 2nd sub-chromosome. Designer must determine the maximum number in 

consideration of the characteristic of system, design specification, and some prior 

knowledge of model. With this method we can solve the problem which is the 

requirement of a lot of computing time.  

Information on PD Forming a PD

x
6

x
5

x
4

x
3

x
2

x
1

Input cadidates Chromosome

1st sub-

chromosome

3rd sub-

chromosome

2nd sub-

chromosome

selected

0

0

1

1

0

0

0

1

0

1

0

selected

ignored

ignored

ignored

ignored

Order of

polynomial

No. of inputs

ŷf

 

Figure 4. Example of PD Whose Various Pieces of Required Information are 
Obtained from its Chromosome 

x
6

x
1

PD
2

2
ŷ

:quadratic

(Type 2)

: 2 inputs

 

Figure 5. Node with PD Corresponding to Chromosome in Figure 4 
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The relationship between chromosome and information on PD is shown in Figure 4. 

The PD corresponding to the chromosome in Figure 4 is described briefly as Figure 5. 

Figure 4 shows an example of PD. The various pieces of required information are 

obtained its chromosome. The 1st sub-chromosome shows that the polynomial order is 

Type 2 (quadratic form). The 2nd sub-chromosome shows two input variables to this node. 

The 3rd
 
sub-chromosome tells that x1 and x6 are selected as input variables. The node with 

PD corresponding to Figure 4 is shown in Figure 5. Thus, the output of this PD ŷ can be 

expressed as (11). 
2 2

1 6 0 1 1 2 6 3 1 4 6 5 1 6
ˆ ( , )y f x x c c x c x c x c x c x x                                    (11) 

where coefficients c0, c1, …, c5 are evaluated using the training data set by means of the 

standard least squared error (LSE). 

 

YES

NO

Start

Results: chromosomes which have

good fitness value are selected for the

new input variables of the next layer

Generation of initial population:

the parameters are encoded into a

chromosome

Termination condition

Evaluation: each chromosome is

evaluated and has its fitness value

End: one chromosome (PD)

characterized by the best

performance is selected as the output

when the 3rd layer is reached

A`: 0 0 0 0 0 0 0 0 0 1 1 A`:  0 0 0 1 0 0 0 0 0 1 1

before mutation after mutation

A:  0 0 0 0 0 0 0 1 1 1 1

B:  1 1 0 0 0 1 1 0 0 1 1

A`:  0 0 0 0 0 0 0 0 0 1 1

B`:  1 1 0 0 0 1 1 1 1 1 1

before crossover after crossover

The fitness values of the new chromosomes

are improved trough generations with

genetic operators

---: mutation site

---: crossover site

A:  0 0 0 0 0 0 0 1 1 1 1 B:  1 1 0 0 0 1 1 0 0 1 1

Reproduction: roulette wheel

One-point crossover

Invert mutation

 

Figure 6. Block Diagram of the Design Procedure of GA Based SOPNN 

The polynomial function, PD, is formed automatically according to the information of 

sub-chromosomes. The design procedure of GA-based SOPNN is shown in Figure 6. At 

the beginning of the process, the initial populations comprise a set of chromosomes that 

are scattered all over the search space. The populations are all randomly initialized. Thus, 

the use of heuristic knowledge is minimized. The assignment of the fitness in GA serves 

as guidance to lead the search toward the optimal solution. After each of the 

chromosomes is evaluated and associated with a fitness, the current population undergoes 

the reproduction process to create the next generation of population. The roulette-wheel 

selection scheme is used to determine the members of the new generation of population. 

After the new group of population is built, the mating pool is formed and the crossover is 

carried out. The crossover proceeds in three steps. First, two newly reproduced strings are 

selected from the mating pool produced by reproduction. Second, a position (one point) 

along the two strings is selected uniformly at random. The third step is to exchange all 

characters following the crossing site. We use one-point crossover operator with a 

crossover probability of Pc (0.85). This is then followed by the mutation operation. The 

mutation is the occasional alteration of a value at a particular bit position (we flip the 

states of a bit from 0 to 1 or vice versa). The mutation serves as an insurance policy which 

would recover the loss of a particular piece of information (any simple bit). The mutation 

rate used is fixed at 0.05 (Pm). Generally, after these three operations, the overall fitness 

of the population improves. Each of the population generated then goes through a series 
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of evaluation, reproduction, crossover, and mutation, and the procedure is repeated until a 

termination condition is reached. After the evolution process, the final generation of 

population consists of highly fit bits that provide optimal solutions. After the termination 

condition is satisfied, one chromosome (PD) with the best performance in the final 

generation of population is selected as the output PD. All remaining other chromosomes 

are discarded and all the nodes that do not have influence on this output PD in the 

previous layers are also removed. By doing this, the GA-based SOPNN model is obtained. 

 

4. Results 

The pH process is modeled by using GA based SOPNN. The design parameters of the 

model are shown in Table 4. Considering the design parameters of GA-based SOPNN, 

these are the same as Table 4.  

Table 4. Design Parameters of GA-Based SOPNN for Modeling 

Parameters 1st layer 2nd layer 3rd layer 

Maximum generations 40 60 80 

Population size:( w) 20:(15) 60:(50) 80 

String length 8 20 55 

Crossover rate (Pc) 0.85 

Mutation rate (Pm) 0.05 

Weighting factor: θ  0.1~0.9 

Type (order) 1~3 

 

w: the number of chosen nodes whose outputs are used as inputs to the next layer 

As seen from Table 4, in the 1st layer, 20 chromosomes are generated and evolved 

until 40 generations. Those coefficients of each of the resulting 20 nodes (PDs) are 

estimated with the training data and by the LSE. According to the fitness values computed 

by cost function, the PDs are then selected by a predetermined number w from the node of 

the largest fitness. As indicated in Table 4, the value of w is different from each layer. The 

chosen PDs (w nodes) must be preserved for the design of the next layer and the outputs 

of the preserved PDs serve as the inputs to the next layer. This procedure is repeated for 

the 2nd layer and the 3rd layer.  

Figure 7 and 8 illustrate the trend of the performance index and fitness function values 

produced in successive generations of the GA, respectively. Figure 9 shows the 

performance comparison of the proposed method with conventional PNN. In Figure 10, 

the proposed GA-based SOPNN model with 3 layers are depicted. From the Figure 9 and 

10, we can see that the GA-based SOPNN has more good performance than conventional 

PNN.  
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Figure 7. Trend of Performance Index Values with Respect to Generations 
through Layers 
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Figure 8. Values of the Fitness Function with Respect to the Successive 
Generations 
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Figure 9. Performance Comparison of the Proposed Method with 
Conventional PNN 
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Figure 10. Structure of the GA-Based SOPNN Model with 3 Layers 

Table 5 provides a comparative analysis of fuzzy models and conventional PNN with 4 

cases. Considering a performance index, Mean square error (MSE) is used. From the 

Table 5, it becomes obvious that GA based architecture outperforms other models. 

Table 5. Performance Comparison of Various Identification Models 

Model 
MSE 

PI 

Nie's 

model[8] 

USOCPN 0.230 

SSOCPN 0.012 

Basic 

SOPNN [1] 

Case 1 (15th layer) 0.0015 

Case 2 (15th layer) 0.0052 

Modified 

SOPNN [1] 

Case 1 (10th layer) 0.0039 

Case 2 (10th layer) 0.0124 

GA-based SOPNN 0.0008 

 

5. Conclusion 

In this paper, GA-based SOPNN was constructed and applied to model a pH 

neutralization process. The strong nonlinearity in the pH process is characterized by its 

steady state titration curve. The performance of GA-based SOPNN was compared with 

other models including conventional polynomial neural network (PNN), and adaptive 

network based fuzzy inference system models. In all comparisons, the GA-based SOPNN 

demonstrated significantly improved performance. Moreover, the network complexity of 

conventional PNN could be significantly reduced. 
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